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A B S T R A C T

This study was designed to investigate the toxic effects of benzo (a) pyrene (BaP) in the lungs. Mice were 
repeatedly treated orally with BaP (50 mg/kg body weight, twice a week for four weeks) to induce a tumour. 
After 4 months of BaP administration, tumours were visible beneath the skin. The histopathological section of the 
lungs shows congestion of pulmonary blood vessels, alveolar hyperplasia, and concurrent epithelial hyperplasia 
with infiltrates of inflammatory cells also seen. Thereafter, a single-cell suspension of lung tissues was stained 
with fluorescently conjugated antibodies for the demarcation of alveolar epithelial (anti-mouse CD74 and 
podoplanin) and macrophage (F4/80 and CD11b) cells and measured by flow cytometry. The expression of 
antioxidant genes was assessed by qRT–PCR. The number of alveolar epithelial cells 1 (AEC1) increased, but the 
number of alveolar epithelial cells 2 (AEC2) and transitional alveolar epithelial cells (TAEC) was significantly 
decreased in tumour-bearing mice. The proportion of CD11b+ alveolar macrophages (AM) and interstitial 
macrophages (IM) was increased, but the proportion of F4/80+ AM cells was reduced. The BaP administration 
significantly increased the ROS production in alveolar cells. The relative expression levels of antioxidant genes 
(SOD1, catalase, GPX1, and HIF-1α) were increased, but NRF2 expression was decreased in BaP-treated alveolar 
cells. The expression of anti-inflammatory (NF-κB) was also significantly increased. In conclusion, BaP exposure 
induced an inflammatory response, altered alveolar epithelial cell and macrophage diversity, and increased 
antioxidant responses in the lungs.

1. Introduction

The most common malignant tumour with a high fatality rate is lung 
cancer. The main causes of lung cancer are tobacco inhalation, chronic 
inflammation, and oxidative stress. It is becoming more common glob-
ally, with an annual increase of 0.5 %. In developed countries, men are 
more susceptible to lung cancer, mostly because of smoking [1]. Poly-
cyclic aromatic hydrocarbons (PAHs), which are among the more than 
60 carcinogens in tobacco smoke, are critical in the development of lung 
cancer [2–4]. Among PAHs, benzo (a) pyrene (BaP) is one of the most 
potent carcinogens that cause the development of lung cancer [5]. BaP is 
metabolically activated into an epoxide derivative, which reacts with 

DNA and is combined to form a DNA adduct that induces carcinogenesis 
[6–8]. It leads to oxidative damage to DNA by inducing reactive oxygen 
species (ROS) [9].

The initiation of a tumour stimulates immune responses within the 
lungs. The defensive cellular milieu in the lungs includes neutrophils, 
dendritic cells, alveolar epithelial cells (AECs), and alveolar macro-
phages (AMs). The activated neutrophil secretes a variety of pro- 
inflammatory mediators, which help in the killing and removal of 
pathogens [10]. The AMs survive longer and replenish 40 % in a year 
[11]. AMs represent the first line of defence and are phagocytic and 
antigen-presenting cells that remove cellular debris and apoptotic cells 
and elicit immune responses. They exhibit structural and functional 
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plasticity in various diseases and function as immune regulators by 
secreting cytokines [12]. Macrophages can be classified into two main 
categories: M1 macrophages that are typically activated by IFN-γ and 
M2 cells that are alternatively triggered by IL-4. In contrast to M2 
macrophages, which are both pro- and anti-inflammatory, M1 macro-
phages promote inflammation [13]. AMs are closely associated with 
AECs and dendritic cells and communicate with the AECs to initiate 
immunosuppression in inflammatory conditions [14]. The alveolar 
epithelium serves two important functions: it acts as a barrier and pro-
duces pulmonary surfactant. The AECs also secrete a range of mediators 
in response to pro-inflammatory agent stimulation [15]. The AECs are 
numerous, line the pulmonary airways and alveoli, and serve as a 
physical barrier to protect against respiratory infections. Two types of 
AECs are present: AEC1 and AEC2. About 95 % of the alveolar surface 
area is covered by the AEC1, which are terminally differentiated squa-
mous epithelial cells [16]. The AEC2 covers about 4 % of the alveolar 
surface and helps in the maintenance of alveolar surface tension and 
immune regulation [17].

Multiple studies have delved into unraveling the immunosuppressive 
effects of BaP [18,19]. Despite the well-known cellular composition of 
the lungs, a mouse model of cancer shows a distinct immune cell 
composition in the tumour microenvironment [20]. The role of AECs 
and AMS in tumorigenic conditions has not been elucidated yet. The 
current study aims to elucidate the diversity of AECs and AMS in 
tumorigenic conditions by examining the cellular and molecular 
changes in pulmonary cells induced by BaP. This will be achieved 
through a detailed analysis of the toxic effects of BaP using histopath-
ological, flow cytometric, and gene expression techniques.

2. Materials and methods

2.1. Animals

The present study was performed on Swiss male mice (6 in control 
and 7 in Bap-treated group) (10–12 weeks old, 30–35 g body weight). All 
research was done in accordance with the standards established by the 
Committee for the Purpose of Control and Supervision of Experiments on 
Animals (CPCSEA) and complied with the Animal Research: Reporting 
of In Vivo Experiments (ARRIVE) guidelines. The research was properly 
approved by the GKV Animal Ethics Committee (IAEC Code: GKV/AHF/ 
14/2020). The animals were housed in microbe-free, positive-pressure 
air-conditioned facilities at GKV with a 12-h light/dark cycle, temper-
atures of 25 ◦C, and 60 ± 10 % humidity. The animals were continuously 
provided with clean drinking water and mouse food. The animals were 
sacrificed via cervical dislocation. The experiment was planned to use 
the fewest possible mice, and every attempt was made to minimize pain.

2.2. Chemicals and antibodies

PE anti-mouse Podoplanin and Alexa Fluor 647 anti-mouse CD74 
(CLIP), FITC anti-mouse CD11b, APC anti-mouse F4/80, APC rat 
IgG2bκ, FITC rat IgG2bκ, PE rat IgG2bκ, were purchased from Bio Leg-
ends (San Diego, CA, USA). Purified rat anti-mouse CD16/CD32 was 

obtained from BD Biosciences (San Diego, CA, USA). ROS measurement 
dye 5 (and 6) chloromethyl-2′, 7′ dichlorodihydrofluorescein diacetate 
(CM-H2DCFDA) (D6883) was obtained from a molecular probe, Invi-
trogen (Eugene, OR, USA). Primescript™ First Strand cDNA Synthesis 
Kit, TB Green Premix Ex Taq, and PCR Master Mix were from Takara 
(Kyoto, Japan). Sigma-Aldrich (India) provided the benzo (a) pyrene, 
RPMI, HEPES, and TRI reagents. Fetal bovine serum (FBS) was pur-
chased from Himedia (South Logan, UT). All primers were commercially 
synthesised by Eurofins. Primer sequences have been shown in Table 1.

2.3. Development of mice model of cancer by BaP administration

Mice were treated with BaP dissolved in corn oil (50 mg/kg of body 
weight, twice a week for 4 weeks) via oral gavage; the control group 
received a vehicle alone [21–23] (Fig. 1). After 4 months, mice were 
dissected, lungs were excised, and single-cell suspensions were sus-
pended in RPMI media containing 10 % FBS. Total cell recovery was 
enumerated using the Neuberger haemocytometer.

2.4. Histopathological analysis

Lungs from the control and BaP-treated mice were embedded in 
paraffin after fixation in 10 % formalin. The tissue 5 µm) were isolated 
from the embedded paraffin block using a rotary microtome. The tissues 
were deparaffinised and stained with haematoxylin and eosin. The slides 
containing sections were dehydrated, cleared, and mounted. Alterations 
in sections were then studied using a light microscope. The lungs were 
histopathologically examined [24,25].

2.5. Flow cytometry analysis

None.

2.6. Analysis of ROS production

ROS level in alveolar cells was analysed by suspending the cells with 
5-(and 6-)-chloromethyl-2’7’-dichlorodihydrofluorescein diacetate 
(CM-H2DCFDA). The oxidative conversion of CM-H2DCFDA into its 
fluorescent product was quantified by flow cytometry [26–28].

2.7. Analysis of alveolar epithelial cells

Alveolar epithelial cells (AECs) were recognised based on the 
expression of CD74 and podoplanin surface markers. A single cell sus-
pension from the lungs was incubated with anti-CD16/32 antibody (Fc 
block, 1 µg/106 cells in 50 µL of PBS + 2 % FBS) for 10 min, followed by 
labelling with anti-mouse podoplanin and anti-mouse CD74 antibodies, 
and then analysed on a flow cytometer [29–31].

2.8. Demarcation of alveolar macrophages

For enumerating the different types of alveolar macrophages (AM), 
single-cell suspensions were incubated with anti-CD16/32 antibody (Fc 

Table 1 
Sequences of primers used in the experiment.

S.No. Gene Forward primer (5’→ 3’) Reverse primer (5’→ 3’)

1. SOD1 CCATCAGTATGGGGACAATACA GGTCTCCAACATGCCTCTCT
2. SOD2 GACCCATTGCAAGGAACAA GTAGTAAGCGTGCTCCCACAC
3. CAT CTCAGGTGCGGACATTCTATAC GACTCCATCCAGCGATGATTAC
4. Gpx1 GGAGAATGGCAAGAATGAAGA CCGCAGGAAGGTAAAGAG
5. HIF-1α GGTTCCAGCAGACCCAGTTA AGGCTCCTTGGATGAGCTTT
6. NRF2 CACATCCAGTCAGAAACCAGTGG GGAATGTCTGCGCCAAAAGCTG
7. NF-κB GAAATTCCTGATCCAGACAAAAAC ATCACTTCAATGGCCTCTGTGTAG
8. 18s rRNA ACTTTTGGGGCCTTCGTGTC GCCCAGAGACTCATTTCTTCTTG

The sequences of primers used are shown.
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block, 1 µg/106 cells in 50 µL of PBS + 2 % FBS) for 10 min. After 
staining with anti-mouse CD11bFITC and the F4/80 pan macrophage 
marker, cells were analysed on a flow cytometer [32,33].

A BD FACS Verse flow cytometer was used for all flow cytometric 
studies, and Facsuite software was used for analysis.

3. Reverse transcription and quantitative real-time PCR

3.1. RNA isolation and cDNA synthesis

Total RNA was extracted from 1 × 106 pulmonary cells by using 
Trizol reagent (Sigma). The RNA pellet was twice cleaned with 75 % 
ethanol, allowed to air dry, and then suspended in nuclease-free water. 
By analysing the absorbance at 260/280 and 260/230 nm wavelengths 
in a nanodrop spectrophotometer, the purity of the extracted RNA was 
determined. The RNA integrity was examined by running 5 µg of RNA on 
a 1.2 % formaldehyde agarose gel. 1 µg of RNA was used to make cDNA 
for RT-PCR [34–36].

3.2. Gene expression analysis using qPCR

The cDNA amplification was done by RT-qPCR. The expression levels 
of the antioxidant genes superoxide dismutase 1 (SOD1), superoxide 
dismutase 2 (SOD2), catalase (CAT), glutathione peroxidase 1 (GPX1), 
hypoxia-inducible factor 1α (HIF-1α), Nuclear factor erythroid 2-related 
factor 2 (NRF2), and anti-inflammatory nuclear factor kappa B (NF-κB) 
were analysed. mRNA levels were quantified by quantitative PCR (RT- 
qPCR) using Applied Biosystems QuantStudio 3, using SYBR green 
methods as per the manufacturer’s protocols [37–40]. Samples were 
analysed in triplicate and normalized to 18S rRNA expression using the 
2− ΔΔCt method [41].

3.3. Statistical analysis

Sigma Plot 10 software was used to statistically analyse the data. The 
mean ± standard error of the mean (SEM) is used to express all data. For 
each variable that was measured, a Student T-test was used to compare 
the significant difference between the BaP-treated and the control group 
(untreated). A p-value less than 0.05 was considered significant.

4. Results

BaP treatment induced inflammation inside the lungs. The repeated 
BaP administration leads to the development of tumour beneath the skin 
(Fig. 1B). The morphological and histopathological alterations in the 
lungs were studied in BaP-induced tumour-bearing mice. A normal lung 
architecture without alterations in bronchioles, blood vessels, alveolar 
sacs, alveoli, or pneumocytes was seen in control mice (Fig. 1C, panel a). 
BaP administration causes congestion of pulmonary blood vessels with 
hyperplastic epithelial cells (Fig. 1C, panel b). The alveolar hyperplasia 
with infiltrates of inflammatory cells is also seen (Fig. 1C, panel c). The 
histopathological section also shows acute concurrent epithelial hyper-
plasia as recognised by the thickening of smooth muscles around the 
bronchiole in BaP-treated lungs (Fig. 1C, panel d). Further, we have also 
analysed the changes in weight and total cell recovery from the lungs of 

BaP-treated mice. The results show that the mean lung weight was 
285 mg in control mice, which decreased to 218 mg after BaP treatment. 
A 24 % reduction in lung weight was observed (Fig. 1D). The results 
show that the mean cell recovery from the lungs also decreased from 
245.25 million to 66.83 million (Fig. 1E).

4.1. BaP-induced tumours altered the alveolar epithelial cell diversity

Three different populations of alveolar epithelial cells can be rec-
ognised based on podoplanin and CD74 expression. These include AEC1 
(podoplanin+), AEC2 (CD74+), and TAEC (podoplanin+CD74+). A 
representative flow cytometry histogram showing different types of 
epithelial cells is shown in Fig. 2. The data suggest that BaP adminis-
tration significantly altered the proportion of various types of epithelial 
cells inside the lung. As depicted by the histogram, AEC1 increased from 
0.18 % to 0.31 % after BaP administration. The proportion of AEC2 
decreased from 25.05 % to 14.83 %, while the proportion of TAEC 
decreased from 12.17 % to 8.91 % (Fig. 2A and B). The cumulative data 
show a 7.5-fold increment in AEC1, a 39 % decline in AEC2, and a 34 % 
reduction in TAEC in the tumour-bearing mice (Fig. 2, panels C–E).

4.2. BaP-induced tumours altered the alveolar macrophage diversity

The impacts of BaP on macrophage cells in the lungs were studied by 
staining the cells with the CD11b/F4/80 pan macrophage markers [30]. 
Three types of macrophage cells, i.e., alveolar macrophages 1 (CD11b+, 
AM1), interstitial macrophages (IM) (CD11b+F4/80+, IM), and alveolar 
macrophage 2 (F4/80+, AM2), were recognised (Fig. 3A and B). The 
representative histogram suggests that CD11b+ AMs and 
CD11b+F4/80+, IM were 2.44 % and 0.46 %, respectively in control 
mice, which increased to 16.25 % and 1.28 % in BaP-induced tumours. 
The proportion of AM2 was reduced from 11.61 % to 10.50 % after 
tumour induction. Overall, the cumulative data suggests AM1 and IM 
show 2.8- and 2.1-fold increments after induction of tumour, respec-
tively (Fig. 3, panels C and D). The AM2 cells were 38 % reduced in the 
BaP-induced tumour mice model (Fig. 3E).

4.3. BAP-induced ROS production in lungs

The changes in ROS production in BPA-treated alveolar cells are 
depicted in Fig. 4. BPA treatment induces the ROS level in alveolar cells. 
The representative histograms suggest that mean fluorescence intensity 
(MFI) of ROS production was 36,619 which is increased to 47,810 after 
BaP administration (Fig. 4 Panels A and B). The cumulative data show 
that ROS MFI was significantly increased (33 % more than control) in 
BaP-treated alveolar cells (Fig. 4C).

4.4. Changes in the relative expression of antioxidant genes

The relative expression of antioxidant genes (SOD1, SOD2, CAT, 
GPX1, HIF-1α, and NRF2) and anti-inflammatory (NF-κB) was analysed 
in BaP-treated lungs. The data suggests that the expression of antioxi-
dant genes was significantly increased. The relative expression levels of 
SOD1 (4.89 ± 0.04), CAT (7.69 ± 0.70), GPX1 (30.90 ± 4.95), and HIF- 
1α (1.38 ± 0.03) mRNA were significantly increased, but NRF2 

Fig. 1. BaP-induced tumour altered the lung’s histopathological architecture and reduced pulmonary cell recovery. Mice were treated with BaP (50 mg/kg 
of body weight) twice a week for 4 weeks. (A) The detailed experimental protocol is shown in the line diagram. (B) Representative tumour bearing mice and 
histopathology section of tumour is shown. (C) The sections were prepared using a microtome and stained with haematoxylin and eosin. Light micrographs of the 
lung sections from the control have been shown in panel a. Panels b to d show the histopathological alterations observed in BaP-treated groups. (D) Shown here are 
the changes in total lung weight in control and treated groups. (E) Single-cell suspensions of lungs were prepared, and total cells were counted with the help of 
haemocytometer. Total cell recovery has been shown here. (a) The blank triangle shows normal alveolar wall thickness; star indicates normal alveolar architecture; 
(b) black triangle represents congested pulmonary blood vessels, black arrow shows irregular papillae lined by hyperplastic epithelial cells; (c) the area in between 
brackets shows alveolar hyperplasia with infiltrates of inflammatory cells; (d) the black arrowhead represents epithelial hyperplasia with marked inflammatory cells 
aggregate around it. Data is represented as mean ± SEM. n = 6 in control and 7 in treated groups. **p < 0.005, ***p < 0.005, student’s t-test, magnification 10 ×, 
Scale bar 1 µm.
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expression was decreased (Fig. 5, panels A–F). BaP administration also 
significantly increased the NF-κB (2.86 ± 0.61) expression in alveolar 
cells (Fig. 5G).

5. Discussion

Lung cancer accounts for 20 % of all cancers and has a global death 
rate of 18.4 %. Patients with lung cancer had a 56 % 5-year survival 
rate, which falls to 5 % in malignant instances [42]. Generally, addicted 
smokers and ex-smokers are at great risk of contracting lung cancer since 
90 % of lung carcinogenesis is caused by tobacco smoke exposure [43]. 

Among more than 60 known carcinogens in tobacco smoke, PAHs are 
particularly important in the development of lung cancer [44]. In the 
current investigation, we looked at immunosuppression in lung cancer 
caused by the carcinogen BaP, which is considered a marker of the 
carcinogenic potency of PAHs by the WHO [45]. BaP-derived epoxide 
reacts with DNA to form an adduct that allows carcinogenesis to prog-
ress [46].

Firstly, we studied the alterations in lung morphology and histopa-
thology after the development of the tumour. The lungs in tumour- 
bearing mice were enlarged, turgescent, and appeared dusky red in 
colour. The lung’s histopathological observations represent normal 

Fig. 2. Alteration in alveolar epithelial cells. Mice were treated with BaP as described in the legend of Fig. 1. After induction of tumour, lungs were excised, and 
single-cell suspensions were prepared. Cells were stained with anti-mouse podoplanin and anti-mouse CD74 antibodies, followed by flow cytometric analysis. The 
flow cytometric dot-blots in panels A and B show the proportion of different types of epithelial cells in control and BaP-treated mice. The bar graphs in panels C–E 
show the cumulative proportion of AEC1, AEC2, and TAEC. Data is represented as mean ± SEM. n = 6 in control and 7 in treated group. *p < 0.05, student’s t-test.
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bronchioles, blood vessels, alveolar sacs, alveoli, and pneumocytes in 
control mice. The BaP administration causes cell injury and inflamma-
tion, which leads to concurrent epithelial hyperplasia. The inflamma-
tory mononuclear cell infiltration usually occurs in response to 
toxicants, necrosis, and pulmonary neoplasms [47]. The histopatho-
logical section also shows irregular papillae and congestion in pulmo-
nary vessels, which indicates an injury to the bronchi in BaP-treated 
mice [48]. The alveolar hyperplasia suggests abnormal proliferation of 

the terminal bronchiolar epithelium.
The decline in lung weight is due to a reduction in cell number and 

inflammation. Inflammatory responses and edema can also lead to 
enlarged lungs, and these conditions may involve increased organ size 
without a proportional increase in cell size and weight. A significant 
decrease in pulmonary cell recovery was observed in tumorigenic mice. 
Overall, histological and cytological studies show a series of alterations 
that occur over time and represent a morphological progression to 

Fig. 3. Alteration in alveolar macrophages. A single-cell suspension from BaP-treated lungs was stained with anti-mouse CD11bFITC and F4/80 APC, followed by 
flow cytometric analysis. The flow cytometric dot-blots in panels A and B show the proportion of different types of macrophages in control and BaP-treated mice. The 
bar graphs in panels C, D, and E show the cumulative changes in the proportion of AM1, IM and AM2 macrophages. Data is represented as mean ± SEM; n = 6 in 
control and 7 in treated groups. *p < 0.05, student’s t-test.
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bronchogenic cancer.
A well-characterised cellular system with more than 40 types of cells, 

including neutrophils, dendritic cells, AECs, and AMs, is present inside 
the lungs [49]. We estimated the heterogeneity of AECs by analysing the 
surface expression of podoplanin and the CD74 receptor. Our data show 
a marked change in the proportion of various AECs in tumorigenic lungs. 
AEC1 was significantly increased, while AEC2 and TAEC were signifi-
cantly reduced. AEC2 has been shown to regulate surfactant meta-
bolism, ion transport, immune defence, and lung injury repair within the 
lungs [50]. The AEC2 have the ability to self-renew and also serve as 
progenitors for the AEC1 cells. Since our histopathological observations 
suggest that BaP administration causes inflammation and lung injury, 
the AEC2 helps in the repair mechanism and declines accordingly. The 
TAEC represents intermediate cells between AEC1 and AEC2. The exact 
mechanism of TAEC is not clear; however, it may be possible that the 
proportion of these cells declined as these cells were transformed into 
AEC1 cells. Overall, the heterogeneity of AEC was altered in BaP-treated 
lungs.

The destruction of AECs triggers the macrophages to initiate an 

immune response [51]. We have studied the macrophage response based 
on CD11b/F4/80 staining. Based on the surface expression analysis, 
three different types of macrophages were recognised, i.e., AM1, 
CD11b+, IM CD11b+F4/80+, and AM2, F4/80+. In tumorigenic lungs, 
the proportions of AM1 and IM were significantly increased, while AM2 
cells were significantly decreased. CD11b, also known as integrin αM, is 
a component of the heterodimer integrin M2 (macrophage-1 antigen) 
and is one of the most effective molecular markers of the macrophage 
lineage [52]. CD11b is highly expressed in tumour-associated macro-
phages and is linked to chronic and acute lung inflammation [32]. AM1 
plays a crucial role in the immune response in the lungs. They are 
responsible for phagocytosis, antigen presentation, cytokine production, 
and continuously monitoring the lungs for pathogens and foreign sub-
stances. They play a complex role in tumor development and cancer 
progression in the lungs. The increased proportion of AM1 and IM that 
we have observed will suppress the adaptive immune response and 
promote tumour growth. The AMs release pro-inflammatory cytokines 
and inhibit tumour growth. Earlier research showed that AMs serve an 
important function in cancer metastasis and inhibit adaptive immune 

Fig. 4. BPA administration increased the ROS expression in alveolar cells. Mice were treated with BaP as shown in the legend of Fig. 1. After induction of tumour, 
lungs were excised, and single-cell suspensions were prepared. The ROS production in alveolar cells was analysed by CMH2DCFDA staining followed by flow 
cytometry. Panels A, and B represent ROS MFI level in control and BPA treated alveolar cells, respectively. The cumulative changes in ROS MFI level have been 
shown in panels C. Data is shown as mean ± SEM. n = 6 in control and 7 in treated group. **p < 0.005, student’s t-test.
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Fig. 5. The BaP administration increased the expression of antioxidant genes expression in alveolar cells. RNA was isolated from pulmonary cells by using 
Trizol (TRI) reagents. The first-strand cDNA was prepared by utilizing the First Strand cDNA Synthesis Kit and amplified by qRT-PCR. The RNA transcripts for 
different genes were measured by the SYBR Green method. Relative expression levels of antioxidant genes SOD1, SOD2, CAT, and GPX1 have been shown in panels A 
to D. Panels E to G depicts the changes in HIF-1α, NRF2and NF-κB expression. The mRNA levels were normalized to 18S rRNA levels using the 2-ΔΔCT methods. Data 
is represented as mean ± SEM of three independent experiments. *p < 0.05**p < 0.005, ***p < 0.0005, student’s t-test.
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responses [53]. AM2 are involved in the resolution of inflammation and 
the prevention of excessive immune response. Our results show a 38 % 
reduction in AM2 cells, which is correlated with earlier observations. It 
is reported that the decline in AM2 led to the increment of CD4+ T cells 
and the maturation of DC cells inside the lungs, which initiated an 
adaptive immune response [54]. Overall, the immunophenotyping data 
suggests that the proportion of AMs and AECs changed in the 
tumour-bearing mice.

It is reported that the tumour microenvironment and inflammation 
cause increased ROS production, which may have a deleterious impact 
on the lungs [55]. We have also observed increased ROS production in 
BaP treated alveolar cells. BaP administration can increase ROS pro-
duction via mitochondrial dysfunction by the impairment of the electron 
transport chain. This could be the possible reason for the induced 
inflammation in BaP-treated lungs. Earlier, it was also reported that BaP 
treatment causes mitochondrial dysfunction and induces the ROS pro-
duction in human lung cancer cells [56].

A pool of antioxidant enzymes is present in alveolar cells, which 
maintains redox balance. They help in neutralizing ROS and protect cells 
from oxidative damage. We analysed the changes in antioxidant (SOD1, 
SOD2, CAT, GPX1, HIF-1α, and NRF2) and anti-inflammatory nuclear 
factor kappa B (NF-κB) gene expression in tumour-bearing mice. SOD1, 
CAT, GPX1, and HIF-1α were significantly increased in the lungs of 
tumour-bearing mice. The observed increase in antioxidant gene 
expression may be part of the host’s defence against the inflammatory 
environment associated with the presence of tumours. It allows the cells 
to avoid apoptosis caused by the excessive production of ROS while 
maintaining the radicals that are required for cell proliferation and 
metastasis [57]. Further, the increase of these enzymes could lead to 
protection from oxidative damage and also help in the inhibition of 
tumour growth inside the lungs [58]. NRF2, a critical transcription 
factor regulating antioxidant defence mechanisms, is conversely 
downregulated in response to BaP treatment. Under normal conditions, 
NRF2 binds to antioxidant response elements (AREs) to promote the 
transcription of detoxifying and antioxidant enzymes, maintaining 
cellular homeostasis. However, BaP impairs NRF2 activity, leading to 
diminished antioxidant defenses and heightened susceptibility to 
oxidative damage [59]. Studies involving NRF2-deficient models have 
further demonstrated increased vulnerability to BaP-induced carcino-
genesis, underscoring the protective role of NRF2 in detoxifying harmful 
byproducts of BaP metabolism [60].

Additionally, NF-κB, a pivotal mediator of the inflammatory 
response, is also upregulated upon BaP exposure. BaP-induced ROS 
leads to the inhibition of IκB, an inhibitor of NF-κB, allowing the 
translocation of NF-κB to the nucleus, where it activates the transcrip-
tion of pro-inflammatory and immune-related genes. The simultaneous 
upregulation of antioxidant genes and NF-κB suggests that BaP exposure 
induces an inflammatory response coupled with survival pathways, 
potentially contributing to carcinogenesis and tissue damage, as 
observed in various BaP-exposure models [61,62]. Altogether, these 
findings highlight the intricate play between lung tumours and the 
host’s molecular defence mechanisms in the context of oxidative stress.

6. Conclusions

The study reveals that BaP administration leads to tumor develop-
ment, causing epithelial hyperplasia, pulmonary blood vessel conges-
tion, and inflammatory mononuclear cell infiltration. This 
microenvironment alters AMs and AECs diversity, leading to immuno-
suppression. The expression of antioxidant and anti-inflammatory genes 
was also significantly increased in the lungs of BaP-treated mice.
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