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Abstract: Retail programs offer popular weight-loss options amid the ongoing obesity crisis.
However, research on weight-loss outcomes within such programs is limited. This prospective-cohort
observational study enrolled 58 men and women between ages 20 and 72 years from a retail program
to assess the influence of client features on energy-restriction induced weight-loss response. DESeq2
in R-studio, a linear regression model adjusting for significantly correlating covariates, and Wilcoxon
signed-rank and Kruskal–Wallis for within- and between-group differences, respectively, were used
for data analyses. An average 10% (~10 kg) reduction in baseline-weight along with lower total-,
android-, gynoid-, and android:gynoid-fat were observed at Week 12 (all, p < 0.05). Fifty percent
of participants experienced a higher response, losing an average of 14.5 kg compared to 5.9 kg
in the remaining low-response group (p < 0.0001). Hemoglobin-A1C (p = 0.005) and heart rate
(p = 0.079) reduced in the high-response group only. Fat mass and A1C correlated when individuals
had high android:gynoid fat (r = 0.55, p = 0.008). Gut-microbial β-diversity was associated with
BMI, body fat%, and android-fat (all, p < 0.05). Microbiota of the high-response group had a higher
baseline OTU-richness (p = 0.02) as well as differential abundance and/or associations with B. eggerthi,
A. muciniphila, Turicibacter, Prevotella, and Christensenella (all, p/padj < 0.005). These results show that
intestinal microbiota as well as sex and body composition differences may contribute to variable
weight-loss response. This highlights the importance of various client features in the context of
real-world weight control efforts.
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1. Introduction

The burgeoning field of microbiota has revealed how inner environment can shape human health
and wellbeing. Gut bacterial compositions may also contribute to and help predict physiological
dysfunctions in patients [1–3]. In particular, pre-clinical and clinical studies have reported links
between gut bacteria and obesity [4–7]. Experiments in germ-free mice established a direct contribution
of the gut bacteria composition and metabolism on body weight outcomes [8,9]. Microbiomes in obese
mice and obese humans showed enhanced energy harvest capacity from non-digestible carbohydrates
by way of short chain fatty acid (SCFA) production. Furthermore, germ-free mice and rats with low
SCFA-levels are protected from diet-induced obesity. Paradoxically, SCFA-intervention protected mice
from diet-induced obesity. It is also known that SCFAs modulate fatty acid synthesis and oxidation
to favorably impact body fat and weight. However, molecular mechanisms underlying the apparent
paradox related to SCFAs as well as other aspects of microbiota mediated host energy metabolism are
not fully understood [8,10–14].

In parallel to mechanistic research endeavors, there is a growing interest in the manipulation
potential of the gut microbiota for achieving effective weight-loss. While it was proposed that microbiota
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features may interplay with weight response to interventions, human data on this interplay are limited
under real-life circumstances. Furthermore, given the general complexity of the microbiome structure
and function, consensus is lacking at present regarding specific microbial compositional features that
may help predict weight-loss response outcomes [15–19]. The microbiome composition is unique to
each person and is relatively resilient during adult life. However, its responsiveness to environmental
cues provides the opportunity to explore its potential role in understanding weight-loss response
within real-life settings [4,6,7,15].

Two in three Americans are overweight or obese due to excess body-fat, which elevates the
risk of life altering chronic diseases. Complications arising from excess body-fat and body-weight
account for over 200 billion dollars in direct annual healthcare cost in the United States [20,21].
Various weight-loss interventions are widely available including many diets, physical activities,
behavior therapies, pharmacological treatments, and bariatric surgery. However, according to a
National Institutes of Health workgroup, losing weight and preventing weight-regain continue to be
challenging for many [20,22]. Assessment of contributing factors to such challenge may help facilitate
better-effective weight control measures.

Lifestyle modification is the primary means for achieving and maintaining a healthy body weight.
It may include some combination of energy restriction, physical activity, and behavioral adaptations [23].
Guidelines are available to direct overweight and obese patients to participate in community-based
lifestyle intervention programs [24,25]. However, the response of participants may vary within and
between such programs [26,27]. This underscores the need for increased research looking into factors
that may impact consistent outcomes in weight-management programs.

Retail programs offer lifestyle intervention options for weight management on a for-profit basis.
Some may offer customized weight maintenance strategies tailored to patient’s need and ability.
Their ubiquitous presence within communities across western nations provides clinicians and employers
convenient referral options [24]. In a trial, patients referred to a commercial weight-loss program lost twice
as much weight as patients who only received weight counselling within the clinical setting. The researchers
proposed that due to healthcare related priorities beyond weight-control, physicians typically lack the
time needed for weight-loss counselling compared to retail programs that are dedicated to weight-loss
solutions [28] Thus, the trial data highlight a potentially important role for reputable commercial programs
in organized obesity mitigation efforts. However, high dropout rates may be common and can negatively
impact overall effectiveness of even well-established commercial programs [29].

In this study, we examined associations of gut microbiota with 12-week changes in body weight,
body fat composition, and distribution, as well as whether baseline microbiota profile, age, or sex may
contribute to planned weight-loss response. We worked with a retail program in the local community
to recruit study participants. With 168 retail locations across the nation, the program uses one-on-one
coaching by trained health-coaches to help adapt to an energy-restricted diet plan that includes formula
diet for the first several months into the program. The program recommends maintaining the habitual
daily activity level for individual participants while being on the program.

2. Materials and Methods

2.1. Study Design, Setting, and Participants

Institutional Review Board for Human Subject Research at South Dakota State University
approved (IRB-1608010-EXP) this prospective cohort, 12-week, observational study. Incoming clients
in a weight-reduction program from its Brookings county retail location in South Dakota were recruited
through flyers between November 2016 and February 2018. Fourteen men and 44 women—between
ages 20 and 72 years and predominantly Caucasian due to geographical location—joined the study on
a first-come-first-serve basis after going through eligibility screening and providing informed consent
in writing. Despite our best effort, a low number of males signed up for the study. This experience
is similar to another study reporting that men are less likely than women to participate in retail
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weight-loss programs [30]. Inclusion criteria included being generally healthy (i.e., absence of major
illnesses including diabetes), any ethnicity and either sex, willing to undergo planned weight-loss by
adhering to the guidelines of the retail-program, and willingness to comply with the research study
protocol. Exclusion criteria were pregnancy; lactation; probiotic-, prebiotic-, and antibiotic-usage; being
on any special diet in the previous 12-months; and cancer, diabetes, immune compromised state, and
other conditions that would affect the ability to provide informed consent or comply with the study
protocol. Nineteen out of 58 recruited participants (32.8%) dropped out of the program before Week
12 and were excluded from the study. There was no case where a participant continued on the retail
program but discontinued with the study (Figure 1). This led to a longer than anticipated recruitment
phase so that sufficient number of participants could still complete the study to allow 85% probability
of detecting a weight-loss at a 0.05 significance level. Of note, as high as 58% dropout by 13th week into
a well-known commercial weight-loss program has been previously reported by other researchers [29].
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Figure 1. Schematic chart showing participant recruitment in the study.

2.2. Diet, Anthropometrics, and Other Data Collection during Participant Visits

All data and samples were collected at two time points: Week 0 (baseline), i.e., right after
enrollment in the program, but before starting the plan-diet, and at Week 12, i.e., after continuing
to follow the program-diet for 12 weeks. The 12-week time period was previously observed as an
optimal average time window when majority of program participants tend to be within 50% of their
target weight (personal communication from McCormack-group, Brookings, SD, USA). Furthermore,
clients were required to consume pre-formulated, ready-to-eat food items sold by the program during
the initial months for maximizing weight-loss prior to transitioning to regular food. This provided
greater uniformity in dietary ingredients and patterns among participants at Week 12 data collection,
potentially enhancing quality and consistency of the reported outcomes. Dietary-intake data were
collected in-person by nutrition science and dietetics students under supervision of a registered
dietitian nutritionist using 24-h recalls and were entered in the Nutritionist Pro software connected
to USDA nutrition information database (Axxya Systems, Redmond, WA, USA) [31]. Recall data
were collected during the scheduled study-visits for two non-consecutive days (specific days for an
individual were decided during the interview) from recent past of which one was a weekday and the
other a weekend-day. Each participant was provided with a wallet-size WebMD portion size guide for
reference (2012 version by Kathleen Zelman, MPH, RD, LD). For packaged food items, nutrition data
were obtained from labels.
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Height, waist (at navel), and hip (at the widest part) were recorded to the nearest 0.5 cm while
body weight (BW) was measured to the nearest 0.1 kg in light clothes or scrubs and no shoes (electronic
scale, Seca GmbH & Co., Hamburg, Germany) following established protocols [32]. Waist:hip (WH) and
body mass index (BMI) are two widely used markers in obesity control programs due to simplicity of
measurements and low-cost tools. However, since these were reported to be less useful for metabolic
risk assessment [33–35], we additionally assessed body composition features using dual energy X-ray
absorptiometry (DXA) whole body scan (Hologic QDR Discovery, Waltham, MA, USA) that included—total
fat mass, body fat percentage (BF%), android fat, gynoid fat, and amount and distribution of corresponding
fat-free masses (to indicate lean masses) [36–39]. In presenting WH, BMI, and body composition data
side-by-side, we pointed out when one measure may not serve as a surrogate for the other.

Glycated hemoglobin (A1C), an indicator of glucose metabolism and diabetic status, was measured
using A1C Now® + kit (PTS Diagnostics, Indianapolis, IN). Individuals with an A1C of ≥6.5% were
considered diabetic range and excluded from the study [40]. The retail plan is administered differently
to diabetics which could have potentially introduced variability in response data. Blood pressures and
resting heart rates were measured using a digital sphygmomanometer (Greater Goods, LLC, St. Louis,
MO, USA) using standard procedures [32].

2.3. Nucleic Acid Extraction and 16S Ribosomal RNA Amplicon Sequencing

Participants were provided with collection hat, gloves, and Omni-Gut stool collection kit (DNA
Genotek, Ontario, ON, Canada). The samples were received within 24 h after collection, processed,
aliquoted, and stored at −80 ◦C. DNA was isolated with MagAttract PowerMicrobiome Kit following
manufacturer’s guidelines (Qiagen, Valencia, CA, USA) and quantified with Qubit® Quant-iT High
Sensitivity Kit (Invitrogen, Life Technologies, Grand Island, NY, USA). 16S V4 rRNA region was
enriched using PCR amplification using primers designed against the surrounding conserved regions,
followed by ligation of adapters and indexing barcodes (Illumina, San Diego, CA, USA). PCR products
were quantified by PicoGreen (Life Technologies, Grand Island, NY, USA) and prepared equimolar for
sequencing step.

Sequencing (250 cycles, paired-end) using Illumina Miseq platform (San Diego, CA, USA) was
carried out by Second Genome (South San Francisco, CA, USA). Sequenced reads were quality filtered
and resulting unique sequences were clustered at 97% by UPARSE (de novo OTU clustering) and
a representative consensus sequence per de novo OTU was determined. The UPARSE clustering
algorithm comprises a chimera filtering and discards likely chimeric OTUs. Resulting sequences were
searched against Greengenes reference database (closed reference operational taxonomic unit (OTU)
picking). The longest sequence from each OTU was then assigned taxonomic classification via Mothur’s
Bayesian classifier, trained against the Greengenes database clustered at 99%. Further bioinformatics
and data analyses (except Piphillin) were carried out in our laboratory (next sections). We also carried
out BLAST search to cross reference with closest hits from NCBI 16S rRNA database with >95% query
cover, >87% identity, and <0.01 E value for unidentified OTUs in Greengenes. The raw sequences are
deposited in NCBI sequence read archive (SRA, accession number SRP237387), belonging to BioProject
number PRJNA595387.

2.4. Sub-Grouping of Participants for Data Analyses

All data are presented for 36 participants (ALL) as well as after grouping them based on baseline
differences in age, sex, BMI, and android:gynoid fat ratio (AG) to assess any role of these participant
characteristics in weight-loss. Participants are also grouped based on the extent of body-weight
reduction (weight-loss response) at Week 12. Data are presented as: within group differences from
baseline to Week 12 and between group differences at baseline and Week 12. The subgroups are
defined as follows: (1) young adults (YA, n = 20, average age 33 years), and older adults (OA, n = 16,
average age 62 years; (2) males (n = 9) and females (n = 27); (3) higher BMI (HIBMI, n = 24, average
BMI 38 kg/m2) and lower BMI (LOBMI, n = 12, average BMI 27 kg/m2), where the BMI cut off was
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determined based on normal + overweight (<29.9 kg/m2) and obese ranges (>30 kg/m2); (4) higher
AG (HIAG, n = 23, average AG 0.63) and lower AG (LOAG, n = 13, average AG 0.43), where lower
AG is generally deemed healthier, but, unlike BMI, currently there is no reference value available,
thus the arbitrary cut-off for our mixed sex cohort was taken as 0.5, partially based on a study that
reported 50th percentile of AG for 50 years and older Caucasians as 0.46 (female) and 0.71 (male) [39];
and (5) the higher response (HIres, n = 18) and lower response (LOres, n = 18) groups were based
on a 10 kg weight-loss cut off. Significant difference in the respective defining criterion between the
subgroups was present for: age (YA/OA), BMI (HIBMI/LOBMI), AG (HIAG/LOAG), and weight-loss
response (HIres/LOres).

2.5. Bioinformatics and Statistical Data Analyses

All data analyses were carried out using R-studio and/or Sigma Plot Software (Systat Software Inc.,
San Jose, CA, USA) and data presented as mean ± SD unless otherwise stated. Normality was assessed
using Shapiro–Wilk test followed by t-test or Mann–Whitney U-test for analysis of anthropometric and
metabolic features. Statistical significance was considered at p ≤ 0.05. A p value greater than 0.05 and
less than 0.08, when shown, indicates approaching significance.

For metagenomics data, multiplexed sequence reads were converted to taxonomic and
phylogenetic profiles using QIIME2 (Quantitative Insights Into Microbial Ecology). Alpha diversity
i.e., OTU richness and Shannon diversity were calculated by summing unique OTUs found in each
sample and combining richness with the relative abundance data, respectively. For beta diversity,
dissimilarity score was determined by comparing in a pairwise fashion using a distance matrix.
Abundance-weighted difference was calculated using Bray–Curtis and binary dissimilarity were
identified using Jaccard index [41,42]. Statistical testing of alpha-diversity was carried out using Linear
Regression, Wilcoxon, and Kruskal–Wallis tests. Permutational Analysis of Variance (PERMANOVA)
testing utilized the sample-to-sample distance matrix directly, and not a derived ordination or
clustering outcome, to find the differences among discrete, categorical, or continuous variables by
randomly reassigning the samples to various sample categories. Correlations were determined using
Pearson’s coefficient. Univariate differential abundance of OTUs was calculated using DEseq2 package
with default settings in R-studio [43]. The package uses a negative binomial noise model for the
overdispersion and Poisson process intrinsic to the data [44]. Additionally, the package also takes
both technical and biological variability between experimental conditions into account and provides
the difference in terms of Log2 fold-change. Furthermore, the p value was adjusted (padj), when
appropriate, using Benjamini–Hochberg correction for false discovery rate (FDR) inherent to large
number of dependent variables [45]. The functional capacity of the metagenome from OTU counts
and representative sequence of each OTU was assessed using Piphillin version 6.0 (Second Genome
Inc., South San Francisco, CA, USA). The closest matched 16S rRNA sequence above the identity
cut-off at 95% was considered as the inferred genome for that OTU. In the case of multiple nearest
neighbor genomes with equal identities, the count is equally split to sum the inferred genome content.
The content is expressed as orthologs searched against pathways counts in Kyoto Encyclopedia of
Genes and Genomes (KEGG) genome database [46].

3. Results

3.1. Energy-Intake in Study Participants

At Week 12, there was an average 21.8% lower daily calorie intake than at baseline in ALL (Table 1,
p = 0.000003). Energy intake from carbohydrates was lower while that from proteins was higher at
Week 12 (both, p ≤ 0.01). Average fiber intake—critical for nourishing the gut microbiota—did not
change between the microbial data collection time points in the study, i.e., from baseline to Week 12.
Intakes were similar between HIres and LOres at baseline and at Week 12 (all, p > 0.05). Furthermore,
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HIres and LOres experienced a similar average reduction of 531.7 and 485.8 kcal/day, respectively, over
the 12-week period (p > 0.05).

Table 1. Average nutrient intakes.

Nutrients
All Participants

(ALL, n = 36)
High-Response Group

(HIres, n = 18)
Low-Response Group

(LOres, n = 18)

Baseline Week-12 p Baseline Week-12 p Baseline Week-12 p

Caloric Intake, kcal/d 2327 ± 1163 1818 ± 669 <0.01 2254 ± 1284 1722 ± 699 <0.01 2400 ± 1061 1914 ± 643 <0.01
Protein (%E) 17.9 ± 10.9 24.0 ± 9.1 <0.01 18.8 ± 14.4 26.1 ± 11.5 <0.01 17.0 ± 6.0 21.9 ± 5.3 <0.01

Carbohydrate (%E) 41.7 ± 14.2 38.1 ± 8.8 0.01 44.8 ± 15.5 39.9 ± 9.4 0.01 38.6 ± 12.3 36.3 ± 8.1 0.01
Total Fat (%E) 40.3 ± 12.9 38.3 ± 8.2 NS 38.2 ± 13.6 36.3 ± 9.2 NS 42.5 ± 12.1 40.3 ± 6.7 NS

Fiber, g/d 18.5 ± 9.5 17.8 ± 6.0 NS 19.9 ± 10.8 18.5 ± 7.0 NS 18.1 ± 8.3 17.2 ± 4.8 NS

Data are Mean ± SD based on 24 h dietary recall. Comparison of energy intake between HIres and LOres shows
p > 0.05 both at baseline and at Week 12 (data not shown in table). %E, percent of total energy; NS, not significant.

3.2. Baseline Body Composition: BMI versus AG

A growing body of research points to BF%, android region fat, and AG (relative measure of
android fat) being more relevant than frequently utilized measures of BW and BMI for assessing
chronic disease risk [47–55]. Overall, two participants had BMI < 25 kg/m2 at baseline, while the
rest were overweight, obese, or severely obese (BMI range 24.42–51.84 kg/m2). Males started with an
average 19 kg higher BW than females (p = 0.04), although the BMI was similar between the groups
(Table 2). However, males had a higher AG than females (p = 0.001). In addition, total body fat was 10%
lower, while fat-free mass was higher by approximately 20 kg (both, p < 0.001) in males than females
(Table 2). The observations support that BMI, but not AG, may be influenced by lean-mass and/or
height. Thus, AG may be more relevant than BMI in deciding weight-reduction goals. Furthermore,
measures of metabolic functions such as A1C (p = 0.014) as well as systolic and diastolic blood pressures
(both, p < 0.001) were higher in the HIAG than the LOAG group, but this distinction was absent between
the BMI subgroups (Table 2). These observations indicate that AG is superior to BMI for indicating
body fat content and distribution as well as for assessing possible metabolic implications of increased
fat in the central region of the body. Of note, the average age difference of 12 years was significant
between the AG groups (p = 0.025) but such a distinction was not observed between the BMI groups.
Central obesity tends to increase with age when overall metabolism tends to slow down. This may
explain higher age of the HIAG group (Table 2). Our observations are in line with previous reports that
body fat and its distribution pattern independently associate with higher risk of chronic disease and
mortality [34,35,53,54]. When possible, retail programs may consider body composition measurement
as an option for determining weight-loss and metabolic wellbeing goals.

3.3. Anthropometric and Metabolic Changes over 12-weeks

Seventeen participants lost≥10%, fifteen participants lost 5–10%, three participants lost≤5%, and one
participant gained approximately 2% of their respective baseline BW. Average weight lost in 12 weeks
was ~10 kg (Tables 2 and 3) and the BW reduction was significant in all sub-groups (Tables 3 and 4).
Along with body-weight, the following measures were reduced: blood pressure, total fat and lean masses,
BF%, android fat and lean masses, android fat%, gynoid fat and lean masses, and AG (all, p ≤ 0.05,
Table 4). An association between reduction in fat mass and A1C (r = 0.49, p = 0.0028) was observed in
ALL that was further augmented in HIBMI and HIAG (both, r ≥ 0.55, p < 0.01) but absent (p > 0.3) in
corresponding low-groups (Figure 2). There was no apparent relationship between participant’s age and
how they responded to energy reduction for weight-loss (Tables 2 and 3).
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Table 2. Baseline characteristics of study participants including differential features between sub-groups.

ALL (36)
Age Group (n) Sex Group (n) BMI Group (n) Android:Gynoid Group (n) Weight-Loss Response Group (n)

YA (20) OA (16) Male (9) Female (27) HIBMI (24) LOBMI (12) HIAG (23) LOAG (13) HIres (18) LOres (18)

Age (year) 45.7 ± 15.8 33.0 ± 6.9 * 61.6 ± 5.9 * 44.9 ± 17.7 46.0 ± 15.4 42.8 ± 15.0 51.5 ± 16.3 50.0 ± 16.1 * 38.0 ± 12.1 * 44.0 ± 16.3 47.4 ± 15.5
Body weight (kg) 101.6 ± 24.5 106.1 ± 24.8 96.0 ± 23.6 115.9 ± 32.5 * 96.9 ± 19.7 * 112.2 ± 23.0 * 80.4 ± 8.1 * 106.9 ± 27.3 92.4 ± 15.3 113.2 ± 27.0 * 90.1 ± 14.8 *

BMI (kg/m2) 34.6 ± 7.2 35.1 ± 7.1 33.9 ± 7.5 35.1 ± 8.6 34.4 ± 6.8 38.2 ± 6.0 * 27.3 ± 1.8 * 36.0 ± 7.6 32.1 ± 5.9 37.8 ± 7.6 * 31.4 ± 5.3 *
Hip (cm) 120.3 ± 14.4 123.2 ± 13.0 116.7 ± 15.7 117.2 ± 13.0 121.3 ± 15.0 126.9 ± 12.9 * 107.1 ± 5.4 * 120.0 ± 15.6 120.9 ± 12.7 125.9 ± 14.0 * 114.7 ± 12.8 *

Waist (cm) 112.7 ± 18.2 113.0 ± 18.1 112.2 ± 18.9 119.5 ± 22.6 110.4 ± 16.4 119.9 ± 18.0 * 98.2 ± 5.8 * 118.3 ± 19.2 * 102.7 ± 11.3 * 121.4 ± 17.6 * 103.9 ± 14.5 *
Waist:hip 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 * 0.9 ± 0.1 * 0.9 ± 0.1 0.9 ± 0.04 1.0 ± 0.1 * 0.9 ± 0.1 * 1.0 ± 0.1 $ 0.9 ± 0.1 $

Total FM (kg) 41.2 ± 14.4 43.4 ± 14.7 38.4 ± 13.9 39.4 ± 18.7 41.8 ± 13.0 47.3 ± 13.6 * 28.9 ± 5.0 * 42.9 ± 16.3 38.2 ± 10.1 46.7 ± 16.5 * 35.7 ± 9.4 *
Total FFM (kg) 61.1 ± 13.2 63.4 ± 12.9 58.2 ± 13.3 77.1 ± 14.5 * 55.7 ± 7.1 * 65.3 ± 13.5 * 52.5 ± 7.0 * 64.4 ± 14.8 * 55.1 ± 6.7 * 66.9 ± 14.0 * 55.2 ± 9.5 *
Total body fat% 39.7 ± 6.9 40.0 ± 7.1 39.2 ± 6.8 32.5 ± 6.3 * 42.0 ± 5.2 * 41.7 ± 6.7 * 35.6 ± 5.2 * 39.3 ± 7.7 40.3 ± 5.4 40.3 ± 7.6 39.0 ± 6.2

Android FM (kg) 3.7 ± 1.5 3.8 ± 1.6 3.6 ± 1.4 4.1 ± 2.1 3.6 ± 1.3 4.3 ± 1.5 * 2.6 ± 0.6 * 4.1 ± 1.6 * 3.0 ± 0.9 * 4.4 ± 1.7 * 3.0 ± 1.0 *
Android FFM (kg) 5.1 ± 1.3 5.1 ± 1.2 5.1 ± 1.4 6.5 ± 1.5 * 4.6 ± 0.8 * 5.5 ± 1.3 * 4.3 ± 0.7 * 5.5 ± 1.4 * 4.3 ± 0.6 * 5.7 ± 1.5 * 4.5 ± 0.8 *

Android Fat% 8.9 ± 1.3 8.6 ± 1.3 9.3 ± 1.3 10.2 ± 1.2 * 8.5 ± 1.1 * 9.0 ± 1.4 8.8 ± 1.2 9.6 ± 1.1 * 7.8 ± 0.9 * 9.4 ± 1.3 * 8.5 ± 1.3 *
Gynoid FM (kg) 6.7 ± 2.3 7.3 ± 2.3 6.0 ± 2.1 5.9 ± 2.4 7.0 ± 2.3 7.7 ± 2.2 * 4.8 ± 0.9 * 6.6 ± 2.5 7.0 ± 2.0 7.5 ± 2.6 * 6.0 ± 1.8 *

Gynoid FFM (kg) 9.9 ± 2.3 10.5 ± 2.5 9.3 ± 2.0 12.3 ± 2.7 * 9.2 ± 1.6 * 10.8 ± 2.3 * 8.3 ± 1.1 * 10.4 ± 2.6 9.1 ± 1.5 11.0 ± 2.5 * 8.9 ± 1.6 *
Gynoid Fat% 16.4 ± 2.1 17.0 ± 2.2 $ 15.8 ± 1.8 $ 15.5 ± 2.0 16.7 ± 2.0 16.2 ± 2.2 16.8 ± 1.7 15.4 ± 1.7 * 18.3 ± 1.3 * 16.1 ± 2.1 16.7 ± 2.1

Android:gynoid fat 0.6 ± 0.1 0.5 ± 0.1 $ 0.6 ± 0.1 $ 0.7 ± 0.1 * 0.5 ± 0.1 * 0.6 ± 0.2 0.5 ± 0.1 0.6 ± 0.1 * 0.4 ± 0.1 * 0.6 ± 0.2 $ 0.5 ± 0.1 $

A1C (%) 5.6 ± 0.5 5.4 ± 0.4 * 5.8 ± 0.5 * 5.5 ± 0.3 5.6 ± 0.5 5.6 ± 0.4 5.6 ± 0.5 5.7 ± 0.4 * 5.3 ± 0.4 * 5.6 ± 0.5 5.6 ± 0.5
Systolic BP (mmHg) 139.0 ± 16.4 134.9 ± 16.8 $ 144.5 ± 14.5 $ 144.9 ± 18.6 137.0 ± 15.4 140.3 ± 17.1 136.5 ± 15.3 145.8 ± 15.2 * 127.5 ± 11.2 * 140.2 ± 17.4 137.9 ± 15.8
Diastolic BP (mmHg) 83.4 ± 9.3 82.9 ± 10.5 84.1 ± 7.7 86.6 ± 13.0 82.3 ± 7.7 84.6 ± 9.9 81.1 ± 7.9 86.7 ± 9.2 * 77.8 ± 6.5* 83.9 ± 11.5 82.9 ± 6.9

Heart rate (bpm) 77.3 ± 14.1 84.6 ± 12.2 * 67.5 ± 10.0 * 78.4 ± 16.2 76.8 ± 13.6 79.4 ± 12.5 73.2 ± 16.5 75.4 ± 14.2 80.4 ± 13.8 79.4 ± 15.4 75.2 ± 12.8

Data are Mean ± SD; p ≤ 0.05 (*) and p = 0.06–0.08 ($) shown for differences between categorical sub-groups. n, number of participants; BMI, body mass index; FM, fat mass; FFM, fat free
mass; BP, blood pressure; A1C, glycated hemoglobin as percent of total hemoglobin; YA, young adults; OA, older adults; HI, high; LO, low; res, response.
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Table 3. Characteristics of study participants post weight-loss including differential features between sub-groups.

ALL (36)
Age Group (n) Sex Group (n) BMI Group (n) Android:Gynoid Fat Group(n) Weight-Loss Response Group(n)

YA (20) OA (16) Male (9) Female (27) HIBMI (24) LOBMI (12) HIAG (23) LOAG (13) HIres (18) LOres (18)

Age (year) 45.7 ± 15.8 33.0 ± 6.9 * 61.6 ± 5.9 * 44.9 ± 17.7 46.0 ± 15.4 42.8 ± 15.0 51.5 ± 16.3 50.0 ± 16.1 * 38.0 ± 12.1 * 44.0 ± 16.3 47.4 ± 15.5
Body weight (kg) 91.4 ± 22.2 95.7 ± 22.3 86.1 ± 21.5 101.2 ± 29.6 88.2 ± 18.6 100.8 ± 21.0 * 72.7 ± 7.9 * 95.4 ± 24.8 84.4 ± 14.8 98.7 ± 25.6 * 84.2 ± 15.7 *

BMI (kg/m2) 31.1 ± 6.6 31.6 ± 6.5 30.5 ± 7.0 30.6 ± 7.4 31.3 ± 6.5 34.3 ± 5.8 * 24.7 ± 1.7 * 32.1 ± 7.1 29.4 ± 5.7 32.9 ± 7.2 29.3 ± 5.7
Hip (cm) 113.0 ± 14.5 115.4 ± 12.4 110.0 ± 16.6 109.7 ± 10.9 114.1 ± 15.5 118.7 ± 14.3 * 101.7 ± 5.2 * 113.2 ± 16.2 112.7 ± 11.3 116.2 ± 14.5 109.9 ± 14.1

Waist (cm) 103.6 ± 16.4 104.6 ± 16.3 102.4 ± 16.9 106.9 ± 20.9 102.5 ± 14.9 109.9 ± 16.0 * 91.0 ± 7.7 * 107.5 ± 18.1 $ 96.7 ± 9.9 $ 109.7 ± 17.8 * 97.5 ± 12.5 *
Waist:hip 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 * 0.9 ± 0.1 * 0.9 ± 0.1 0.9 ± 0.03 0.9 ± 0.1 * 0.9 ± 0.1* 0.9 ± 0.1* 0.9 ± 0.1*

Total FM (kg) 34.8 ± 13.1 36.7 ± 13.1 32.5 ± 13.3 30.5 ± 15.8 36.3 ± 12.1 40.4 ± 12.2 * 23.7 ± 5.8 * 35.9 ± 14.5 33.0 ± 10.5 37.5 ± 15.3 32.1 ± 10.3
Total FFM (kg) 57.5 ± 12.4 60.0 ± 12.7 54.5 ± 11.8 71.7 ± 14.6 * 52.8 ± 7.1 * 61.3 ± 13.0 * 50.1 ± 6.8 * 60.3 ± 14.3 $ 52.6 ± 5.6 $ 62.1 ± 13.8 * 53.0 ± 9.2 *
Total body fat% 36.9 ± 7.8 37.2 ± 7.8 36.5 ± 8.0 28.3 ± 6.7 * 39.7 ± 5.9 * 39.3 ± 7.3 * 32.0 ± 6.7 * 36.5 ± 8.5 37.7 ± 6.7 36.6 ± 8.6 37.2 ± 7.2

Android FM (kg) 2.9 ± 13.7 3.0 ± 1.4 2.8 ± 1.4 2.9 ± 1.9 2.9 ± 1.2 3.5 ± 1.4 * 1.9 ± 0.6 * 3.3 ± 1.5 $ 2.4 ± 0.8 $ 3.3 ± 1.6 2.6 ± 1.1
Android FFM (kg) 4.6 ± 1.2 4.6 ± 1.2 4.6 ± 1.3 5.7 ± 1.7 * 4.3 ± 0.8 * 5.0 ± 1.3 * 3.9 ± 0.8 * 5.0 ± 1.3 * 3.9 ± 0.6 * 5.1 ± 1.5 * 4.2 ± 0.7 *

Android Fat% 8.3 ± 1.3 8.1 ± 1.4 8.5 ± 1.2 9.0 ± 1.6 * 8.0 ± 1.2 * 8.5 ± 1.4 7.9 ± 1.2 8.9 ± 1.1 * 7.1 ± 1.0 * 8.6 ± 1.3 8.0 ± 1.4
Gynoid FM (kg) 5.7 ± 2.2 6.2 ± 2.2 5.1 ± 1.9 4.6 ± 2.2 6.0 ± 2.1 6.5 ± 2.1 * 4.0 ± 0.8* 5.5 ± 2.2 6.0 ± 2.1 6.0 ± 2.4 5.4 ± 1.9

Gynoid FFM (kg) 9.2 ± 2.1 9.6 ± 2.2 8.6 ± 1.9 11.1 ± 2.7 * 8.5 ± 1.5 * 9.9 ± 2.2 * 7.7 ± 1.1 * 9.5 ± 2.4 8.5 ± 1.3 9.9 ± 2.4 * 8.4 ± 1.6 *
Gynoid Fat% 16.4 ± 2.1 16.9 ± 2.2 15.8 ± 2.0 15.7 ± 2.1 16.7 ± 2.1 16.1 ± 2.3 17.1 ± 1.6 15.4 ± 1.7 * 18.2 ± 1.6 * 16.0 ± 2.2 16.8 ± 2.1

Android:gynoid fat 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.6 ± 0.2 * 0.5 ± 0.1 * 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 * 0.4 ± 0.1 * 0.6 ± 0.1 0.5 ± 0.1
A1C (%) 5.3 ± 0.4 5.2 ± 0.4 5.4 ± 0.5 5.2 ± 0.3 5.3 ± 0.5 5.3 ± 0.4 5.2 ± 0.5 5.4 ± 0.4 * 5.1 ± 0.5 * 5.2 ± 0.4 5.4 ± 0.5

Systolic BP (mmHg) 127.9 ± 18.2 124.6 ± 17.1 132.1 ± 19.2 131.2 ± 14.9 126.8 ± 19.3 130.3 ± 19.4 123.0 ± 15.0 132.3 ± 18.5 * 120.1 ± 15.2 * 129.2 ± 21.3 126.6 ± 15.0
DiastolicBP (mmHg) 75.4 ± 9.7 73.4 ± 9.2 77.9 ± 10.0 78.8 ± 7.2 74.3 ± 10.2 76.1 ± 9.9 73.9 ± 9.5 78.2 ± 8.7* 70.5 ± 9.6 * 76.4 ± 10.1 74.4 ± 9.5

Heart rate (bpm) 74.0 ± 12.4 77.6 ± 11.2 * 69.6 ± 12.7 * 68.6 ± 11.9 75.8 ± 12.2 75.2 ± 11.9 71.6 ± 13.6 73.7 ± 14.4 74.5 ± 8.3 72.8 ± 12.7 75.2 ± 12.3

Data are Mean ± SD; p ≤ 0.05 (*) and p = 0.06–0.08 ($) shown for differences between categorical sub-groups. n, number of participants; BMI, body mass index; FM, fat mass; FFM, fat free
mass; BP, blood pressure; A1C, glycated hemoglobin as percent of total hemoglobin; YA, young adults; OA, older adults; HI, high; LO, low; res, response.
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Table 4. Differential changes (% change) within and between subgroups from baseline (pre weight-loss) to Week 12 (post weight-loss).

1. Male
(p, pre vs. post)

2. Female
(p, pre vs. post) p, 1 vs. 2 3. HIBMI

(p, pre vs. post)
4. LOBMI

(p, pre vs. post) p, 3 vs. 4 5. HIAG
(p, pre vs. post)

6. LOAG
(p, pre vs. post) p, 5 vs. 6 7. HIres

(p, pre vs. post)
8. LOres

(p, pre vs. post) p, 7 vs. 8

Body weight 12.9 ± 4.9 (<0.01) 9.0 ± 4.3 (<0.01) 0.03 10.2 ± 5.4 (<0.01) 9.6 ± 2.7 (<0.01) NS 10.8 ± 4.4 (<0.01) 8.6 ± 5.1 (<0.01) NS 13.2 ± 3.6 (<0.01) 6.8 ± 3.3 (<0.01) <0.01
BMI 12.9 ± 4.9 (<0.01) 9.03 ± 4.29 (<0.01) 0.03 10.2 ± 5.44 (<0.01) 9.6 ± 2.7 (<0.01) NS 10.8 ± 4.36 (<0.01) 8.6 ± 5.1 (<0.01) NS 13.7 ± 5.0 (<0.01) 6.8 ± 3.3 (<0.01) <0.01
Hip 6.3 ± 3.3 (<0.01) 5.9 ± 4.2 (<0.01) NS 6.5 ± 4.4 (<0.01) 5.1 ± 2.6 (<0.01) NS 5.7 ± 4.1 (<0.01) 6.7 ± 3.6 (<0.01) NS 7.8 ± 4.0 (<0.01) 4.3 ± 3.1 (<0.01) <0.01

Waist 10.6 ± 3.8 (<0.01) 7.0 ± 5.3 (<0.01) 0.07 8.1 ± 6.0 (<0.01) 7.4 ± 3.3 (<0.01) NS 9.1 ± 4.7 (<0.01) 5.7 ± 5.5 (<0.01) 0.06 9.8 ± 4.7 (<0.01) 5.9 ± 5.0 (<0.01) 0.02
Waist:hip 4.6 ± 2.9 (<0.01) 1.0± 5.6 (NS) 0.07 1.6 ± 6.2 (0.09) 2.5 ± 2.8 (0.01) NS 3.6 ± 3.8 (<0.01) −1.1 ± 6.2 (NS) <0.01 2.2 ± 4.9 (0.04) 1.6 ± 5.7 (NS) NS
Total FM 24.1 ± 9.3 (<0.01) 13.9 ± 7.1 (<0.01) <0.01 15.1 ± 8.6 (<0.01) 19.1 ± 9.1 (<0.01) NS 17.4 ± 8.6 (<0.01) 14.8 ± 9.3 (<0.01) NS 21.4 ± 7.6 (<0.01) 11.5 ± 7.1 (<0.01) <0.01

Total FFM 7.2 ± 4.7 (<0.01) 5.1 ± 3.8 (<0.01) NS 6.2 ± 4.7 (<0.01) 4.6 ± 2.1 (<0.01) NS 6.4± 4.1 (<0.01) 4.4 ± 3.9 (<0.01) NS 7.4 ± 4.0 (<0.01) 4.0 ± 3.6 (<0.01) 0.01
Body fat% 13.3 ± 7.3 (<0.01) 5.7 ± 4.9 (<0.01) <0.01 6.1 ± 4.9 (<0.01) 10.8 ± 8.0 (<0.01) 0.04 7.9 ± 6.5 (<0.01) 7.2 ± 6.4 (<0.01) NS 10.0 ± 6.3 (<0.01) 5.2 ± 5.7 (<0.01) 0.02

Android FM 32.5 ± 16.8 (<0.01) 18.5 ± 8.3 (<0.01) <0.01 19.4 ± 11.3 (<0.01) 27.3 ± 13.2 (<0.01) 0.07 22.4 ± 12.7 (<0.01) 21.3 ± 12.2 (<0.01) NS 27.4 ± 13.5 (<0.01) 16.6 ± 8.4 (<0.01) <0.01
AndroidFFM 12.6 ± 10.0 (<0.01) 7.6 ± 5.4 (<0.01) 0.07 9.3 ± 7.5 (<0.01) 8.0 ± 6.0 (<0.01) NS 9.4 ± 7.0 (<0.01) 7.9 ± 7.2 (<0.01) NS 11.5 ± 7.8 (<0.01) 6.2 ± 5.0 (<0.01) 0.02
AndroidFat% 12.2 ± 12.4 (0.02) 5.5 ± 4.8 (<0.01) 0.02 5.3 ± 7.1 (<0.01) 10.8 ± 8.2 (< 0.01) 0.05 6.7 ± 8.3 (<0.01) 8.0 ± 7.0 (<0.01) NS 8.4 ± 10.1 (<0.01) 5.9 ± 4.4 (<0.01) NS
Gynoid FM 23.2 ± 10.7 (<0.01) 14.2 ± 7.1 (<0.01) <0.01 15.9 ± 9.1 (<0.01) 17.5 ± 8.9 (<0.01) NS 17.2 ± 9.1 (<0.01) 15.1 ± 8.7 (<0.01) NS 21.8 ± 8.1 (<0.01) 11.1 ± 6.1 (<0.01) <0.01

Gynoid FFM 10.0 ± 7.4 (<0.01) 6.8 ± 5.5 (<0.01) NS 8.0 ± 6.6 (<0.01) 6.9 ± 4.9 (<0.01) NS 8.5 ± 6.1 (<0.01) 6.0 ± 5.8 (<0.01) NS 9.4 ± 6.0 (<0.01) 5.9 ± 5.7 (<0.01) 0.08
Gynoid Fat% −1.08 ± 5.16 (NS) 0.3±5.2 (NS) NS 0.9 ± 4.5 (NS) −2.1 ± 5.9 (NS) NS −0.3 ± 5.7 (NS) 0.2 ± 4.1 (NS) NS 0.6 ± 4.3 (NS) −0.7 ± 5.9 (NS) NS

AG 13.1 ± 11.9 (<0.01) 5.0 ± 7.5 (<0.01) 0.02 4.3 ± 7.9 (0.02) 12.3 ± 9.9 (<0.01) 0.01 6.6 ± 10.2 (<0.01) 7.7 ± 7.7 (<0.01) NS 7.7 ± 11.3 (0.01) 6.3±7.0 (<0.01) NS
A1C 6.1 ± 8.6 (0.08) 4.7 ± 8.4 (<0.01) NS 4.6 ± 8.1 (0.01) 5.9 ± 9.2 (0.04) NS 5.4 ± 9.3(0.01) 4.4 ± 6.7 (0.04) NS 6.5 ± 9.0 (<0.01) 3.2 ± 7.5 (0.07) NS

Systolic BP 8.9 ± 9.1 (0.02) 8.2 ± 11.2 (<0.01) NS 7.9 ± 9.8 (<0.01) 9.2 ± 12.3 (0.03) NS 10.0±10.6 (<0.01) 5.7 ± 10.4 (0.07) NS 9.1 ± 10.6 (<0.01) 7.7 ± 10.8 (<0.01) NS
Diastolic BP 7.9 ± 10.5 (0.05) 10.5 ± 10.6 (<0.01) NS 10.6 ± 9.2 (< 0.01) 8.3 ± 12.9 (0.05) NS 10.2±10.0 (<0.01) 9.3 ± 11.7 (0.02) NS 9.6 ± 10.7 (<0.01) 10.0 ± 10.7 (<0.01) NS
Heart rate 11.0 ± 14.1 (0.06) −0.3 ± 14.6 (NS) 0.05 3.9 ± 14.9 (NS) 0.1 ± 16.1 (NS) NS 1.3 ± 13.3 (NS) 4.8 ± 18.3 (NS) NS 6.5 ± 15.1 (0.08) 1.1 ± 14.6 (NS) NS

Percent change data from baseline are shown as mean ± SD; positive values indicate decrease and negative values indicate increase from baseline to Week 12; p ≤ 0.05 (significant) and
p = 0.06–0.08 (trend) shown, the rest noted as NS (not-significant and no trend). BMI, body mass index; FM, fat mass; FFM, fat free mass; AG, android to gynoid fat ratio; BP, blood pressure;
A1C, percentage glycated hemoglobin; HI, high; LO, low; res, response.
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3.4. Response Variability in Anthropometric and Metabolic Outcomes

Influence of sex: Males experienced an overall higher weight-loss than females as reflected by
greater decrease in: BW and BMI (both, 12.9% versus 9%, p = 0.031), total fat mass (24.1% versus 13.9%,
p = 0.001), BF% (13.3% versus 5.7%, p = 0.001), android fat mass (32.47% versus 18.5%, p = 0.002), gynoid
fat mass (23.2% versus 14.2%, p = 0.007), AG (13.1% versus 5%, p = 0.02), and heart rate (11% decrease
versus a small increase, p = 0.05) (Tables 3 and 4). Although the sample size for males was smaller in the
study, higher weight-loss in males than females align with previous reports [56,57]. Of note, a previous
study reported that men are less likely than women to participate in retail weight-loss programs [30].

Response variability not explained by anthropometric characteristics: Exactly half of the
participants experienced a higher degree of weight and fat loss than the rest at Week 12—an average
reduction of 13.2% (14.5 kg) versus 6.8% (5.9 kg) of baseline BW; this corresponded to an average
10% versus 5.2% lower BF% (both, p < 0.05) at Week 12 than baseline in HIres and LOres, respectively.
In addition, HIres had a greater (6.5%, p = 0.005) reduction in A1C than LOres (3.2%, p = 0.072) at
Week 12 (Table 4). However, with the exception of a higher starting BW in HIres (p = 0.003), the two
response-groups had similar age, body-composition types (BF% and AG), A1C, blood pressures, and
heart rates at baseline (all, p > 0.05, Table 2). Notably, changes in energy intake over the 12-week period
were similar between the two response groups (Table 1).

3.5. OTU Richness May Influence Weight-Loss Response

The number of sequences and total number of OTUs after independent filtering were ~9.8 million and
1133, respectively. The most abundant microbial phyla at baseline were Firmicutes (68.6%), Bacteroidetes
(23.7%), Actinobacteria (4.04%), Proteobacteria (1.79%), Verrucomicrobia (1.36%), Euryarchaeota
(0.26%), Tenericutes (0.13%) and Cyanobacteria (0.09%). The most abundant microbial families were
Lachnospiraceae (28.4%), Ruminococcaceae (26.5%), Bacteroidaceae (17.1%), Coriobacteriaceae (2.25%),
Erysipelotrichaceae (2.12%), Rikenellaceae (2.04%), and Porphyromonadaceae (1.67%).

Mean OTU richness increased from 512 at baseline to 543 at Week 12 in ALL (p = 0.017) (Figure 3).
The two groups who lost most weight, i.e., most responsive to weight-loss, started with significantly
higher OTU richness at baseline—HIres (551) and males (567)—than LOres (473, p = 0.02) and females
(493, p = 0.03), respectively. Post weight-loss, the richness in the HIres (566) and males (556) remained
more or less unchanged compared to large increases in LOres (521) and females (539), respectively.
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Four response groups were similar in age (Table 2). The observations supports a previous report
that a greater existing alpha diversity predicts an increased resistance to further diversification of the
microbiome [58]. Shannon diversity ranged from 4.09 to 4.15 across all samples and did not differ
significantly between sub-groups or from baseline to Week 12.
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3.6. Changes in Beta Diversity

Samples from same subject clustered together with strong inter-individual differences. Abundance
of Firmicutes (p = 0.052) and Actinobacteria (p = 0.03) decreased while that of Tenericutes (p = 0.06)
and Euryarchaeota (p = 0.05) as well as that of family Porphyromonadaceae (p = 0.00011) increased at
Week 12, in ALL. PERMANOVA of distance matrices showed general association of beta diversity
with age, heart rate, total fat mass, BF%, android fat mass and android fat% (all p < 0.05), indicating
contribution of these factors to the overall microbiome differences among individuals. These relations
did not change from baseline to Week 12 and, hence, were likely not influenced by weight-loss or the
calorie-restricted diet. In ALL, Turicibacter sp. (r = −0.55, p = 0.001) and Christensenella sp. (r = −0.61,
p = 0.012) negatively correlated with BF% at baseline but not at Week 12. Christensenella minuta—the
first identified species in this genus—was previously associated with healthy, low-BMI individuals
and short chain fatty acid production in previous studies from our and other groups [59,60].

3.7. Microbiome Differences in Response Groups

Prevotella copri increased in HIres but decreased in LOres from baseline to Week 12 (both padj < 0.014).
Two OTUs of Ruminococcus were differentially abundant between HIres and LOres groups at baseline
only (both, padj < 0.005, Table 5). One OTU of Akkermansia muciniphila showed more than 10-fold higher
abundance in LOres compared to HIres consistently at baseline and at Week 12 (both, padj < 0.003).
In addition, an OTU of Bacteriodes eggerthi showed over 50-fold higher abundance at baseline in HIres

than LOres (padj = 0.005) and associated with weight- and BMI-change in HIres (r = 0.60, p = 0.008) but
not in LOres. Abundance of Bacteriodes plebius and Eubacterium biforme were consistently lower in HIres
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and males at baseline (all, padj ≤ 0.03). Interestingly, unlike various differences in individual OTU-level
response between HIres and LOres, fewer distinctions were observed between males and females over
the 12-week period (Tables 5 and 6). The data from HIres and LOres show potential contribution of
microbiome differences to weight-loss variations. However, sex may influence weight-loss in a manner
that may or may not be linked to microbiome differences.

Table 5. Differential microbial abundance related to weight-loss.

Operational Taxonomic Units (OTU) Log2 Fold Change (Standard Error) Adjusted p

(A) OTU change in ALL from baseline to Week 12
* +ve value denotes increase while –ve value denotes decrease at Week 12

Parabacteroides distasonis 1.185 (0.25) <0.001
Prevotella 97otu8549 3.76 (0.93) 0.010

(B) TU change in High-response group from baseline to Week 12 *

Coprococcus 97otu39504 3.55 (1.00) 0.04
Prevotella copri 5.60(1.02) <0.001

Prevotella 97otu94784 5.24 (0.99) <0.001

(C) OTU change in Low-response group from baseline to Week 12 *

Bacteroides eggerthii 9.17 (2.12) 0.002
Prevotella copri −3.52 (0.94) 0.014

Ruminococcus 97otu96826 4.97 (0.99) <0.001
Ruminococcus 97otu31137 5.91 (1.00) <0.001

(D) OTU differences between High and Low-response groups at baseline
** +ve value denotes higher abundance in HI group while −ve value denotes higher abundance in LO group

Acidaminococcus unclassified 4.85 (1.48) 0.030
Akkermansia muciniphila −4.11 (0.85) <0.001

Bacteroides eggerthii 5.72 (1.47) 0.005
Bacteroides plebeius −3.20 (0.97) 0.030
Dorea unclassified −2.20 (0.67) 0.030

Eubacterium biforme −3.73 (0.99) 0.008

(E) OTU differences between High and Low-response groups at Week 12 **

Akkermansia muciniphila −3.74 (0.88) 0.003
Bacteroides uniformis −2.59 (0.80) 0.030
Coprococcus eutactus 4.11 (1.04) 0.004

Parabacteroides 97otu73285 5.18 (1.21) 0.003
Prevotella 97otu94784 3.56 (1.02) 0.021

Data show relative abundance of selected bacterial species in each category. Adjusted p ≤0.05 were considered
significant after false discovery rate correction.

3.8. Microbiome Associations in Age-Groups

Associations observed throughout the study: Although age differences did not appear to influence
weight-loss response, differential age-specific microbial associations were observed. OTUs belonging
to Prevotella, and Paraprevotella genera as well as to species of Bacteriodes plebeius and Eubacterium biforme
showed higher relative abundance in YA than OA at both time points indicating potential age-related
association (all, padj ≤ 0.04, Table 6). Prevotella (r = −0.53, p = 0.03 at baseline, and r = −0.63, p = 0.01 at
Week 12) and Eubacterium biforme (r = −0.54, p = 0.069 at baseline and Week 12) had inverse correlations
with android fat% in OA (Table 7). Coprobacillus positively correlated with AG (r = 0.54, p = 0.031),
WH (r = 0.70, p = 0.002) in OA.
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Table 6. Differential microbial abundance related to age.

Baseline Differences between Age Groups

Operational Taxonomic Unit (OTU) Log2 Fold change (SE) Adjusted p

Anaerostipes 97otu18915 −3.51 (0.99) 0.017
Bacteroides eggerthii −4.78 (1.25) 0.009
Bacteroides plebeius −4.84 (1.18) 0.005
Eubacterium biforme −5.90 (1.06) <0.001

Odoribacter unclassified 5.03 (1.33) 0.009
Parabacteroides distasonis −1.91 (0.60) 0.035
Paraprevotella 97otu964 −4.58 (1.37) 0.025

Prevotella −4.03 (1.17) 0.019
Ruminococcus 97otu31137 −4.30 (1.05) 0.005

Week-12 Differences between Age Groups
Acidaminococcus unclassified −4.49 (1.31) 0.024

Bacteroides fragilis −3.24 (0.93) 0.022
Bacteroides plebeius −4.60 (1.30) 0.018

Coprobacillus 2.02 (0.70) 0.059
Coprococcus eutactus 2.47 (0.77) 0.029
Eubacterium biforme −3.30 (1.01) 0.028

Lachnospira −1.77 (0.47) 0.013
Odoribacter unclassified 5.91 (1.14) <0.001
Oscillospira 97otu16206 1.52 (0.47) 0.028
Oscillospira 97otu71987 2.10 (0.67) 0.040

Paraprevotella unclassified −4.92 (1.05) <0.001
Paraprevotella 97otu964 −4.34 (1.17) 0.011

Prevotella −3.65 (1.21) 0.049
Roseburia −1.92 (0.64) 0.050

Sutterella 97otu3927 −4.63 (1.14) 0.004

Data show relative abundance of bacterial species in each category; positive values denote higher abundance in
older adults, while negative values denote higher abundance in younger adults. Adjusted p ≤ 0.05 were considered
significant after false discovery rate correction.

Table 7. Correlations among bacteria and participant characteristics.

Groups Pearson’s Coefficient (r)

ALL Body fat%: Turicibacter (b, r = −0.55, p = 0.001), Christensenella (b, r = −0.61, p = 0.01)
Weight-loss (change between Week 0 and 12): *Bacteroides eggerthii (r = 0.54, p = 0.0007)

High-response group Weight-loss (change between Week 0 and 12): *Bacteroides eggerthii (r = 0.60, p = 0.008)

Older Adults

Glycated hemoglobin: Anaerotruncus (pd, r = −0.61, p = 0.01), Parabacteroides distasonis
(b, r = −0.76, p = 0.01) Body fat%: Christensenella (b, r = −0.76, p = 0.01)
Android fat%: Dorea formicigenerans (pd, r = −0.62, p = 0.01), Prevotella (pd, r = −0.63,
p = 0.01; b, r = −0.53, p = 0.03), Eubacterium biforme (pd, r = −0.54, p = 0.069; b, r = −0.54,
p = 0.069), Anaerotruncus (b, r = −0.50, p = 0.048)

Young Adults Body fat%: Turicibacter (b, r = −0.66, p = 0.002), Ruminococcus torques (b, r = −0.52,
p = 0.02), Anaerostipes (pd, r = −0.59, p = 0.03)

r cut-off ≥0.5, data for p ≤ 0.05 are shown only. Positive values indicate inverse correlation. pd, Week 12; b, baseline;
* correlation was also observed for BMI.

Time-point specific observation: At baseline, Christensenella sp. negatively correlated with BF%
(r = -0.76, p = 0.011), Parabacteroides distasonis with A1C (r = −0.55, p = 0.027), and Prevotella (r = −0.63,
p = 0.009) and Anaerotruncus (r = −0.50, p = 0.048) with android fat%, in OA. On the other hand,
Lactobacillus (r = 0.67, p = 0.001) and Bifidobacterium (r = 0.51, p = 0.022) associated with BMI in YA.
Species of Lactobacillus and Bifidobacterium are used as probiotics and consumed for health promotion,
although the evidence on their effect on weight-loss has been conflicting [61,62]. Turicibacter showed
an inverse association with BF% (r = −0.66, p = 0.002) and gynoid fat mass (r = 0.51, p = 0.026) and
Ruminococcus torques with BF%(r = −0.52, p = 0.019) in YA (Table 7). At Week 12, Dorea formicigenerans
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negatively correlated with AG in OA (r = −0.62, p = 0.01). In YA, a species of Anaerostipes showed a
negative correlation with BMI (r = −0.51, p = 0.062), BF% (r = −0.59, p = 0.026), total fat mass (r = −0.58,
p = 0.03), and gynoid fat mass (r = −0.54, p = 0.046).

3.9. Predicted Metabolic Functions

Functional inference of the metagenomic shifts between baseline and Week 12 was carried
out [46]. The Piphillin-generated hits against KEGG Orthologs (KO) abundance data showed potential
modulation of 297 functional pathways based on gene content predictions for protein-coding genes.
Several pathways showed subtle but statistically significant changes in KO abundance at Week 12
in ALL (Table 8). This included lower KO abundance for starch and sucrose metabolism as well
as primary and secondary bile acids (all, p < 0.05). Notably, participants consumed fewer dietary
carbohydrates at Week 12 compared to baseline (Table 1).

Table 8. Piphillin functional interpretation from 16S data.

Name of Pathways from KEGG Database Baseline %
Mean

Week12 %
Mean p, Change

path:map01100 Metabolic pathways 16.21 16.31 0.024
path:map01120 Microbial metabolism in diverse environments 4.54 4.62 0.065

path:map02010 ABC transporters 2.82 2.63 0.005
path:map01200 Carbon metabolism 2.58 2.63 0.004

path:map02024 Quorum sensing 1.55 1.47 0.007
path:map00500 Starch and sucrose metabolism 1.32 1.26 0.001

path:map00010 Glycolysis/Gluconeogenesis 1.19 1.21 0.052
path:map00620 Pyruvate metabolism 0.93 0.97 <0.001

path:map00190 Oxidative phosphorylation 0.84 0.88 0.002

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, and the experimental conclusions that can be drawn.

4. Discussion

National guidelines for weight-loss and chronic disease prevention recognize that referral outside
of the clinical setting to weight-loss programs, including retail programs, is needed for effective weight
management and improved public health [24]. However, reports of client experience in terms of
weight-loss outcomes in commercial real-life settings are relatively scarce. As obesity rates continue to
rise, it is critical to dedicate research into factors relating to effectiveness of such programs. This study is
among the first to present a detailed evaluation of gut microbiota features in the context of weight-loss
response-outcome within a commercial weight-management program. Simultaneous evaluation of the
gut microbiota and an extensive array of body composition parameters helped assess the relationship
of these outcomes with weight-change response in these participants. The main observations that
emerged are: (1) All but one participant achieved significant weight-loss over 12 weeks. However, the
extent of weight-loss was non-uniform; half of them lost more than twice as much body weight as the
rest despite a similar level of energy restriction and same formula diet between the response groups.
Individuals with higher response had higher OTU richness (alpha diversity measure) and taxa level
differences (beta diversity measures) compared to the low response individuals. The results indicate
that differences in the gut microbiota of participants may relate to the response to weight-management
interventions. (2) A1C associated with fat mass and was attenuated in the high-response group but
not in the low-response group. It is possible that a larger weight-loss (>10% of initial weight in this
cohort) may be necessary when a significant A1C reduction is desired such as in type 2 diabetics.
Ironically, losing weight is particularly challenging for individuals with type 2 diabetes [63]. (3) Aging is
associated with metabolic alterations that can lead to excess weight gain and slower weight-loss [64,65].
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Thus, we hypothesized that participant’s age may influence weight-loss response. However, we did
not observe a differential weight-change between young and older adults.

Adherence of participants is one of the many factors that may contribute to the impact of a
program on community health and fitness. A low initial weight-loss may reduce motivation to adhere
in low-responders and can lead to up to 27% reported dropout rate by end of first four weeks [29,66].
The observed extent of variability in weight-loss response in as many as half of our participants even
after 12 weeks was striking from that context. As a next step, our results indicate a potential relationship
between baseline gut microbiota and the variability in weight-loss response. Educating incumbent
program participants regarding potential response-variability due to their own baseline gut features may
help set realistic expectations and improve adherence. Furthermore, observational research such as this
contributes to the groundwork needed for mechanistic research on how to precisely predict response-level
in patients based on their gut signature. We anticipate that, with increased application of microbiome
research knowledge in practice, routine metagenomics profiling in retail participants would be logical
in the future. On a side note, the high cost of retail programs could also lead to low-adherence [24].
A third of the recruited participants chose to discontinue the retail program and were dropped from the
study. Common reasons for quitting were: (i) high cost of proprietary food items; and (ii) dislike for
low-calorie formula diet. In contrast, reasons to continue were: (i) convenience of ready-to-eat foods; and
(ii) reinforcement through personalized coaching. While quantitative assessments of these responses
were beyond the scope of this research, they align with a prior report of even higher dropout (58%)
from another well-established commercial program due to costs and other barriers [24,29]. Therefore,
validation of strategies to facilitate adherence must be a priority.

The presented metagenomics observations support the increasingly recognized contribution of
the gut microbiome toward human health, metabolism, and treatment response [7,67]. B. eggerthii was
shown to correlate with body fat and inflammation [68,69]. This corroborates with our observation of
higher abundance of this species in the high-response individuals who had higher baseline android fat.
However, we also observed a hitherto unknown direct association of B. eggerthii with weight-reduction
selectively in high-responders. Whether higher abundance of this species on the one hand indicates
increased body fat, but on the other hand enhances responsiveness to energy-reduction warrants
follow-up research. Further, Christensenella minuta has been linked with healthy body composition
and Turicibacter with reduction in high-fat diet induced inflammation [59,60,69,70]. Our data showing
negative correlation of Christensenella and Turicibacter with body-fat while undergoing weight-loss
support these prior observations.

A favorable role of Prevotella abundance on weight-loss, especially in the context of a high fiber
diet, has been reported [71]. We observed an inverse association of the Prevotella genus with android fat
post weight-loss in older individuals, and an increased abundance of Prevotella copri in high-response
group. Our results also indicate an overall metabolic shift post weight-loss that included changes
in carbohydrate metabolism. More recently, it was proposed that Prevotella enterotype patients with
genetically low starch digestion capability may produce higher levels of SCFA that contributes to
greater weight-loss [72]. The concept of microbial enterotypes attempts to simplify patient stratification
based on complex gut signature, although consensus is lacking among researchers regarding the
extent of its usefulness [73–76]. Nevertheless, our observations along with prior evidence direct to the
possibility that SCFA-producing Prevotella spp. may at least partially drive the metabolic shift needed
for weight-loss. Furthermore, for additional insights on bacteria derived metabolites (e.g., SCFAs)
associated with weight-loss response, fecal metabolomics profiling may be considered in the future.

Dao et al. reported association of A. muciniphila with a healthier metabolic status in calorie-restricted
overweight and obese adults [18]. We observed a higher abundance of this species in low responders
who had lower BMI than high responders. A lower BMI suggests a healthier metabolic status. However,
Dao et al. reported no difference in weight-loss between high and low baseline A. muciniphila groups.
Another trial reported no reduction in visceral fat and BMI after three months of A. muciniphila
supplementation [77]. Therefore, it is possible that the observed differential A. muciniphila levels in
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our response groups is more indicative of the differences in their metabolic status than the differential
response to weight-loss. A larger body of independent research would help determine the precise role
of A. muciniphila in weight-loss versus maintenance of healthier metabolism.

The study is not without limitations: (a) This is not an intervention/mechanistic study and does
not establish whether the observed relationships are causal or consequential in nature. However,
being among the first human studies presenting the relationship of the gut microbiome with
weight-loss response within a real-life retail program setting, this exploratory research contributes to
the groundwork needed for larger observational as well as mechanistic research. (b) Our observational
and small study cohort, although adequate from statistical perspective, was racially homogeneous.
It mostly represented Caucasians owing to the geographical location of the study site. The findings
may not directly apply to other races as host-genetics may influence microbiome characteristics [78].
(c) Species in the mucus layer (e.g., A. muciniphila) differ from those in the intestinal lumen. Stool
samples—a practical and non-invasive way to assess gut microbiota in human subjects—represent more
luminal species and may not fully reflect the entire gut microbiota [79]. (d) Since the retail program has
everyone undergoing energy restriction, an eucaloric control arm was not feasible. However, we argue
that the response sub-groups consumed same diet and underwent similar level of calorie-restriction;
therefore, differences in weight-loss outcomes are likely contributed by client-features such as the gut
microbiota profile. Furthermore, we believe that understanding real-life outcomes despite logistical
challenges has its merits.

5. Conclusions

With the obesity epidemic showing no sign of decline, it is increasingly recognized that retail
weight-management programs can play important role in mitigation efforts. We examined the extent of
weight-loss variation in response to planned energy-restriction among participants from a commercial
program and if such variability is related to participant characteristics, including the profile of their
gut microbiota. Although subtle, clear differences in gut microbiome signature existed between the
weight-loss response groups. Our results suggest contribution of the gastrointestinal microbiota as well
as sex and body composition differences toward differential weight-reduction within a retail setting.
Additional research—providing independent validation in different cohorts as well as exploring how
such knowledge may help customize improved weight-loss approaches—will be key.
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