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Simple Summary: Non-alcoholic fatty liver disease (NAFLD) is an unmet medical need due to its
increasingly high incidence, severe clinical consequences, and the absence of feasible diagnostic
tools and effective drugs. This review summarizes the preclinical and clinical data on adipokines,
cytokine-like hormones secreted by adipose tissue, and NAFLD. The aim is to establish the potential
of adipokines as diagnostic and prognostic biomarkers, as well as their potential as therapeutic
targets for NAFLD. The limitations of current research are also discussed, and future perspectives are
outlined.

Abstract: Non-alcoholic fatty liver disease (NAFLD) has become the major cause of chronic hepatic
illness and the leading indication for liver transplantation in the future decades. NAFLD is also
commonly associated with other high-incident non-communicable diseases, such as cardiovascular
complications, type 2 diabetes, and chronic kidney disease. Aggravating the socio-economic im-
pact of this complex pathology, routinely feasible diagnostic methodologies and effective drugs for
NAFLD management are unavailable. The pathophysiology of NAFLD, recently defined as metabolic
associated fatty liver disease (MAFLD), is correlated with abnormal adipose tissue–liver axis com-
munication because obesity-associated white adipose tissue (WAT) inflammation and metabolic
dysfunction prompt hepatic insulin resistance (IR), lipid accumulation (steatosis), non-alcoholic
steatohepatitis (NASH), and fibrosis. Accumulating evidence links adipokines, cytokine-like hor-
mones secreted by adipose tissue that have immunometabolic activity, with NAFLD pathogenesis
and progression; however, much uncertainty still exists. Here, the current knowledge on the roles
of leptin, adiponectin, ghrelin, resistin, retinol-binding protein 4 (RBP4), visfatin, chemerin, and
adipocyte fatty-acid-binding protein (AFABP) in NAFLD, taken from preclinical to clinical studies, is
overviewed. The effect of therapeutic interventions on adipokines’ circulating levels are also covered.
Finally, future directions to address the potential of adipokines as therapeutic targets and disease
biomarkers for NAFLD are discussed.

Keywords: adipokines; NAFLD; liver; steatosis; inflammation; fibrosis; biomarkers; therapy; clinical
trials; preclinical studies
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver abnor-
malities characterized by increased hepatic fat content (>5%)—steatosis—in the absence
of secondary causes, namely excessive alcohol consumption (>20 g/day for women and
>30 g/day in men), medications, viral hepatitis, or certain hereditable conditions. Histo-
logically, NAFLD can be categorized into non-alcoholic fatty liver (NAFL), when there is
only evidence of hepatic steatosis, and non-alcoholic steatohepatitis (NASH), when, apart
from steatosis, lobular inflammation and hepatocyte ballooning with or without perisi-
nusoidal fibrosis can be observed. NASH, especially in the fibrotic state, often presents
worse prognoses and frequently progresses to more severe conditions, such as cirrhosis
and hepatocellular carcinoma [1].

NAFLD has become the major cause of chronic hepatic illness in children and adults,
as well as the leading indication for liver transplantation in the future decades, replacing
chronic hepatitis C. This high-incident pathology is also associated with extra-hepatic
complications, such as chronic kidney disease and cardiovascular disease, which is the
leading cause of death among NAFLD patients [2]. Mainly asymptomatic, NAFLD is
considered a major societal, clinical, and research challenge due to its increasingly high
prevalence, difficulties in its diagnosis, the lack of approved therapies, and its complex
pathophysiology.

The development and progression of NAFLD is induced by multiple factors in a
“multiple parallel-hit” model, where numerous genetic and environmental determinants
(“hits”) interplay on an individual basis. These factors encompass, but are not limited
to, genetic alterations, inflammation, gut dysbiosis, and metabolic abnormalities. Indeed,
almost 90% of NAFLD patients present at least one of the metabolic syndrome features
(abdominal obesity, hypertriglyceridemia, low HDL-cholesterol, hypertension, and high
fasting glucose), and about 33% fulfill the criteria for diagnosing metabolic syndrome [3].
Therefore, metabolic-associated fatty liver disease (MAFLD) was recently proposed as a
more appropriate overarching term that recognizes the metabolic risk profile of patients as
the master criterion for diagnosis and considers the disease activity grade to be a continuum,
which better describes disease pathophysiology [4]. Therefore, it is not surprising that the
worldwide prevalence of NAFLD is rising in parallel with obesity [2], the main driver of
metabolic abnormalities. Stepping up the strict correlation between obesity and NAFLD,
there is a dose-response between weight loss and histological disease improvement; a 7%
weight loss reverts NASH in 65–90% of patients, and a ≥10% weight loss causes fibrosis
relapse in 45% of patients [3].

In the last 10 years, researchers have gained substantial insights into the role of adipose
tissue in NAFLD. Initially seen as a simple energy storage tissue, adipose tissue is now
recognized as an active endocrine organ, the dysfunction of which impacts either the
initial stages of liver steatosis or the progression to NASH and fibrosis [5]. Adipokines,
cytokine-like hormones secreted by adipose tissue, have emerged as cornerstone players
in the regulation of energy metabolism, inflammation, and fibrosis [6,7], making them
potential therapeutic targets for NAFLD. Furthermore, a vast number of clinical trials
have established the serum profiles of classical (leptin and adiponectin) and emergent
adipokines, such as ghrelin, resistin, retinol binding protein 4 (RBP4), visfatin, chemerin,
and adipocyte fatty acid-binding protein (AFABP), in NAFLD patients [8].

In this review, we briefly summarize the main aspects of the adipose tissue–liver
communication driving NAFLD pathophysiology. Following this, we overview the current
knowledge on the role of adipokines in the development and progression of NAFLD and
present data from clinical studies on adipokine profile in NAFLD patients. Moreover,
we cover the effect of therapeutic interventions on circulating adipokines in the context
of the management of NAFLD-associated metabolic complications. Finally, we discuss
future directions to address the potential of adipokines as therapeutic targets and disease
biomarkers for NAFLD.
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2. NAFLD, an Unmet Medical Need

Over the last century, dramatic changes in lifestyle behaviors have evoked a growing
incidence of noncommunicable diseases. The Global Burden of Disease Study 2017 esti-
mated the prevalence of NAFLD for the first time, reflecting that the emerged epidemic in
chronic liver disease is related to the burden of this pathology [9]. Parallel to the worldwide
augment of obesity, the global prevalence of NAFLD is currently estimated to be 24%,
with South America and the Middle East having the highest rates, followed by Asia, the
USA, and Europe [2]. The clinical consequences of NAFLD, particularly its histological
phenotype NASH, which likely progresses to cirrhosis and hepatocellular carcinoma, are
the second-most common indication of liver transplantation in the USA [2]. NAFLD also
potentially contributes to the burden of extra-hepatic chronic complications, namely cardio-
vascular disease, type 2 diabetes (T2DM), and chronic kidney disease [2]. Aggravating the
health and economic consequences of NAFLD, weight-management difficulties, together
with unavailability of routinely feasible diagnostic procedures and effective pharmacother-
apeutic approaches, challenged the increasing need of the management of this complex
and frequently asymptomatic pathology.

The “gold standard” method for diagnosing NASH (and differentiation from NAFL)
is liver biopsy, even though it has limitations related to invasiveness, patient discomfort,
risk of adverse events, sampling variability, pathologist experience, and unsuitability for
large-scale screening, as well as its debatable cost-effectiveness needs, since approved
NASH-specific therapies are not presently available [3]. A non-invasive multistep approach
for NAFLD diagnosis and follow up, which considers patients clinical history (patients with
obesity and/or metabolic syndrome or T2DM are at high risk of NAFL/NASH), imaging
techniques (such as ultrasonography and transient elastography), biomarkers, and scoring
systems to estimate steatosis or fibrosis (NAFLD Activity Score or NAS, Fibrosis-4 index
or FIB-4, NAFLD Fibrosis Score or NFS, and Aspartate aminotransferase to Platelet Ratio
Index or APRI), is a useful tool to guide disease management. However, these predictive
approaches have decreased sensitivity and specificity to the earlier and more moderate
stages of fibrosis and have broad diagnostic grey zones [10]. Therefore, liver biopsy
remains the only reliable diagnostic tool for NAFL/NASH identification and assessing
fibrosis severity.

Despite the increasingly high incidence of NAFLD worldwide, its associated morbidity
and mortality, and the intensive research on the field, there is no specific drug approved
for its treatment, and lifestyle change remains the cornerstone of NAFLD management,
as indicated by clinical guidelines [11]. If exercise and diet fail to achieve the targets
in NAFLD patients, bariatric surgery or pharmacotherapy to manage the underlying
metabolic complications, namely obesity, T2DM, dyslipidemia and cardiovascular disease,
is recommended [12]. The current and emerging pharmaceutical therapeutic strategies
for NASH aim to improve metabolic function, reduce steatosis, decrease inflammation,
and halt or reverse the progression of fibrosis. Among the extensive list of potential
pharmacotherapies are those targeting oxidative stress (vitamin E), insulin resistance
(IR) or high glucose blood levels (thiazolidinediones, metformin and sodium-glucose
cotransporter-2 inhibitors), and dyslipidemia/lipotoxicity (statins). Nevertheless, to date,
no molecule studied for the treatment of NAFLD has demonstrated convincing effects on
halting or reverting liver disease [13].

3. Adipose Tissue-Liver Axis in NAFLD Pathophysiology

Adipose tissue (AT) and the liver play a critical role in the regulation of whole-
body energy homeostasis. Triglycerides (TG) and excess carbohydrates from the diet
are converted into fatty acids (FA) in the liver. In particular, dietary TG are emulsified by
bile acids and hydrolyzed by pancreatic lipase, yielding FA, while excess carbohydrates are
converted into FA by de novo lipogenesis (DNL). Hepatic FA are then esterified and stored
in cytoplasmatic lipid droplets or secreted into bloodstream. Circulating FA are uptaken
and used as energy sources by brown adipose tissue and muscle or re-esterified to TG
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and stored in white adipose tissue (WAT). In WAT, insulin-stimulated FA uptake and TG
synthesis inhibits the intracellular lipolysis of cytosolic TG, thereby promoting adipocyte
TG storage [14].

In overweight and obese subjects, the capacity for WAT expansion reaches its limit;
therefore, energy cannot be stored in WAT, and ectopic lipid accumulation occurs in other
tissues, including the liver. Resistance to insulin also promotes lipolysis in adipocytes with
a further increase of circulating free FA. Consequently, intrahepatic fat accumulation (steato-
sis) develops, which can be further amplified by FA synthesis from excess carbohydrates
through DNL. At this stage, TGs-derived toxic metabolites can cause hepatic lipotoxicity,
this results in cellular dysfunction, lipoapoptosis, IR, and the activation of hepatic innate
immune cells, including dendritic cells, Kupffer cells, and hepatic stellate cells (HSCs); all
of these are essential features of NASH [15].

Beyond its energy-storage functions, WAT is a recognized active endocrine and an
immunological organ constituted by mature and developing adipocytes, endothelial cells,
fibroblasts, and immune cells that maintain tissue homeostasis, such as AT macrophages,
eosinophils, mast cells, neutrophils, and T and B cells [16]. In the WAT of lean subjects,
eosinophils and T regulatory cells (Treg) secrete anti-inflammatory cytokines, such as
interleukin (IL)-4 and IL-10, that polarize AT macrophages towards the M2 phenotype
(anti-inflammatory phenotype), thus preserving a tolerogenic environment [17]. Adipocyte
expansion derived from TG accumulation is accompanied by adipocyte hypoxia, cell stress,
and apoptosis, able to promote chemoattractant molecules’ expression and immune-cell
infiltration. The immune profile of WAT is then modified; T cells become activated, the
presence of T reg is reduced, and the macrophage’s phenotype switches from M2 to M1
(pro-inflammatory phenotype), which accumulates around necrotic adipocytes forming
‘crown-like structures’ and producing pro-inflammatory cytokines, such as tumor necrosis
factor (TNF)-α and IL-6 [16]. Of relevance, this pro-inflammatory profile is correlated with
local and systemic IR [18].

In the WAT of obese subjects, a deregulated production of cytokine-like hormones,
known as adipokines, is observed. This family of low-molecular-weight, bioactive pep-
tides has a proven pleiotropic function as hormones and cytokines with both pro- and
anti-inflammatory activities. Namely, adipokines show a fundamental role in energy
metabolism by communicating the nutrient status of the body through the induction of
anorexigenic signals and the suppression of orexigenic factors at the hypothalamus [19].
Adipokines have also been revealed to be critical regulators of hepatic lipogenesis and
insulin sensitivity; for example, adiponectin has been shown to augment insulin sensitivity,
maintain healthy AT expansion, and rescue the body from ectopic lipid accumulation [20].
Moreover, adipokines were highlighted as cornerstone modulators of both the innate
and adaptive immune systems. For instance, leptin, the first adipokine to be discovered,
modulates both the innate immune response, by increasing natural killer cells cytotoxicity
and modulating granulocytes, macrophages, or dendritic cell activation, and the adaptive
immunity, by increasing naïve T and B cell proliferation, promoting a switch towards a
pro-inflammatory Th1 phenotype, and reducing Treg proliferation [6]. The deregulated
production of adipokines thus contributed to obesity-associated systemic chronic low-grade
inflammation, and the liver is progressively infiltrated by immune cells, such as monocytes,
neutrophils, and T cells. When inflammation perpetuates, fibrogenesis starts with the
progression to NASH with fibrosis, the most severe grade of the disease [21].

In summary, the adipose tissue–liver axis is essential for the regulation of glucose and
lipid metabolism, as well as immunological homeostasis, and a dysfunctional secretion
of adipokines from WAT could (i) determine the fluxes of lipid to the liver and, thus,
hepatic steatosis; and (ii) promote hepatic inflammation (characteristic of NASH) that, if
not managed in a timely fashion, can progress to hepatic fibrosis (Figure 1). In this context,
adipokines (overviewed in Table 1) have been identified as potential therapeutic targets and
investigated as diagnostic and prognostic biomarkers of NAFLD. The following sections re-
view the current knowledge on adipokines in NAFLD, focusing on their activity on NAFLD
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pathophysiological mechanisms, namely IR, hepatic lipid accumulation, inflammation, and
fibrosis. Moreover, clinical studies establishing the serum profiles of adipokines in NAFLD
and therapeutic approaches used in the management of NAFLD and affecting adipokines
levels in humans were described. Since very recent reviews summarized the action of lep-
tin [22,23] and adiponectin [24,25] in NAFLD in detail, here we will focus on the preclinical
and clinical data of less-studied adipokines (ghrelin, resistin, RBP4, visfatin, chemerin, and
AFABP) in NAFLD, briefly overviewing the activity of leptin and adiponectin.
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Figure 1. Dysfunctional adipose tissue-driven pathophysiology of NAFLD. The expansion of
white adipose tissue in obesity induces adipocyte dysfunction and insulin resistance leading to
lipolysis. As a consequence, circulating fatty acid (FA) and adipokine imbalance towards pro-
steatogenic ones contribute to intrahepatic fat accumulation (steatosis), which is amplified by the high
dietary fat and carbohydrate levels (commonly observed in obesity), the latter augmenting de novo
lipogenesis (DNL). The ectopic accumulation of triglycerides (TGs)-derived toxic metabolites induces
lipotoxicity and the consequent cellular dysfunction (endoplasmic reticulum and oxidative stress,
and mitochondrial defects), lipoapoptosis and activation of inflammatory pathways. The expansion
of adipocytes also elevates the expression of chemoattractants, and immune cells infiltration, and
promotes deregulation of adipokines secretion; altogether, contributing to systemic chronic low-grade
inflammation. Additionally, in the liver, dendritic cells (DC), Kupffer cells (KC), and hepatic stellate
cells (HSCs) are activated, and hepatic infiltration by circulating immune cells, including neutrophils,
monocytes, and T-lymphocytes, occurs. When inflammation perpetuates, fibrogenesis starts, with
HSCs as key players. Abbreviations: DC-Dendritic cells; DNL-de novo lipogenesis; FA-Fatty acids;
HSC-Hepatic stellate cells; KC-Kupffer cells; NAFL-Non-alcoholic fatty liver; NASH-Non-alcoholic
steatohepatitis; TGs- triglycerides.
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Table 1. Overview of adipokines.

Adipokine Description Receptor/Signaling Functions Refs.

Leptin

• cytokine-like hormone
encoded by LEP gene
(obese gene, ob).

• secreted by WAT, brain,
intestines, skeletal
muscle, placenta, etc.

• LEP-R (encoded by
LEPR), which have at
least six isoforms

• LEP-R long isoform
signals via JAK–STAT
activation or,
alternatively, via
p38 MAPK, JNK, ERK1/2,
PI3K/Akt or PKC
signaling

• controls appetite and
body weight at the
hypothalamus level

• regulates insulin
secretion, thermogenesis,
lipid homeostasis,
reproductive functions,
inflammation, infection,
angiogenesis, and
homeostasis of cartilage
and bone

[6,22,23]

Adiponectin
(ACRP30,
AdipoQ,

GBP28 or apM1)

• encoded by ADIPOQ
gene

• homologous to C1q,
collagen VIII and
collagen X

• 12–18-monomers,
trimers, and hexamers
forms

• produced by AT, bone
marrow, skeletal
muscle, and cardiac
tissue

• AdipoR1 (mainly present
in skeletal muscle) and
AdipoR2 (prevalent in the
liver)

• signals through AMPK,
PPARα or PPARγ

• augments FA oxidation
and glucose uptake in the
muscle

• decreases glucose
synthesis in the liver

• affects obesity, metabolic
syndrome, lipodystrophy,
and cardiovascular
disease.

[24,25]

Ghrelin

• hormone expressed by
the stomach’s oxyntic
glands, pancreatic islets,
hypothalamus, lung,
testis, and ovary

• acylation catalyzed by
GOAT (UAG to AG
conversion)

• AG activates, while UAG
antagonizes, GHSR1a

• triggers food intake and
adiposity

• regulates glucose
metabolism, reward
behavior, gut motility,
and immune system

[26,27]

Resistin
(ADSF or

FIZZ3)

• found as dimers in
human blood

• produced in
macrophages,
mononuclear
leukocytes, bone
marrow cells, and
spleen

• ROR-1, IGF-1R and
CAP1 are potential
receptors

• toll-like receptor (TLR)
4 mediate
resistin-induced pro-
inflammatory cytokines
secretion via NF-κB and
C/EBPβ.

• regulates blood glucose
levels and lipid
metabolism and
promotes IR

• induces
pro-inflammatory
cytokines secretion and
monocytes differentiation
into macrophages.

[28]

RBP4

• member of the lipocalin
family

• expressed by liver, AT,
retinal pigment
epithelium, kidney,
peritubular, and Sertoli
cells of the testis

• bound to TTR in the
circulation

• STRA6 mediates retinol
influx from the blood to
target cells

• transports retinol
(essential for the visual
cycle)

• contributes to IR,
dyslipidemia, T2DM and
cardiovascular
dysfunction

[29]
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Table 1. Cont.

Adipokine Description Receptor/Signaling Functions Refs.

Visfatin
(PBEF or
NAMPT)

• homodimeric
cytokine-like peptide

• with intracellular
(iNAMPT) and
extracellular (eNAMPT)
forms

• unidentified specific
receptor

• iNAMPT is the
rate-limiting enzyme of
NAD biosynthesis from
nicotinamide.

• iNAMPT modulates
cellular metabolism,
differentiation, and stress
response

• eNAMPT induces
pro-inflammatory
cytokines production and
associates with metabolic
and inflammatory
diseases

[30,31]

Chemerin
(TIG2 or

RARRES2)

• secreted as an inactive
precursor
(prochemerin)

• activated by proteases
of the coagulation
cascade,
neutrophil-derived
proteases (elastase and
cathepsin G), bacterial
proteases, and mast cell
products (tryptase)

• CMKLR1 mediates
chemerin’s chemotactic
activity

• GPR1 and CCRL2 also
binds chemerin, but their
functional relevance is
unknown

• Regulates adipocyte
differentiation, insulin
sensitivity, glucose, and
lipid metabolism

• bridges innate and
adaptive immunity
through CMKLR1
(expressed in
antigen-presenting cells,
natural killer cells, and
macrophages)

[32]

AFABP
(ap2 or FABP4)

• belongs to the lipocalin
family

• abundant cytosolic
protein of mature
adipocytes

• also produced by
endothelial cells and
macrophages

• unidentified receptor
• high affinity and

selectivity for long-chain
fatty acids

• induced by FA, TLRs
agonists, oxLDL, and
advanced glycation end
products

• modulates lipolysis in
adipocytes

• promotes cholesterol
esters accumulation and
foam-cell formation

• induces endothelial
dysfunction

[33]

4. Adipokines as Potential Therapeutic Targets for NAFLD
4.1. Leptin and Adiponectin

Leptin, the forerunner and best-characterized member of the adipokine family, plays a
pivotal role in appetite and body-weight homeostasis by augmenting anorexigenic neu-
ropeptides and suppressing orexigenic factors in the central nervous system [6]. Likewise,
leptin has been described as modulating several physiological processes, such as lipid and
glucose metabolism, as well as both innate and adaptive immunity [6]. Most of the current
knowledge about leptin’s action arose from leptin-deficient ob/ob mice and leptin-receptor-
deficient db/db mice. These murine models exhibited marked hepatic alterations, such as IR,
accumulation of TG and lipids, and steatosis, which were partially reverted following leptin
administration to ob/ob mice [22,23]. Although leptin acts as an anti-steatotic hormone
preventing the accumulation of and promoting the mobilization of hepatic lipids, leptin
resistance may cause the leptin inability to alleviate hepatic steatosis [22,23]. Furthermore,
high leptin plasma levels derived from obese adipose tissue are associated with hepatic
inflammatory and fibrogenic mechanisms and therefore, with NAFLD development [22,23].

On the contrary, adiponectin, an adipocyte-secreted hormone inversely correlated
with obesity and with determining roles in insulin sensitivity, glucose levels, and lipid
metabolism [25], has been reported to protect the liver from steatosis, inflammation,
and fibrosis [24]. Adiponectin augments insulin’s capacity to suppress glucose produc-
tion, prevents hepatic DNL, suppresses FA synthesis in hepatocytes, and enhances FA
β-oxidation [24], overall protecting the liver from steatosis. Adiponectin was also described
as decreasing the production of inflammatory cytokines, such as IL-6 and TNF-α, through
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the modulation of toll-like receptor 4 (TLR4) signaling. By boosting the beneficial effects of
adiponectin in NAFLD development, this adipokine was described to possess anti-fibrotic
effects by preventing leptin profibrogenic signaling [24]. Therefore, strategies aiming to
rescue the leptin–adiponectin balance, i.e., reverting the obesity-associated increased leptin
levels and reduced adipokines levels, are of relevance for NAFLD treatment [24]; this will
be further explored in Section 5.

4.2. Ghrelin

Ghrelin stands out as one of the few peripheral peptide hormones with an orexigenic
effect. Initially identified as a stomach-derived hormone, ghrelin is an endogenous ligand
for the growth hormone secretagogue receptor 1a (GHSR1a). It stimulates food intake and
adiposity and acts as a regulator of glucose metabolism, reward behavior, gut motility, or
even hepatic lipid metabolism and the immune system [26,27]. This hormone circulates
in blood in two forms, an acylated (AG) form and an unacylated form (UAG, also named
DAG from desacyl ghrelin). This post-transcriptional modification is catalyzed by ghrelin
O-acyltransferase (GOAT), and the producing AG is the active form that triggers the
signaling of the cognate receptor GHSR1a. Initially thought to be an inactive form, it has
been suggested that UAG to antagonizes AG activity on glucose metabolism and lipolysis
and reduces food consumption and body weight [27,34]. Given its regulatory activity on
metabolism and immune system, there is a growing interest on the role of ghrelin-GOAT
system in the development and progression of NAFLD.

In murine models, the administration of ghrelin during or after diet-induced NAFLD
development counteracts dysregulated hepatic lipid metabolism, oxidative stress, apopto-
sis, and inflammation [35,36]. Furthermore, the action mechanisms involved in the bene-
ficial effects of ghrelin on NAFLD were investigated. The amelioration of liver injury by
ghrelin was accompanied by the reestablishment of phosphoinositide 3-kinase (PI3K)/Akt
and liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathways [35]. Ghrelin
also attenuates lipotoxicity by upregulating autophagy via AMPK/mTOR restoration and
inhibiting nuclear factor kappa B (NF-κB) [36]. Recently, ghrelin was demonstrated to
block the progression of NASH induced by lipopolysaccharide (LPS) in mice fed with a
high-fat diet through the reduction of Kupffer cells’ M1 polarization, which is mediated by
GHSR1a [37]. In addition to these results demonstrating the beneficial effects of ghrelin, the
genetic deletion of ghrelin in mice also significantly reduced age-associated hepatic steato-
sis, partly by downregulating diacylglycerol O-acyltransferase-1, one of the key enzymes
of TG synthesis [38].

Concerning the effects of the ghrelin’s isoforms, it was verified that plasma UAG levels
were reduced after a sleeve gastrectomy and a Roux-en-Y gastric bypass in Wistar rats,
whereas the AG:UAG ratio was augmented. Concomitantly, both surgeries diminished
obesity-associated hepatic steatosis, inflammation, mitochondrial dysfunction, and endo-
plasmic reticulum stress. Moreover, AG has a similar effect in palmitate-treated hepatocytes,
which suggests that the increased AG:UAG ratio after bariatric surgery might ameliorate
obesity-associated NAFLD [39]. Possible underlying mechanisms are the reduction of
lipogenesis and stimulation of mitochondrial FA β-oxidation, as well as hepatic autophagy,
by relatively increased AG levels [40]. Nevertheless, in lean rats, the administration of
exogenous AG induced hepatic IR and lipid accumulation, while the co-administration of
UAG prevented the AG-induced effects [41]. Thus, further evaluation of the ghrelin-GOAT
system and the effects of AG and UAG isoforms on NAFLD development is needed.

4.3. Resistin

Resistin (named for its ability to induce “resistance to insulin”) is the founding mem-
ber of resistin-like molecules (RELMs), a family of small, secreted cysteine-rich peptides
with hormone-like and pro-inflammatory activities. It is mainly secreted by adipose tissue
and inflammatory cells, and its action is thought to be mediated by the TLR4 receptor,
although the receptors tyrosine kinase-like orphan receptor (ROR)-1, insulin-like growth
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factor type 1 receptor (IGF-1R), and adenylyl cyclase-associated protein 1 (CAP1) have also
emerged as potential candidate receptors [28]. Resistin has been shown to have pleiotropic
effects, including the regulation of blood–glucose levels and lipid metabolism, as well as
the induction of pro-inflammatory cytokines secretion or monocyte differentiation into
macrophages [28]. In fact, resistin administration to C57BL/6J mice increased blood glu-
cose, i.e., impaired glucose tolerance, due to the decreased insulin sensitivity, which was
rescued after the administration of an anti-resistin antibody [42]. Similarly, the high-fat
diet (HFD)-fed mice presented increased plasma resistin levels and severe IR, which is
completely reversed after treatment with a resistin antisense oligonucleotide [43]. More
recently, the mechanisms of action of resistin in a HFD-induced NAFLD model were
disclosed [44]. Acute elevated resistin altered mitochondrial morphology and content,
increased lipid accumulation, and up-regulated pro-inflammatory mediators in HFD-fed
mice and palmitate-treated HepG2 cells. Furthermore, steatosis aggravation induced by re-
sistin in mice is mediated by the AMPK/peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α) pathway [44]. It was also reported that resistin treatment
augments the suppressor of cytokine signaling 3 (SOCS3) expression, a suppressor of
insulin signaling, in adipocytes [45].

Resistin-deficient mice demonstrated reduced hepatic glucose production and, con-
sequently, their blood–glucose levels after fasting were low [46]. In addition, ob/ob mice
and diet-induced obese mice, both lacking resistin, had reduced hepatic steatosis, since the
expression of genes involved in hepatic lipogenesis and the secretion of very-low-density
lipoprotein (VLDL) were decreased [47].

At the cellular level, resistin hampered glycogen synthase kinase 3β (GSK3β) phospho-
rylation in primary rat hepatocytes under hyperinsulinemic and hyperglycemic conditions,
with further reduction of glycogen synthesis and hepatic insulin action [48]. Resistin also
exerts pro-inflammatory activity by inducing the expression of cell adhesion molecules and
pro-inflammatory cytokines in macrophages and mononuclear cells, contributing to the
recruitment of leukocytes to inflammation sites [28]. Moreover, the secretion of resistin by
infiltrated monocytes/macrophages is enhanced by pro-inflammatory mediators [28]. Of
note, hepatic myeloid cells and T-lymphocytes from NAFLD patients showed a decreased
response to resistin, which is associated with a failure to maintain redox homeostasis, which
would be a risk factor for NAFLD severity [49]. It was also verified that resistin increased
hepatic inflammation through mitogen-activated protein kinase (MAPK) signaling and the
activation of a coagulation cascade in animal models [50]. Finally, resistin demonstrated
profibrogenic effects by activating HSCs, which release IL8/CXCL8 and monocyte chemoat-
tractant protein (MCP)-1/CCL2 via NF-κB, and increasing the transforming growth-factor
beta (TGFβ) and collagen type I production in Kupffer cells [51,52].

4.4. Retinol Binding Protein 4 (RBP4)

Distinct mouse models have been used to elucidate the RBP4 activity in metabolic dis-
eases. In general, elevated circulating and adipose tissue RBP4 levels have been correlated
with IR, dyslipidemia, and T2DM [29]. The possible RBP4-dependent mechanisms con-
tributing to IR include impaired insulin signaling, the down-regulation of GLUT-4 translo-
cation, and the induction of inflammatory and lipolytic pathways in adipose tissue, as well
as the induction of phosphoenolpyruvate carboxykinase in the liver, thereby increasing
glucose production [29].

In genetic and dietary mouse models of NAFLD, the results of hepatic expression
of RBP4 are controversial. Liu et al. observed an abnormal hepatic RBP4 expression in
apoE−/− mice fed with a high-fat and high-cholesterol (HFC) diet [53]. However, Saeed
et al. described reduced hepatic RBP4 levels in C57BL/6J mice fed with a HFC diet and in
ob/ob mice, while serum RBP4 levels were increased in both models [54]. Apart from that,
transgenic mice overexpressing human RBP4 had increased hepatic lipid accumulation,
cellular ballooning, and inflammation, which were exacerbated when mice were chal-
lenged with a high-fat diet, likely through RBP4-induced mitochondrial dysfunction [53,55].
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Of note, recently, novel RBP4 antagonists were reported to reduce hepatic steatosis in
transgenic mice with adipocyte-specific overexpression of RBP4 [56].

4.5. Visfatin

Nicotinamide phosphoribosiltransferase (NAMPT), also called pre-B cell colony-
enhancing factor (PBEF) or visfatin, functions as an intracellular enzyme (iNAMPT) medi-
ating the synthesis of nicotinamide adenine dinucleotide (NAD+) and as a cytokine-like
soluble factor secreted into extracellular space (eNAMPT) [31]. Intracellular NAMPT regu-
lates mitochondrial biogenesis, cellular metabolism, and survival, as well as the adaptive
response to cell stress; it was described as modulating pancreatic β-cell function, likely
regulating glucose homeostasis and IR [30]. On the other hand, extracellular NAMPT
acts mainly as an inductor of pro-inflammatory cytokine production [31]. The NAMPT
extracellular form has been associated with metabolic and inflammatory disorders, but its
pathophysiological mechanisms are still ill-defined [31].

Administration of NAMPT to a methionine-choline-deficient (MCD)-diet-fed mouse
model of NAFLD aggravated hepatic steatosis, increased inflammatory cell infiltration and
inflammatory cytokines levels and exacerbated the expression of fibrotic markers in the
liver, together with the induction of endoplasmic reticulum and oxidative stress [57]. In
hepatocytes, NAMPT also induced the expression of inflammatory cytokines and dimin-
ished insulin signaling through a signal transducer and activator of transcription 3 (STAT3)
and NF-κB activation [58]. These results support the adverse effects of NAMPT in hepatic
steatosis, inflammation, and fibrosis. However, the pharmacologic inhibition or genetic
ablation of NAMPT also showed deleterious effects. The intracellular NAMPT inhibitor
FK866 promoted liver steatosis in HFD-fed mice and hepatic lipid accumulation in vitro
via the sirtuin 1 (SIRT1)/sterol regulatory element-binding protein 1 (SREBP1)/fatty acid
synthase (FASN) pathway [59]. Similarly, the knockdown of NAMPT in hepatocyte cells
led to TG accumulation through the regulation of DNL via SIRT1/AMPK pathway [60].
Accordingly, the overexpression of NAMPT in hepatocyte cell lines mitigated lipid accu-
mulation [59]. However, hepatocyte-specific NAMPT knockout mice on low-methionine
and choline-free high-fat diet showed less TG accumulation than wild-type controls but
had augmented histological scores for hepatic inflammation, necrosis, and fibrosis [61]. Of
note, NAMPT KO mice on a control diet also showed liver injury, since they had decreased
mitochondrial proteins and respiratory capacity and increased fibrosis due to low NAD+
levels [61]. Taken together, the present data suggest that the opposing activity of NAMPT
in NAFLD pathophysiology could be derived from the different roles of extracellular and
intracellular NAMPT, but further studies are needed.

4.6. Chemerin

Chemerin, also named tazarotene-induced gene 2 (TIG2) and retinoic acid responder
2 (RARRES2), is secreted as inactive precursor, which is activated by proteases of the
coagulation cascade, neutrophil-derived proteases (elastase and cathepsin G), bacterial
proteases, and mast cell products (tryptase) [32]. This chemotactic adipokine binds to
the G protein-coupled receptor chemokine-like receptor 1 (CMKLR1), which is expressed
in dendritic cells, macrophages, and natural killer (NK) cells and may serve as bridge
between innate and adaptive immunity [62]. Although the C-C chemokine receptor-like
2 (CCRL2) and the G protein-coupled receptor 1 (GPR1)/CMKLR2 were also described
as chemerin receptors, their physiological activity is still uncertain. Chemerin and its
receptor CMKLR1 are both expressed in adipose tissue [63], and they have been reported
to be augmented in obesity and IR states (T2DM), decreasing after weight loss [64]. This
adipokine also seems to regulate adipocyte differentiation, glucose and lipid homeostasis,
and insulin sensitivity [32].

In addition to its ability to regulate glucose metabolism, IR, and inflammation, the
role of chemerin in NAFLD is still unclear. The administration of recombinant chemerin
ameliorate HFD-induced NASH in mice, as well as IR, leptin resistance, and liver le-
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sions, by alleviating oxidative stress and promoting autophagy, at least in part, due to
chemerin/CMKLR1-dependent activation of janus kinase 2 (JAK2)-STAT3 pathway [65].
On the contrary, the administration of a chemerin-derived C15 peptide did not affect hepatic
TG accumulation, inflammation, or fibrotic gene expression in atherogenic diet-induced
murine NASH [66]. Moreover, PI3K inhibition mitigated liver steatosis and KC-mediated in-
flammation due to the down-regulation of the chemerin receptor CMKLR1 in the liver [66].
Nevertheless, whole-body Cmklr1-gene abrogation in mice did not affect either the hepatic
lipid accumulation, inflammation, fibrotic gene expression, NAS, or the IR [67]. Inconsisten-
cies in the current data could be related to the differential modulation of hepatic chemerin
in distinct murine models of NAFLD [68].

4.7. Adipocyte Fatty Acid-Binding Protein (AFABP)

There is strong evidence correlating elevated AFABP with IR and adipose tissue lipol-
ysis in obesity and metabolic syndrome [33]. Interestingly, a recent review pointed out that
AFABP as a metabolic/functional marker regulating macrophage functions likely having
a determining role in pathophysiology [69]. Concerning to NAFLD, AFABP expression
was elevated in Kupffer cells in both LPS-induced acute liver injury and diet-induced
NAFLD [70]. In these NAFLD mice models, the pharmacological inhibition of AFABP
ameliorated hepatic steatosis, macrophage infiltration, and hepatocellular ballooning [70].
Genetic ablation and the pharmacological inhibition of AFABP also attenuated bile-duct-
ligation- and carbon-tetrachloride-induced liver fibrosis in mice through the reduction of
collagen accumulation, liver sinusoidal endothelial cells (LSEC) capillarization, and HSC
activation [71]. Mechanistically, elevated AFABP promotes LSEC capillarization, an early
event of NAFLD pathogenesis, and LSEC-derived AFABP activate HSCs that augments
TGFβ production and further extracellular matrix accumulation and fibrosis [71]. Further-
more, AFABP could promote hepatic inflammation through Kupffer cell activation [70].
Altogether, these findings suggest pharmacological inhibition of AFABP as a promising
therapeutic strategy for NAFLD.

5. Adipokines in NAFLD: Evidence from Clinical Studies
5.1. Ghrelin

Clinical studies have demonstrated that obese patients with IR or metabolic syndrome
had lower UAG and total ghrelin levels, while the AG:UAG ratio was elevated [72,73].
Moreover, the AG:UAG ratio was positively correlated with IR in both obese children and
adults [72,74]. After the proof about the influence of ghrelin on insulin sensitivity, some
research focused on ghrelin’s role in NAFLD, but the evidence is scarce, and not all studies
take into consideration the concentrations of total ghrelin and its isoforms, AG and UAG.

Ghrelin levels were associated negatively with body mass index (BMI) in obese NAFLD
patients diagnosed by ultrasonography [75] or biopsy [76]. Compared to matched healthy
controls, patients with NAFLD showed reduced ghrelin levels, which correlated with
IR [77]. However, in a study with NAFLD biopsy-proven patients that underwent bariatric
surgery, UAG levels were increased in NASH patients compared to non-NASH subjects,
while similar levels of AG were observed. Additionally, higher levels of AG, but not UAG,
were observed in higher stages of fibrosis [78]. Further evidencing the role of ghrelin
in NAFLD, recent case-control retrospective studies of biopsy-proven NAFLD patients
suggested that the Leu72Met (rs696217 G > T) polymorphism and the “GG” genotype of
rs26802 variant in the ghrelin gene have a protective effect against NAFLD [79,80].

5.2. Resistin

As described above, the positive correlation between resistin and IR, steatosis, and
inflammation is well stablished in murine and cellular models, but data in human NAFLD
are conflicting. A systematic review of Bekaert et al. found 12 studies reporting resistin
levels in biopsy-proven NAFLD patients, of which 6 reported statistically significant re-
sults [81]. Circulating resistin levels were positively correlated with hepatic steatosis, portal
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inflammation, and NAFLD ACTIVITY SCORES in non-diabetic NAFLD patients [82–85].
Of relevance, Aller et al. found that resistin association with the steatosis grade was lost
when the homeostatic model assessment of insulin resistance (HOMA-IR) parameter was
included in the multivariate logistic analysis, indicating that resistin is a surrogate marker
of IR [83]. Supporting the relevance of resistin in NAFLD, a predicting diagnostic biomarker
panel for histological NASH in obese subjects included the serum levels of resistin together
with adiponectin and cytokeratin 18 (marker of cell death) [86]. However, resistin was not
included in the predicting algorithm for NASH or NASH-related fibrosis in a more recent
study by the same group [87]. In contrast, a study described a negative correlation between
circulating resistin levels and the steatosis grade in severely obese NAFLD patients [88]. The
remaining studies included in the cited meta-analysis did not demonstrate an association of
resistin with liver histological parameters in obese and non-obese NAFLD patients [89–92].
It is worth mentioning that, in this meta-analysis, 4 out of the 12 studies did not adjust
their results for confounding factors, and the potential association between resistin and IR
was conflicting among the studies [81]. More recently, the determination of serum resistin
levels in severe obese NAFLD patients found no correlation with steatohepatitis or fibrosis
severity [93]. Similarly, resistin circulating levels did not associate with steatosis grade,
NASH diagnosis, hepatic ballooning, or lobular inflammation grade, but they did correlate
with fibrosis stage in obese NAFLD patients [94].

Although there are ambiguous data on circulating resistin levels in NAFLD patients,
the existing results on its hepatic expression are more consistent. Augmented hepatic re-
sistin mRNA levels were reported in patients with NASH compared to steatosis or control
subjects and in steatosis patients compared to control individuals [95]. Moreover, a positive
association between hepatic resistin mRNA levels and hepatic steatosis, inflammation, or
fibrosis was reported in several studies [95,96]. Additionally, a positive correlation between
hepatic resistin protein expression and NAS, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), BMI, glucose, insulin, HOMA-IR, gamma-glutamyl transferase
(GGT), lactate dehydrogenase (LDH), TG, and glycated haemoglobin was verified in obese
NAFLD patients [97]. The resistin mRNA expression in subcutaneous adipose tissue was
also verified to be increased in non-obese NAFLD patients, but no correlation with liver his-
tological parameters was observed [84]. Interestingly, the immuno–histological assessment
of hepatic samples of NAFLD patients revealed a resistin distribution predominantly in
perisinusoidal cells (Kupffer cells and HSCs) [95], histiocytes of inflammatory infiltrate, and
histiocytes surrounding the hepatocytes with steatosis [97]. Finally, a significant association
was observed between resistin rs1862513 polymorphism and NAFLD [98], which supports
the significance of resistin in the development of NAFLD.

5.3. Retinol Binding Protein 4 (RBP4)

Several clinical studies showed that elevated circulating RBP4 levels were associated
with insulin-resistance states, namely obesity and T2DM [29]. In addition, decreased
levels of RBP4 were correlated with recovering insulin sensitivity after weight loss or
lifestyle intervention in obese adult or children populations [99,100]. Given the close
association of NAFLD pathogenesis and IR, NAFLD is assumed to be correlated with
increased levels of serum RBP4; however, inconsistent findings were observed. In studies
without histological confirmation, serum RBP4 levels seemed to be positively correlated
with liver fat [101] and were found to be higher in NAFLD patients than controls, in adult
and pediatric subjects [102,103]. Nevertheless, a systematic review reported that only three
out of seven studies verified a positive correlation between serum RBP4 levels and liver
histology among patients with biopsy-proven NAFLD [81]. Similarly, a meta-analysis
research did not find any significant differences between NAFLD, NASH, or SS patients
compared to controls, neither between NASH nor SS patients [104]. The authors highlighted
the heterogeneity across patient populations or the lack of adjustment for confounding
factors in the analyzed research, which challenges comparisons between studies and limits
the conclusions that can be drawn about the associations between adipokines levels and
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NAFLD. More recently, a 3-year follow-up study in a Chinese cohort of NAFLD patients
diagnosed by abdominal ultrasonography verified that baseline serum RBP4 concentrations
are positively associated with NAFLD development and inversely correlated with NAFLD
regression [105]. Moreover, higher serum RBP4 levels were associated with an increased
risk for prediabetes and metabolic syndrome in obese patients with NAFLD [106].

5.4. Visfatin

Several studies have evaluated the levels of visfatin in histologically confirmed NAFLD
patients as well as the possible correlations with hepatic steatosis, inflammation, and
fibrosis; but, current data are limited and inconclusive, as verified by two systematic
reviews [81,107]. Most data reported similar serum visfatin levels in NAFLD [108], simple
steatosis (SS) [109], or NASH patients [109,110] compared to control subjects, as well as in
NASH compared to SS patients [109,111]. Likewise, similar hepatic visfatin expression was
found in NASH and SS patients [112]. However, some studies also verified the augmented
levels of serum visfatin in NAFLD compared to controls [113] or the decreased visfatin
levels in NAFLD [114], SS, or NASH patients versus controls [86,111]. Of note, increased
serum visfatin levels were associated with a reduced hepatic DNL index in women with
ultrasound-diagnosed NAFLD, while in men it was correlated with augmented hepatic
fat but not with DNL index, which suggests a sex-dependent interpretation for the serum
visfatin levels in NAFLD prognosis [115].

Concerning histological parameters, most data did not report any correlation between
serum visfatin and hepatic steatosis, inflammation, or fibrosis [108,109]. However, Aller
et al. reported that circulating visfatin levels may predict portal inflammation, but not
steatosis or fibrosis, in non-diabetic obese NAFLD patients [116]. In addition, Kukla et al.
found a positive correlation between hepatic visfatin expression and the fibrosis stage but
not hepatic steatosis and inflammation in morbidly obese NAFLD patients [112], while
Gaddipati et al. reported a positive correlation between visfatin expression in visceral
adipose tissue and steatosis degree in non-diabetic NAFLD patients [114].

Interestingly, visfatin was recently proposed as a potential serum biomarker related
to the degree of hepatic steatosis and fibrosis among pediatric obese patients diagnosed
by non-invasive methods (abdominal ultrasound and transient elastography with liver
stiffness and controlled attenuation parameter) [117]. Moreover, a 10-year follow-up study
verified no association between serum visfatin levels and leukocyte infiltration in fatty liver
at the baseline, but visfatin serum levels were significantly increased during the follow-
up, likely due to the combined effects of augmented BMI and diabetes prevalence [118].
However, this study had certain limitations, in particular, the use of ultrasonography as the
NAFLD diagnosis method, without confirmation by hepatic biopsy, and the measurement
of visfatin levels in all samples (basal and 10-years after) at the end of the study, which
likely affects the visfatin concentrations due to different storage times.

Thus, the different methodological strategies used to study visfatin levels in human
NAFLD likely determine the inconsistencies among the current data, and future research is
still needed.

5.5. Chemerin

Since chemerin regulates insulin signaling and chronic inflammation, it is reasonable
to hypothesize that this adipokine may be related to NAFLD development. In fact, elevated
serum chemerin levels were identified as a risk factor for NAFLD development in T2DM
patients [119] and were pointed out as a novel non-invasive serum marker predicting
liver steatosis in obese children [120]. A recent meta-analysis [121] further explored the
correlations between serum chemerin levels and NAFLD (steatosis and/or NASH) and
its specific hepatic histologic lesions (liver steatosis, lobular and portal inflammation, and
fibrosis). Overall, circulating chemerin levels were consistently higher in patients with
NAFLD and steatosis compared to controls, although no significant difference was verified
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between NASH patients and controls. Moreover, data on serum chemerin levels and
specific liver lesions are inconsistent, and no correlations were verified [81,121].

It was found that chemerin expression in visceral adipose tissue was negatively corre-
lated with the steatosis score and NAFLD ACTIVITY SCORES of obese NAFLD patients,
likely through the modulation of IR and, thus, NAFLD [122]. Data on hepatic chemerin
mRNA expression are contradictory; its levels were found to be negatively associated with
inflammation, fibrosis, and NAS, but not with steatosis, in non-obese NAFLD patients [123],
while other studies verified an increased hepatic chemerin mRNA expression, as well as
hepatic CMKLR1 expression, that correlated with hepatic steatosis, hepatocyte ballooning,
and the NAFLD activity score in obese NAFLD patients [124,125]. Of note, the hepatic
expression of both chemerin and CMKLR1 was associated with obesity [125], which can
partially explain the inconsistency of the results.

5.6. Adipocyte Fatty Acid-Binding Protein (AFABP)

In ultrasound-diagnosed NAFLD patients, serum AFABP levels were higher in NAFLD
patients compared with non-NAFLD group [126,127]. The same was observed in biopsy-
proven NAFLD patients, where serum AFABP had an independent positive correlation
with lobular inflammation and hepatocyte ballooning, even after adjusting for confounding
factors [128,129]. Milner et al. also reported higher serum AFABP levels in NASH patients
compared with SS and correlated AFABP with IR, adiposity, and the fibrosis stage [128].
Nevertheless, other studies did not verify an association between AFABP and fibrosis,
or that this adipokine was able to distinguish NASH from non-NASH patients [110]. In
summary, serum AFABP levels are elevated in NAFLD, but its correlation with NASH, and
particular fibrosis, is still unclear.

In addition to uncertainties, the general accepted roles of adipokines on NAFLD
development are summarized in Figure 2.
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6. Therapeutic Interventions and Modulation of Adipokines’ Levels

As described above, clinical studies bring out much uncertainty regarding the correla-
tion between adipokine levels and NAFLD. However, small interventional studies have
revealed that lifestyle modifications and pharmacologic agents could affect the circulat-
ing levels of adipokines in NAFLD patients. Although only a few of these studies have
adipokines as their main endpoint and most of them are characterized by a reduced sample
size and the absence of control groups, they highlight the importance of adipokines in
NAFLD amelioration and so are also summarized here.

Weight loss following bariatric surgery or lifestyle modification, namely healthy
eating habits and physical exercise, in the NAFLD population, diminishes circulating
leptin [8,22,130–133], resistin [131], RBP4 [8], visfatin [131], and chemerin [8], while elevat-
ing circulating adiponectin [8,131,133,134]. Nevertheless, the direct correlations between
hepatic steatosis, weight loss, and adipokine levels have barely been investigated. Recently,
the DIRECT PLUS randomized clinical trial verified that a green Mediterranean diet, en-
riched in specific green polyphenols (Mankai, green tea, and walnuts) and restricted in red
and processed meat, led to weight loss, a decline of NAFLD prevalence, and a significant
reduction in intrahepatic fat assessed by magnetic resonance, which was associated with
a decline in leptin and chemerin plasma levels [135]. Furthermore, a randomized single-
center study investigating the effects of guided lifestyle changes with endurance activity
and nutrition advising or meal replacement with soy protein-based preparation in NASH
patients demonstrated the positive correlation of leptin changes with body weight, fat mass,
and reduction in waist circumference and total abdominal fat, while adiponectin changes
were inversely correlated with these parameters [136]. More importantly, adiponectin
increased with a reduction of intrahepatic lipid content, assessed by magnetic resonance
imaging, while leptin declined as the intrahepatic lipid content decreased [136].

Thiazolidinediones (TZDs) are a family of drugs used in the treatment of T2DM [137].
As activators of the peroxisome proliferator-activated receptor γ (PPAR-γ), these drugs
improve insulin sensitivity, and, therefore, some clinical trials have evaluated the effect of
approved TZDs (pioglitazone and rosiglitazone) on NASH [138–140]. Both pioglitazone
(30 mg/day for 22 months) [140] and rosiglitazone (8 mg/day for 3 years) [139] clearly
reduced hepatic steatosis, whereas pioglitazone further reduced lobular inflammation in
non-diabetic NAFLD patients [140], as well as fibrosis in biopsy-proven NAFLD patients
with T2DM [141]. Rosiglitazone had no beneficial effects on hepatic lobular inflammation
or fibrosis [139]. Additionally, a systematic review found an inverse association between
the increase of adiponectin levels and histological steatosis, IR, and liver function mark-
ers (ALT and AST) after TZDs treatment [142]. So, TZDs increase adiponectin levels in
addition to any weight gain, commonly seen with these drugs and usually associated with
reduced adiponectin levels and adverse effects in NAFLD, likely through the induction of
adiponectin production and secretion, which counterbalances the increase of body weight
induced by TZDs [142]. A recent randomized controlled trial also correlated the ameliora-
tion of hepatic steatosis and necroinflammation in NASH patients with the enhancement of
adiponectin levels and the decrease of visceral-to-subcutaneous fat ratio after pioglitazone
(45 mg/d for 6-months) treatment [143]. Altogether, these results reinforce the role of
adiponectin on NAFLD. Regarding the leptin levels, it has been demonstrated that TZDs
reduced the leptin expression in adipose tissue, which could counteract the enhancement of
leptin levels due to the TDZs-induced adipose tissue increase, with a neutral effect of TZDs
on circulating leptin levels in NASH patients [8]. Of relevance, preliminary data revealed
that the beneficial effects of pioglitazone on adiponectin levels and hepatic histology in
NAFLD patients were reversed after therapy discontinuation, suggesting that long-term
therapy with TZDs may be required [144]. However, treatment with rosiglitazone has been
restricted due to the increased risk of myocardial infarction [145], whereas the administra-
tion of pioglitazone has been halted in some European countries due to its association with
bladder-cancer risk after long-term use in diabetic patients [146]. Therefore, TZDs have
demonstrated promising results in NAFLD amelioration, mainly through the reduction
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of hepatic steatosis correlated with increased adiponectin levels, but their clinical use
could be limited by poor activity on hepatic fibrosis and long-term deleterious effects. The
newer selective PPAR-γ modulators (SPPARMs) have been identified as promising agents
that could provide better outcomes in NAFLD patients, but long term placebo-controlled
randomized trials are still needed [147].

Another drug extensively used as a first-line therapy in T2DM is metformin, because
of its outstanding glucose-lowering properties and its ability to improve insulin sensitiv-
ity [148]. So, it is not surprising that the therapeutic activity of metformin in NAFLD has
been investigated. Preclinical data found that metformin prevented NAFLD development
through the suppression of hepatic TG accumulation [149]. However, the data of clinical tri-
als on metformin activity in NAFLD patients are not so promising. Biochemical parameters,
including fasting plasma glucose, postprandial glucose, HOMA-IR, hemoglobin A1c, AST,
ALT, GGT, TG, and total cholesterol, as well as body weight, BMI, and waist-to-hip ratio, all
significantly improved with metformin therapy comparing to the control group; however,
liver histologic scores, namely steatosis, ballooning, NAFLD activity score, and fibrosis,
did not significantly change after metformin treatment, and lobular inflammation even
became worse after therapy [150–153]. The beneficial effects of metformin on biochemical
parameters and body weight in NAFLD patients were parallel to an increase in adiponectin
levels [152,153] and a reduction in chemerin levels [151]. Interestingly, the one-year treat-
ment with metformin decreased the central aortic augmentation index, which increased
circulating adiponectin levels, an independent predictor of arterial stiffness improvement,
which indicates that metformin therapy could ameliorate vascular dysfunction in NAFLD
patients [154].

In the last few years, sodium-glucose cotransporter-2 (SGLT2) inhibitors, namely,
empagliflozin, dapagliflozin, ipragliflozin, luseogliflozin, canagliflozin, and tofogliflozin,
have demonstrated beneficial effects in T2DM patients with NAFLD. These blood–glucose-
lowering drugs can significantly reduce hepatic enzymes and hepatic fat and improve
metabolic and fibrosis indexes without increasing adverse effects [155,156]. The effect of
SGLT2 on adipokine levels was poorly explored in clinical trials with NAFLD patients. A
study verified no significant differences in adiponectin and leptin levels in the dapagliflozin-
treated group compared to the placebo group [157], whereas the lower serum level of high-
molecular-weight adiponectin was correlated with an improved response to dapagliflozin
in T2DM patients with NAFLD [156]. Altogether, SGLT2 inhibitors seem to be an interesting
therapeutic option for T2DM patients with NAFLD, but clinicians need to consider their
efficacy and safety when individualizing the treatment [156].

Despite the modulation of adipokine levels by therapeutic approaches used in the
management of NAFLD and its comorbidities T2DM and obesity, the effect of direct
adipokine targeting in NAFLD has been poorly investigated. As described above, increased
circulating levels of adiponectin seem to have beneficial effects in NAFLD patients, and, so,
its administration could be seen as an appealing strategy for NAFLD. However, adiponectin
is subjected to extensive post-translational modifications and multimerization, which
challenges the production of functionally active recombinant adiponectin [158]. This is
why the discovery of adiponectin analogues, such as osmotin, a plant antifungal protein,
might result in alternative therapies for NAFLD [159,160]. Another alternative therapeutic
approach for NAFLD in patients with remaining functional adipose tissue could be the up-
regulation of endogenous adiponectin expression and/or its secretion induced by sustained
weight loss or pharmacological agents, such as TZDs or SPPARMs, as described above [5].
The only “adipokine drug” approved by the United States Food and Drug Administration
(FDA) is recombinant human leptin—metreleptin, used to treat complications of leptin
deficiency in patients with lipodystrophy [161]. Data from small interventional studies
verified a reduction in hepatic steatosis and improvements in hepatocellular ballooning
and NAS, but not fibrosis, in NASH patients with a relative leptin deficiency or partial
lipodystrophy [162–164]. So, although large well-controlled studies are needed, it seems
that leptin treatment could become a therapeutic tool for hypoleptinemic NAFLD patients.
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Moreover, the discovery of leptin analogues with anti-steatotic action but lacking the
inflammatory and fibrogenic leptin activity, such as 7i [165], will be of relevance in the
development of adipokine-based therapies for NAFLD [22].

7. Future Perspectives and Conclusions

The Global Burden of Disease Study 2017 evidenced the alarming trend of NAFL/NASH
to become the major cause of chronic liver disease in children and adults and to potentially
contribute to the burden of non-communicable diseases, such as cardiovascular disease [2].
Therefore, the early screening of NAFLD patients at highest risk for liver-related compli-
cations and the development of successful management strategies are mandatory. The
emerging roles of adipokines as metabolic and inflammatory players, together with encour-
aging preclinical data, have identified adipokines as promising biomarkers and therapeutic
targets for steatosis and NASH. Nevertheless, the available clinical data are inconsistent.

Every clinical study has a unique set of inclusion and exclusion criteria for participants.
A considerable number of clinical trials used magnetic-resonance-imaging-based NAFLD
diagnosis without liver biopsy confirmation or histological NAFLD grade evaluation, which
led to highly heterogeneous groups and limited the conclusions of these studies. NAFL
and NASH classifications are still widely used in clinical practice, but the recent definition
of MAFLD will allow a better characterization of patients’ profiles, excluding those with
steatosis unrelated to metabolic dysfunction and, thus, contributing to more homogeneous
cohorts [4]. Moreover, the establishment of diagnosis and follow-up guidelines [1,11,166] as
effective tools to identify and stratify NAFLD patients is helpful. Moreover, the pathogenic
factors associated with NAFLD are multifactorial, including lifestyle (high-calorie diet and
sedentarism), genetic alterations, or the presence of comorbidities [21], and the analysis
of possible confounding factors are critical. In this context, future clinical trials with
highly-phenotyped patient cohorts, similarly to the European NAFLD Registry [167], are
demanding.

The existing clinical studies on adipokines and NAFLD are mostly case-control or
cross-sectional studies, which limited the conclusions regarding causalities and possible
associations. Prospective cohort studies with paired biopsies, long-term follow-ups and
carefully matched controls can offer a higher level of evidence on adipokines’ pathophysio-
logical role in NAFLD and on their diagnosis and prognosis power. In this regard, it will be
important to define standardized methodology for high-sensitivity, rapid, single-analysis,
and, most importantly, the reliable identification and quantification of adipokines [168],
without forgetting that some of them have multiple forms, such as adiponectin, resistin,
and ghrelin [26,42,158], or can be found in the circulation as free or protein-bounded forms,
such as leptin [169]. Moreover, the levels of endogenous antagonists of adipokines [170] or
inhibitors of their receptors should not be ignored. Finally, increasingly important topics
are proper clinical study design, analysis, reporting, and sharing of data, to ensure accurate
and robust findings as well as appropriate interpretation [171,172].

As described in this review, the potential role of adipokines in NAFLD development
has been broadly explored using in vitro and in vivo approaches. While cellular models
lack systemic perspective and cross-organ communication, current NAFL/NASH in vivo
models have limited predictive value to the full spectrum of human NAFLD [173]. How-
ever, nutritional models or combined models of genetic modifications and nutritional
challenges presenting metabolic comorbidities (IR, dyslipidemia and obesity) [173] are
likely to be the best-suited models with a higher translatable potential for the study of
adipokines’ pathophysiological role in NAFLD. Furthermore, recent advances on 3D cell
cultures and biochip-based culture systems [174] could allow a better assessment of cellular
responses to adipokines. Altogether, preclinical models are useful tools to unravel patho-
physiological links and signaling pathways, which could be very valuable in disclosing
uncertainties on the role of adipokines in NAFLD. Curiously, there are limited studies
either on the hepatic functionality of adipokines receptors or on the activity of endogenous
adipokines antagonists in NAFLD, which could add other (dys)regulatory levels to the
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intricate communication between adipose tissue and the liver. Furthermore, several emerg-
ing adipokines, such as vaspin [175–177], adipsin [178], apelin [179,180], obestatin [181],
and omentin [176,177], have been associated with NAFLD, but their roles and mechanisms
of action remain unclear.

Future insights into the pathophysiologic role of adipokines in NAFLD will be of
great relevance for the development of new therapeutic approaches. In particular, the
control of bioactive adipokines levels using high-affinity binding molecules, miRNAs
targeting specific adipokines, and antagonists or monoclonal humanized antibodies against
adipokines receptors are likely to be feasible options [182]. Accordingly, as mentioned
above, recombinant leptin was described to improve steatosis and NAFLD activity score in
hypoleptinemic NAFLD patients [162–164]. However, there are some concerns to take into
account when targeting adipokines or their receptors. Anti-drug antibodies, developed
after adipokine administration, could cross-react with endogenous adipokine and limit
their therapeutic efficacy [183]. Furthermore, given the pleiotropic activity of adipokines,
existence of compensatory mechanisms, and interplay among detrimental and beneficial
adipokines, a systematic approach might be discouraged; instead, strategies targeting
specific receptor isoforms or adipokines activity precisely in specific cell populations could
be viable therapeutic options [6,8]. The development of adipokines analogues without
deleterious effects, such as the leptin analogue 7i [165] are also an attractive strategy. Above
all, adipokines are immunometabolic players [7] acting in a dose-dependent and continuous
dynamic cross-talk way, and, thus, therapies aiming to reestablish a healthy adipokine
network and adipose tissue function are likely to be more effective than single-adipokine
targeting.

In conclusion, much uncertainty still exists regarding the roles of adipokines in
NAFLD, mainly due to complex NAFLD pathophysiology and intricate adipokines net-
work. Long-term prospective studies of well-characterized cohorts presenting paired liver
biopsies and suitable matched controls, together with improved preclinical models, are
demanding to accurately evaluate adipokines as NAFLD biomarkers as well as adipokine-
based therapies for NAFLD. Through the path, strict collaboration between clinicians and
basic scientists will certainly elicit cross-fertilization of translational research and accelerate
the transfer of the results to the clinical practice. Nevertheless, we should keep in mind that
the more effective approach to counteract adipokine imbalance and NAFLD is to prevent
and/or to revert excessive fat.
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