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1  | INTRODUC TION

The skin is the largest organ in the body and one of the most com‐
plex, as a multi‐layered, multiple cell type, multifunctional organ that 
serves as a key interface to the outside world.1 The skin is composed 
of three main layers: epidermis, dermis and hypodermis (subcutis). 
Each layer is composed of multiple cell types with unique and com‐
plementary functions to support homeostasis (Figure 1, Table 1). The 
epidermis contains keratinocytes, melanocytes, Langerhans cells and 
Merkel cells. The dermis contains dermal fibroblasts, mast cells, vas‐
cular smooth muscle cells, specialized muscle cells, endothelial and 

immune cells. The hypodermis is composed of adipocytes, nerves 
and fibroblasts. The complex functional components of these lay‐
ers include sweat glands, hair follicles, blood vessels and peripheral 
nerve endings (Aβ, Aδ, and C nerve fibres).1‐11

Efforts in skin research are typically divided into three areas of 
importance: clinical models, commercial in vitro testing and explor‐
atory research (Figure 2). Clinical research on skin focuses on the 
development of reliable human skin equivalents (HSEs) that can be 
used as dermal grafts, skin replacements, or wound coverings in acute 
cases, or for chronic cases that include diabetic ulcers or non‐heal‐
ing wounds.12,13 The general constraints for these models include 
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Abstract
The skin is a highly complex organ, responsible for sensation, protection against the 
environment (pollutants, foreign proteins, infection) and thereby linked to the immune 
and sensory systems in the neuro‐immuno‐cutaneous (NIC) system. Cutaneous in‐
nervation is a key part of the peripheral nervous system; therefore, the skin should be 
considered a sensory organ and an important part of the central nervous system, an 
‘active interface’ and the first connection of the body to the outside world. Peripheral 
nerves are a complex class of neurons within these systems, subsets of functions are 
conducted, including mechanoreception, nociception and thermoception. Epidermal 
and dermal cells produce signalling factors (such as cytokines or growth factors), neu‐
rites influence skin cells (such as via neuropeptides), and peripheral nerves have a role 
in both early and late stages of the inflammatory response. One way this is achieved, 
specifically in the cutaneous system, is through neuropeptide release and signalling, 
especially via substance P (SP), neuropeptide Y (NPY) and nerve growth factor (NGF). 
Cutaneous, neuronal and immune cells play a central role in many conditions, in‐
cluding psoriasis, atopic dermatitis, vitiligo, UV‐induced immunosuppression, herpes 
and lymphomas. Therefore, it is critical to understand the connections and interplay 
between the peripheral nervous system and the skin and immune systems, the NIC 
system. Relevant in vitro tissue models based on human skin equivalents can be used 
to gain insight and to address impact across research and clinical needs.
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that they must be biocompatible, integrate with the existing tissue 
beneath (ie subcutis/hypodermis), and interface with the surround‐
ing tissue along the perimeter of the replacement, and they must be 
approved by the FDA, so material and regulatory concerns are met.

Clinical models have significantly advanced in the past decades 
along with the advent of tissue engineering, and currently, there are 
numerous options for clinicians to choose from, diverse in delivery 
format, in composition of cells or tissue, and in the choice of matrix 
material (Tables 2 and 3). The clinical research field is growing and 
expected to be valued at $24.3 billion USD by 2019.3 However, as 
the demand continues to grow, there are various problems which are 
still pertinent to the clinical field, including rejection, scarring, size 
constraints and lack of integration with functional components of 
the skin (ie sensation may not return due to lack of innervation, hair 
follicles or pores may not develop).12,13

Beyond clinical application, HSEs are also used for commercial ap‐
plications (in vitro testing/diagnostics) for testing permeability, sensiti‐
zation or toxicity studies (Figure 2).10 Typically, these HSEs only contain 
2 or 3 cell types, keratinocytes and fibroblasts, and sometimes melano‐
cytes.10 Challenges with these systems include their differences from 
skin biology which impacts permeability and barrier functions, difficulty 
in recapitulating disease conditions or non‐intact skin, and issues with 
biomaterial choices for the dermis; collagen hydrogels undergo con‐
traction, deterioration, and can have homogeneity and reproducibility 
issues.10,14‐16 Alternatives to in vitro HSEs include human explant tissue 
or animal models, however, there have been major efforts to develop 
relevant in vitro systems that circumvent ethical concerns, biological dif‐
ferences (animal vs human) and donor variation from explant tissue.17,18 
In vitro systems also provide opportunities to develop controlled exper‐
imental conditions or patient‐specific/genetically engineered models.19

Human skin equivalents as research tools are diverse in terms of 
applications, with wound healing as an example of a dominant focus 

in skin research. As tissue engineering has advanced, the capabili‐
ties of in vitro models have progressed with many formats including 
skin‐on‐chip (or as part of a multi‐organ‐chip), multi‐compartment 
2D or 3D devices, and monolayer or full‐thickness models (Table 3). 
However, most of these in vitro models still focus on only 2 or 3 
cell types, generally keratinocytes and fibroblasts, with or without 
an	additional	cell	type	of	interest	(melanocytes,	neurons,	etc).	While	
much of this work has been instrumental to the field, most in vitro 
tissue models do not address the NIC system because they lack the 
representative components. Ultimately, to discern the effects of cell 
types or components on the skin system, more complete in vitro tis‐
sue models are needed.

2  | NEURO ‐IMMUNO ‐ CUTANEOUS (NIC) 
COMPONENTS IN SKIN AND IN VITRO SKIN 
MODEL RESE ARCH

The NIC system is a relatively new concept for inclusion in in vitro 
skin model research, although the connection from the brain, skin 
and host response has been studied with great interest across many 
fields (psychology, biology, engineering) for many decades.20,21 
The skin is a key organ to study the connection between the mind, 
nervous system and the host immune response, as the window to 
the outside world has tangible links between physical and men‐
tal health.20 The interconnectedness of the NIC system, and the 
neuro‐immuno‐cutaneous‐endocrine (NICE) systems, is founded 
by complex, and constant communication between neuropeptides, 
cytokines, neurotransmitters, small molecules and less defined pro‐
cesses like psychological stress, to maintain homeostasis in the skin 
(Figure 3).21 Imbalances in stress have been linked to several skin 
conditions including psoriasis, atopic dermatitis and vitiligo.20

F I G U R E  1   Complex nature of 
human skin. Skin biopsy obtained from 
abdominoplasty procedure (Tufts 
University IRB Protocol #0906007) at 
the Lahey Clinic (Burlington, MA, USA) 
demonstrates intricate tissue structure of 
the native skin. Abbreviations: SC, stratum 
corneum; SL, stratum lucidum; SS, stratum 
spinosum; SB, stratum basal; PD, papillary 
dermis; RD, reticular dermis; SG, sweat 
gland; AP, arrector pili muscle. Scales are 
100 µm
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TA B L E  1   Cell types and functional components of the skin with their location and known functions

Skin cell type or 
component Location(s) Function(s)

Keratinocyte Epidermis • Epidermis is stratified into numerous layers with distinct function (basal, spinous, granular and 
uppermost stratum corneum)70; terminally differentiated keratinocytes of the outer epidermis 
play a role in immune modulation and also still communicate with stem cells, other skin cells 
and immune cells in the epidermal basal layer71

• Keratinocytes of the stratum corneum produce lipids to serve, in part, as protective barrier 
layer but the microenvironment of the skin (ie lipid concentration, bacteria population/micro‐
biota, moisturization) will be distinct with respect to location on the body70,72

• Keratinocytes deposit keratins, proteins responsible for numerous processes distinct through 
differentiation stages of the keratinocyte that also add mechanical strength to the skin10

• Keratinocytes have neurotransmitter receptors, respond to neuropeptide activity in the skin, 
and re‐epithelialization can be stimulated via neuronal‐keratinocyte signalling31,43,70,73

Melanocyte Epidermis • Melanogenesis74

• Secrete many signalling molecules including pro‐inflammatory cytokines, immune and 
neuromediators74,75

• Interact with keratinocytes which regulate many functions of melanocytes74

• May be responsive to β‐amyloid with effect on cholinergic neurons, with implication in 
Alzheimer's disease76,77

Langerhans immune cells Epidermis • Important antigen‐presenting cell that diminishes with age and may be related to lack of cuta‐
neous immune function in ageing patients78

• Maintain immune homeostasis in skin can stimulate T‐cell population79

Merkel cells Epidermis • Closely associated with dermal sensory neurons 80 and form Merkel‐neurite complexes with 
the Aβ nerve terminals9

• Mechanosensation10

• Suggestion that they may be sensory receptor cells themselves81 may be acted on by neuro‐
transmitters 65

Dermal fibroblasts Dermis • Type of fibroblast is becoming more important as they can have diverse function with respect 
to organ82

• Secrete extracellular matrix and basement membrane proteins, mainly collagen I, III, IV, laminin, 
proteoglycans10

• Papillary dermis located closest to epidermis and contains a higher concentration of dermal 
fibroblasts than other layers; reticular dermis is collagenous, fibrous support tissue71

Mast cells Dermis • Neuropeptides can activate mast cells39 as can numerous other stress mediators4

• Mast cells are often located close to sensory nerve and blood vessels in the skin, known as a 
first‐line defence immune cell that quickly and selectively respond to physiological stress4

Vascular smooth muscle 
cells

Dermis • Can produce pro‐inflammatory cytokine interleukin‐6 (IL‐6) in skin (along with keratinocytes, 
fibroblasts, endothelial cells, immune cells)83

• Constrict blood vessels following injury19

• Smooth muscle is closely associated with neurons and hair follicles11

Endothelial cells Dermis • Angiogenesis84

• Proliferation of endothelial cells (and fibroblasts) can be enhanced through adding structural/
mechanical strength to dermal tissue85

• Response to inflammatory or environmental events by secretion of cytokines including intercel‐
lular adhesion molecules (ICAM‐1)86 or interleukin‐8 (IL‐8)39

• Endothelial cells are in close contact with neuronal cells in the skin and can respond to neuro‐
peptide signalling 39

Immune cells 
(Macrophages, mono‐
cytes, eosinophils, 
basophils, neutrophils, T 
cells, dendritic cells, innate 
lymphoid cells)

Dermis • Mediate the innate immune system and inflammatory reactions10,87,88

• The skin contains diverse dendritic immune cell population with functions in both healthy and 
diseased skin49,51,52

• Allergic reaction46

• Promote homeostasis or inflammation50

• Immune system surveillance10

(Continues)
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Evidence of the interconnectedness and importance of a com‐
plex understanding of the skin has been reflected in several re‐
cent skin models or HSEs which address some components of the 
NIC or NICE system (Table 4). However, only one model system 
has addressed all components simultaneously.16,22 However, the 
human‐induced neural stem cells (hiNSCs) employed by these 

studies have additional considerations. First, although these are 
primary human‐derived cells and they express several relevant 
neuronal markers,23 an ideal innervation model would utilize 
human dorsal root ganglia, which are not readily accessible for 
in vitro research, thus presenting a challenge.24 Therefore, while 
hiNSCs may be an advantage for the development of all‐human 

Skin cell type or 
component Location(s) Function(s)

Sensory neurons Epidermis, 
dermis, 
hypodermis

• Afferents are further classified into Aβ, Aδ and C nerve fibres with defined roles in the 
skin related to their action‐potential propagation speed, a function of their degree of 
myelination20,27,65

• Secrete neuropeptides, neurotrophins, neurohormones8,39,40

• Sensation, touch, response to mechanical, chemical or thermal stimuli, ‘nociception’9,40,65

• Pain, neurogenic‐inflammation6,28,40

• Vascular regulation, vasodilation via sensory nerves, vasoconstriction via neuropeptide 
signalling8

Adipocytes Hypodermis • Absorbs mechanical loads, insulates10

• Mediates fibroblast recruitment during wound healing89

• Energy source responsible for triglyceride production90

• May function as endocrine organ through secretion of growth factors, hormones and cytokines 
to communicate with the rest of the NIC/NICE systems, associated with lipid metabolism and 
other metabolic processes89‐92

• Adipocyte bi‐directional communication with neurons modulates metabolic (leptin production, 
lipolysis) and neuropeptide production90; sensory neurons may mediate adipose/cutaneous 
inflammation93

TA B L E  1   (Continued)

F I G U R E  2   Versatile uses of HSEs. 
HSEs can be used for clinical, commercial 
or research applications, spanning 
different areas of interest. Complex in 
vitro HSE models can be used to address 
the interplay between NIC systems and 
enhance understanding of permeability 
and sensitization by including additional 
components (ie nerve, immune cells or 
additional skin cells typically not included 
in standard HSEs like melanocytes or 
Merkel cells)

Type Selected method(s) delivery Components

Epithelial cover Integrated sheet 
(Epicell—Genzyme)

Cell spray (CellSpray—Clinical Cell 
Culture)

Autologous keratinocytes

Dermal‐only 
replacements

Donor skin
Synthetic material with fibro‐

blasts (Dermagraft—Advanced 
Biohealing)

Screened donor dermis
Donor fibroblasts

Epidermal/dermal 
replacements

Bovine collagen sheet containing 
cells (Apligraf—Organogenesis) 
and (Permaderm—Cambrex)

Allogenic (Apligraf) or autolo‐
gous (Permaderm) keratino‐
cytes and fibroblasts

TA B L E  2   Summary of some current 
commercially available human skin 
equivalents divided into epidermal, 
dermal or epidermal‐dermal composite 
replacements2,69
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models, they do have limitations as part of an innervation or re‐
innervation model.

Additional complexities to in vitro models can add insights into the 
NIC system, but it can also contribute complications into full under‐
standing of system contributions (ie whether one cell type alone drives 
a certain effect, or if the change is systemic). In our recent paper, we 
identified that through the addition of NIC components (human‐induced 
neural stem cells, tissue inherent immune, endothelial and adipose cells, 
in addition to keratinocytes and fibroblasts), that via RNASeq, the groups 
with and without the NIC components were separate and distinct.22

Some skin tissue models which focus on combinations of these 
components (eg nerve and skin cells) can better identify cell‐cell inter‐
actions, but limitations to these in vitro approaches remain. Beyond 
the lack of addressing the full complexity of the NIC/NICE systems in 
the in vitro design, it would be most desirable to design studies which 
use only primary, human cells—not cell lines, or animal cells, as the 
responses may be different than in primary cells. However, with these 
cell sources, there are certain constraints including donor variability, 
importance of using low‐passage number cells and the need to opti‐
mize media conditions which for some models can be very complex 
depending on the quantity of distinct cell types.22

Therefore, it is important to develop a 3D in vitro HSE, containing 
only human cells, with the NIC or NICE components to gain a deeper 
understanding of full cell‐cell interactions or pathways that may 
have importance in terms of skin diseases with known NIC interac‐
tions. For example, numerous skin tissue models containing immune 
cells have been designed to investigate allergens,17 UV‐induced im‐
mune events25 and sensitization.26 These models contributed useful 
information towards the understanding of skin pathologies including 
atopic dermatitis, cancers or drug development.

The addition of other NIC/NICE components (approaching full 
biological relevance and complexity of the skin) allows for enhanced 
context of atopic dermatitis, without the donor variability or animal 
ethics concerns that human explant or animal models present.

3  | PERIPHER AL NERVE ANATOMY IN 
SKIN

Peripheral nerves consist of 2 types: afferent nerves (directed to‐
wards the central nervous system) and motor nerves (towards the 
peripheral nervous system). There are 3 main types of nociceptive 
nerve fibres: Aβ, Aδ and C fibres.27 Nerve fibres refer to the axon 
of a nerve, which are responsible for conducting electrical impulses. 
The thickness of the myelin sheath will differ, which in turn changes 
the rate of impulse travel. Thicker myelin sheaths relate to faster im‐
pulses. Cutaneous sensory nerves are characterized by their cell body 
size, axon diameters, degree of myelination and conduction velocity.9

3.1 | Aβ nerve fibres

Aβ nerve fibre receptors are located in several areas: Meissner's cor‐
puscles (glabrous skin), Pacinian corpuscles (subcutaneous tissue), TA
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Merkel's discs (skin, hair follicles) and Ruffini's corpuscles (skin).9 
These fibres generally have a low threshold for static and dynamic 
touch, vibration, and skin stretching, as well as having fast conduc‐
tion speeds due to heavy myelination.9

3.2 | Aδ nerve fibres

Aδ nerve fibres consist of two subtypes: Type I and Type II.27 Type I are 
high‐threshold mechanical nociceptors, with a high‐heat threshold. 
Type I fibres respond to mechanical and chemical stimuli, and when 
injured, their heat threshold lowers, referred to as sensitization. Type 
II fibres have a high‐mechanical threshold and low‐heat threshold and 

mainly respond to intense mechanical stimuli. In general, Aδ fibres are 
thinly myelinated and found in all regions of the skin. Aδ fibres are 
most associated with localized pain and light touch.27

3.3 | C nerve fibres

C nerve fibres are the smallest and most abundant subtype of nerve, 
unmyelinated and located in all regions of the skin.27 C fibres are free 
nerve endings, generally referred to as nociceptors that respond to 
noxious mechanical or hot/cold stimuli9 Impulses travel slowly in C 
fibres and are associated with poorly localized, slower pain.27

3.4 | Neurons interaction with keratinocytes, 
dermal fibroblasts

The epidermis is populated with fine, unmyelinated nerve endings, 
and free, branched nerve endings in the dermis.28 Neurites inter‐
act with other skin cells in several ways. Peripheral nerves origi‐
nate from dorsal root ganglia of the spinal cord and send neurites 
through the dermis into different locations in the skin including 
the dermo‐epidermal junction and are highly sensitive to other 
skin cells in this microenvironment and can adjust neurite growth 
accordingly.6,24,29,30 Neurites are known to form close membrane 
associations with some dermal cells (fibroblasts), but this is not 
the case with epidermal cells, suggesting there are preferential 
and cell‐dependent interactions of neurons with other skin cells.29 
Neurons have induced proliferation in keratinocytes, which 
could be reversed by inhibiting calcitonin gene‐related peptide 
(CGRP).31 Fibroblasts and keratinocytes secrete distinct levels of 
NGF and cerebral dopamine neurotrophic factor (CDNF), which in 

F I G U R E  3   Interconnectedness of the neuro‐immuno‐cutaneous 
(NIC) system

TA B L E  4   Examples of complex HSEs in skin research which address components of the neuro‐immuno‐cutaneous (NIC) or (NICE) 
systems

Complex HSEs Models Descriptions

+ Nerve • Re‐innervated human skin explant104

• 2D compartmental co‐culture 
model32

• 3D HSE with innervation31

• Human skin explant re‐innervated with rat dorsal root ganglion.
• Compartmental co‐culture of keratinocytes and porcine dorsal root ganglion
• HSE (keratinocytes, fibroblast) from collagen matrix innervated with porcine 

dorsal root ganglion

+ Immune • Microfluidic co‐culture chip105

• 3D HSE with Langerhans cells17
• Keratinocyte cell line (HaCaT) and dendritic cell (human leukaemic monocyte 

lymphoma cell line U937) co‐culture in microfluidic chip design
• Human Langerhans, keratinocytes and melanocytes in epidermis, with fibroblasts 

in collagen gel for dermis

+ Adipose • 3D skin model with human adipose‐
derived stem cells (hASCs)106

• Two‐layer HSE with pre‐adipocytes 
and keratinocytes107

• hASCs seeded into silk sponge as hypodermis, fibroblasts in collagen gel, ke‐
ratinocytes for epidermis

• Human pre‐adipocytes seeded onto collagen‐elastin matrix, with keratinocytes 
seeded on top 4 days later

+Endothelial • 3D HSE with endothelial cells108

• Human in vivo biopsies85
• Collagen‐based HSE with keratinocytes, fibroblasts, and human umbilical vein 

endothelial cells form capillary‐like structures
• Enhancing mechanical support of ageing human skin extracellular matrix via 

dermal filler has positive effects on fibroblast, endothelial cell and keratinocyte 
function

+ Combination • 3D HSE with neural, adipose, and 
immune components16,22

• Silk‐collagen composite gel for dermis containing fibroblasts, epidermis contain‐
ing keratinocytes, hypodermis component from human lipoaspirate containing 
adipose and immune cells, with human‐induced neural stem cell coating
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an in vitro study demonstrated changes in neurite morphology and 
axonal neuropeptides.32 Atopic keratinocytes can enhance neurite 
outgrowth and the resultant CGRP‐positive nerve fibres through 
elevation of NGF.32 Separate studies have demonstrated that by 
adding nerves to an HSE, there is a thickening of epidermis from 
keratinocyte proliferation due to cell‐cell communication between 
nerves and keratinocytes.31

4  | PERIPHER AL NERVE INTER AC TION IN 
SKIN

Peripheral nerves may also communicate with other cell types in the 
skin through alternative signalling pathways such as cytokine signal‐
ling, neurotrophins or neuropeptides. Neuropeptides are expressed 
widely by many cell types of the skin including keratinocytes, fibro‐
blasts, Langerhans cells, endothelial cells and immunocytes.20

4.1 | Acetylcholine (Ach)

Acetylcholine (Ach) is synthesized in nerve terminals from acetyl 
coenzyme A and choline, it is an excitatory neurotransmitter.33‐35 
Acetylcholine acts as an immune cytokine, which inhibits mac‐
rophages through cholinergic (receptors which respond to ace‐
tylcholine) anti‐inflammatory pathways.34 Several nicotinic Ach 
receptor (nAChR) agonists have been developed to treat subcuta‐
neous inflammation due to the relationship of various immune cells 
(such as monocytes and macrophages) with nAChRs. Macrophage 
nAChRs can modulate functional activity of cholinergic anti‐inflam‐
matory pathways which regulate innate immune function and inflam‐
mation.34 Keratinocytes have been shown to produce non‐neuronal 
acetylcholine.36 Additional evidence, such as sensory receptors lo‐
cated on keratinocytes, suggests that they are also sensory cells.6,37

4.2 | Neurotrophins in the skin

Neurotrophins in the skin have roles in both early and late stages 
of the inflammatory response. Cutaneous neurotrophins are ex‐
pressed by sensory, sympathetic neurons and non‐neuronal cells 
which relate to functions in nerve growth and development, apop‐
tosis, epidermal homeostasis, inflammation, wound healing and hair 
growth.8 Neurotrophin receptors can be located on sensory nerves, 
keratinocytes, melanocytes, fibroblasts, mast cells, immune cells and 
hair follicles.8 Neurotrophins can be induced by cytokines and are 
produced by many cells both sensory neuronal and skin cells (ke‐
ratinocytes, fibroblasts and immune cells). Neurotrophins 3, 4 and 5 
are all essential for growth, proliferation and maintenance of nerves. 
Neurotrophin 3 is responsible for the development of cutaneous 
nerves and promotes the survival of cutaneous sensory nerves.6,8 
Common neurotrophins include nerve growth factor (NGF), brain‐
derived neurotrophic factor (BDNF) and neurotrophins 3, 4, 5.38 In 
general, neurotrophins are key molecules in neuro‐immuno‐endo‐
crine signalling.4

4.3 | Neuropeptides

Neuropeptides are secreted by cutaneous nerves and can interact 
with many cutaneous cell types including keratinocytes, Langerhans 
and endothelial cells.39 Sensory neurons secrete at least 17‐20 dif‐
ferent neuropeptides, including substance P (SP), neuropeptide Y 
(NPY) and nerve growth factor (NGF).39,40

4.3.1 | Substance P

Substance P is secreted by sensory C fibres,41 dorsal root ganglion,38 
can bind to keratinocytes, mast cells,28 or induce interleukin (and 
other cytokine) release.39 There are 3 main peripheral actions of SP: 
vasodilation or vascular permeability, local inflammation or immune 
system effects, and increased cellular proliferation (keratinocytes, 
fibroblasts, endothelial cells and immune cells).41 SP has also been 
implicated in psoriasis.4

4.3.2 | Neuropeptide Y (NPY)

Neuropeptide Y is a neuronal signalling molecule42 which is a part 
of the NIC system that can act locally (ie inflammation) or act on 
entire systems (via endocrine or neuro‐endocrine pathways).6 NPY 
has several functions, including activating mast cells, induction of 
phagocytosis, stimulating antibodies and cytokines, and inducing 
vascular permeability.4

4.3.3 | Nerve growth factor (NGF)

Nerve growth factor is secreted by several cutaneous cells includ‐
ing keratinocytes, fibroblasts, nerves and adipocytes.8,43‐48 NGF 
is known to mediate cutaneous re‐innervation41 and is released in 
high concentrations during inflammation. NGF is responsible for 
the maintenance, proliferation and growth of nerve cells. During 
cutaneous inflammation, there is NGF‐dependent production 
of SP, CGRP, sodium channels, and other neurotransmitters and 
neuropeptides or molecules related to nociception.38 NGF also 
promotes the survival of several immune cells in the cutaneous 
system including eosinophils, monocytes, neutrophils, T cells, 
macrophages and basophils.38 There is a clear link between NGF 
and the immune system for the response and survival of several 
immune cells as well as modulating cell behaviour. NGF is highly 
upregulated in cutaneous nerves following an inflammation event; 
NGF has also been linked to psoriasis.8

5  | DYSREGUL ATION OF NEURO ‐
IMMUNO ‐ENDOCRINE SYSTEMS IN SKIN 
PATHOLOGIES

The immune system of the cutaneous system is extremely impor‐
tant as the first line of defence of the body against the environ‐
ment and is composed of numerous cell types that are distributed 
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throughout the skin in key locations for their function.49 There 
has been significant advancement into the understanding of the 
complexity of the immune cells and dendritic cells which popu‐
late the skin.50‐52	While	 there	 is	much	 information	known,	 there	
is still exciting work to be done in discovery of the immune and 
neural systems of the skin to fully integrate of our understanding 
of the NIC/NICE systems with various skin pathologies (Table 5). 
Dysregulation of components of the NIC/NICE systems has been 
implicated in numerous skin pathologies.

Based on research into the effect of neuromediators, it has been 
suggested that they do not simply play a pro‐inflammatory role in 
the skin but also can and do participate in the entire inflammatory 
response process.40 Cutaneous innervation or immune components 
are targets for many treatments of disease; as a result, promising 
results have been gained from developments in therapeutics from 
a neuro‐immuno‐endocrine approach: neuropeptides like NGF,53,54 
hormonal (vitamin D),55 anti‐cytokine 56 and capsaicin to target sen‐
sory neurons of the skin.57‐59 Continuing emphasis on the NIC/NICE 
systems for multi‐pronged treatments of these pathologies could be 
an important consideration for drug development and reveal further 
intricacies of the skin.

6  | CONCLUSIONS AND OUTLOOK

The ability to design HSEs that include all components of NIC/NICE 
systems would advancement the field by enhancing the under‐
standing and treatment of numerous skin pathologies or conditions. 
Currently available clinical, commercial and research models of the 
skin in general are limited to a few cell types (keratinocytes and/
or fibroblasts) or layers (epidermis and/or dermis) and may not be 

relevant to the full complexity of the human skin. Further, the bioma‐
terial choice for dermis materials does not fully reflect the mechani‐
cal environment, extracellular matrix requirements and functional 
biological similarity to be reliable HSEs.10,14‐16 As the skin is com‐
posed of a multitude of ECM components including collagen types I, 
III and IV, elastin, fibronectin and proteoglycans, placement of these 
biomaterials to recapitulate skin layers is also important (ie collagen 
type I as the main dermal component, collagen type IV as basement 
membrane material substrate), an ideal skin biomaterial would be 
correspondingly complex and spatially distributed to encourage the 
proper differentiation of cells.10,24,60

In summary, the most important considerations for the design 
of an optimal skin biomaterial would be the following: mechanically 
robust and/or flexible to allow for skin movement, biodegradable at 
controlled rate to optimize integration with cells or the local tissue 
(for implants), bio‐inertness of the scaffold, conductivity to aid neu‐
ral integration and/or reintegration, and additional factors to pro‐
mote healing to enhance neural regrowth and/or wound healing.24,61

A crucial avenue of skin research, and of relevance to the inner‐
vation field, is wound healing. Neuromediators are involved in all 
stages of the wound‐healing process, and it is crucial to consider 
the potential loss of sensation, innervation and re‐innervation fol‐
lowing trauma such as a burn, a common consequence following 
injury.30,61,62 Future work could address the lack of medical treat‐
ment options for re‐innervation of skin following burn injuries.61 
One way to expand research in this area would be to investigate 
‘bio‐active’ materials for skin tissue replacements or in vitro skin 
tissue models which enhance healing, regrowth of neural cells, and 
also include or reintegrate vasculature.24,61 Bioprinting is another 
approach to create bio‐active skin with innervation and/or vas‐
cularization architectures within biomaterials, however, despite 

TA B L E  5   Skin pathologies in humans with complex connections to NIC/NICE system or components

Skin 
pathology Brief definition

NIC/NICE system 
linkage Description

Psoriasis 
vulgaris

Accumulation of inflamma‐
tory cells in the epidermis 
and hyperproliferation of 
keratinocytes resulting in 
thickened epidermis often in 
pruritic scales or patches

• Neural
• Immune
• Endocrine

• Psoriatic plaques may contain high nerve density with alteration in 
neuropeptide (SP, CGRP, NGF) activity 6,8,28,109,110

• Immune‐related inflammatory disease, driven by activated T 
cells68,111; Pro‐inflammatory proteins and exposure to chronic stress‐
ors may dysregulate stress‐immune response56,109

• Hormone‐mediation: glucocorticoids, epinephrine, thyroid hormones, 
insulin112 [Roman 2016]

Atopic 
dermatitis

Characterized by chronic 
inflammation or itch

• Neural
• Immune
• Endocrine

• Epithelial cells communicate with neurons to induce inflammation 
(itch) via cytokine thymic stromal lymphopoietin (TSLP); activation 
may be direct to neurons or indirect via immune cells113‐115

• Impaired cutaneous barrier function combines with higher sensitivity 
to environmental stressors with effects on the immune response,110 
chronic inflammation disorder

• Highly sensitive to glucocorticoids, hyper‐reactive to stress‐induced 
cortisol110

Vitiligo Depigmentation of the skin 
in patches that is often 
progressive

• Neural
• Immune
• Endocrine

• May be related to neuronal interaction with melanocytes, or dysfunc‐
tion of neurons or neuropeptides116,117

• Autoimmune component mediated by cells, antibodies, or cytokines 
117‐120

• Hormonal or stressor‐related 118,121
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advances in skin bioprinting, such materials have yet to be devel‐
oped for skin.61,63,64

Recent research demonstrated that cutaneous cell types have 
complex communication that reaches across systems, that is kera‐
tinocytes (cutaneous) interact with neurons (neuronal system) and 
vice versa.1,47,65,66 Several skin pathologies have known interactions 
between skin cells like keratinocytes, with neuronal and/or immune 
cells including psoriasis, atopic dermatitis and vitiligo.67,68

The understanding of the impact of the NIC/NICE system on skin 
pathology is just at the beginning. Through developments in in vitro 
HSE design, by inclusion of NIC/NICE components, it would be pos‐
sible to gain insights into human pathologies in a manner that avoids 
animal testing and is more translatable to human biology. Complete, 
complex in vitro HSEs could become fully viable alternatives to ani‐
mal testing, increase accuracy of in vitro testing models, and serve as 
sensory and immunocompetent disease models.5,69
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