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EnC	� endothelial cell
EpC	� epithelial cell
FbC	� fibroblast cell
VV	� vaccinia virus
WR	� VV Western Reserve
IHD-J	� International Health Department-J
AcMNPV	� Autographa californica multiple 

nucleopolyhedrovirus
BmNPV	� Bombyx mori nucleopolyhedrovirus
ISKNV	� infectious spleen and kidney necrosis virus
SGIV	� Singapore grouper iridovirus
ASFV	� African swine fever virus
HHV	� Human herpesvirus
HSV	� herpes simplex virus type 1 or 2 (HSV-1 or 

HSV-2, also known as HHV-1 and HHV-2, 
respectively)

VZV	� varicella-zoster virus (or HHV-3)
EBV	� Epstein-Barr virus (or HHV-4)
CMV	� cytomegalovirus or human CMV (HCMV or 

HHV-5)
KSHV	� Kaposi’s sarcoma-associated HV (HHV-8)
VSV	� vesicular stomatitis virus
CAR	� coxsackie-adenovirus receptor
DSG2	� desmoglein-2
ESCRT	� endosomal sorting complexes required for 

transport
GAGs	� glycosaminoglycan
GD1a	� disialogangliotetraosylceramide
HLA	� human leukocyte antigen
HS	� heparan sulphate
HSPG	� heparan sulphate proteoglycans
HVEM	� herpesvirus entry mediator
IFN	� interferon
MHC	� major histocompatibility complex
PGs	� proteoglycans

Abstract  Viruses enter host cells via several mechanisms, 
including endocytosis, macropinocytosis, and phagocytosis. 
They can also fuse at the plasma membrane and can spread 
within the host via cell-to-cell fusion or syncytia. The mech-
anism used by a given viral strain depends on its external 
topology and proteome and the type of cell being entered. 
This comparative review discusses the cellular attachment 
receptors and entry pathways of dsDNA viruses belonging to 
the families Adenoviridae, Baculoviridae, Herpesviridae and 
nucleocytoplasmic large DNA viruses (NCLDVs) belong-
ing to the families Ascoviridae, Asfarviridae, Iridoviridae, 
Phycodnaviridae, and Poxviridae, and giant viruses belong-
ing to the families Mimiviridae and Marseilleviridae as well 
as the proposed families Pandoraviridae and Pithoviridae. 
Although these viruses have several common features (e.g., 
topology, replication and protein sequence similarities) they 
utilize different entry pathways to infect wide-range of hosts, 
including humans, other mammals, invertebrates, fish, pro-
tozoa and algae. Similarities and differences between the 
entry methods used by these virus families are highlighted, 
with particular emphasis on viral topology and proteins that 
mediate viral attachment and entry. Cell types that are fre-
quently used to study viral entry are also reviewed, along 
with other factors that affect virus-host cell interactions.
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dsDNA	� double-stranded DNA
CHO	� Chinese hamster ovary
DC	� dendritic cell
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PI3-K	� phosphatidylinositol 3-kinase
PILR-α	� paired immunoglobulin-like receptor alpha
PS	� phosphatidylserine
VCAM-1	� vascular cell adhesion molecule 1

Introduction

Viruses utilize several mechanisms to enter host cells. This 
review focuses on the relationships between the external 
topology of the virions and their entry mechanisms in dif-
ferent cell types, as well as the roles of cellular receptors and 
viral attachment factors. Ten viral families are discussed, 
including Adenoviridae, Baculoviridae, Herpesviridae, 
and nucleocytoplasmic large DNA viruses (NCLDVs). The 
NCLDVs include large and giant viruses characterized by 
their large virions and genomes, and can be classified into 
several distinct families: Ascoviridae, Asfarviridae, Iri-
doviridae, Mimiviridae, Marseilleviridae, Phycodnaviri-
dae and Poxviridae. They also include members of the pro-
posed families Pandoraviridae and Pithoviridae as well as 
the recently isolated molivirus and faustovirus [1–4]. They 
replicate completely or partially in the cytoplasm and are 
larger than other viruses. They may also have several com-
mon traits, including similarities in their protein sequences 
and topological features. Figure 1 shows the external topol-
ogy of each viral family. They might be evolutionary related 
and share a common ancestor [5, 6]. It has been proposed 
that the NCLDVs be classified into one order, named “Mega-
virales” [7], whereas, herpesviruses belong to the order Her-
pesvirales. Generally, mimiviruses and phycodnaviruses are 
closely related to pandoraviruses and moliviruses, whereas 
pithoviruses are related to marseilleviruses, iridoviruses and 
ascoviruses, and faustovirus are closely related to asfarvi-
ruses, [1–4, 8, 9].

Virus attachment and receptors

Viruses attach to proteins known as cellular receptors or 
attachment factors on the surface of the host cell [11, 12]. 
In addition, certain membrane lipids and glycans may be 
necessary for viral entry. These factors stabilize the virus 
on the cell surface and allow it to circumvent the cell’s bar-
riers to entry. High-affinity interactions between viral pro-
teins and cellular receptors drive conformational changes in 
the proteins’ structures that activate signaling cascades and 
destabilize the plasma membrane, leading to pore forma-
tion and internalization of the virus as shown in Figure 2a 
[13]. These interactions can be initiated by specific motifs or 
domains in both viral and host proteins. Notable viral protein 
motifs that facilitate entry by binding to cellular counterparts 
include the integrin-binding (RGD), endocytosis (PPxY and 

Yxx[FILV]), and clathrin endocytosis (PWxxW) motifs, 
where “x” denotes any residue [14]. It is worth noting that a 
receptor could be accompanied by an additional co-receptor 
that triggers a particular entry pathway or stabilizes the virus 
at plasma membrane.

General mechanisms of virus entry

Cells can internalize viruses by endocytosis, as reviewed 
elsewhere [11–13, 15–17] and depicted in Figure 2. Alter-
natively, the virus may fuse with the cell membrane. Several 
factors determine which entry mechanism will be active, 
including the cell type and the cellular receptors it displays. 
Aspects of the virus’ external topology, such as the presence 
of surface protrusions or glycoproteins, may also affect the 
entry process. Viruses enter host cells via one of three major 
pathways:

(A) Fusion: Viral proteins promote the fusion of the 
virion with the plasma membrane, which then form a pore, 
and the virion becomes uncoated. Its genomic cargo is then 
transferred into the cytoplasm [12, 13, 18–21]. The proteins 
involved in fusion, so-called fusogens, can be divided into 
three classes: (i) class I fusogens, which are dominated by 
α-helical coils; (ii) class II fusogens, which consist predomi-
nantly of β-sheets; and (iii) class III fusogens, which feature 
both secondary structure types.

(B) Cell-cell fusion: Some viruses such as vaccinia virus 
(VV) and herpes simplex virus (HSV) induce the expres-
sion of proteins on the surfaces of infected cells that attract 
uninfected cells and cause them to fuse with the infected 
cell at low pH values to form a multinuclear cell known as a 
syncytium [11, 13, 22, 23]. Syncytium formation represents 
a very efficient way for a virus to spread within a host: it 
circumvents the immune response and creates a good site of 
replication for a nuclear-replicating virus. It should be noted 
that syncytium formation is not always regarded as an entry 
mechanism per se.

(C) Endocytosis: Once the cell internalizes the virus, it 
is then delivered to an acidic pit, a so-called early endosome. 
The virus then may be transferred into a late endosome and 
then to a lysosome. Alternatively, due to the low pH value in 
the lumen of endosomes, the viral membrane can fuse with 
the endosomal membrane, releasing the viral genome into 
the cytoplasm [12]. After exiting from endosomes, some 
adenoviruses or poxviruses may use microtubules for trans-
port within the cytoplasm. Once in cytoplasm, some viruses 
move toward the nucleus to deliver their cargo inside the 
nucleus, whereas the NCLDVs usually remain in cytoplasm 
to initiate their replication cycle. Dynamin GTPase may have 
a key role in regulating most endocytic pathways. During 
virus entry, dynamin is deposited in the neck of the endo-
cytic pit toward the cytoplasm leading to the excision of 
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the pit [24, 25]. There are several major endocytosis-based 
pathways that viruses can use to enter cells and evade the 
host’s immune system. These pathways differ in terms of 
the types of particles involved and the molecules that are 
important in the process. The most important viral entry 
pathways are as follows:

(1)	 Phagocytosis (cell eating), which occurs in specialized 
mammalian cells (so-called professional phagocytes, 
e.g., dendritic cells and macrophages) that engulf large 
and essential particles. Viral entry by this pathway 
typically involves the formation of large extracellular 
projections, and the internalized virus is taken into a 
phagosome. Actin and RhoA are typically necessary 
for this process.

(2)	 Pinocytosis (cell drinking), which is the process by 
which cells take up solutes and fluids. Pinocytotic pro-
cesses can be further classified based on the membrane 
structures and types of molecules they are associated 
with. Macropinocytosis is a nonspecific process, and 
particles internalized by this route may not be essential 

for the cell. When it is exploited by viruses, interactions 
between viral proteins and cell receptors activate intra-
cellular signaling and actin rearrangements that form 
ruffles or filopodia on the external surface of the host 
cell. The ruffles then close up to form a vesicle known 
as a macropinosome, which carries the virus into the 
cytosol. Actin, Rho GTPases (Rac and Cdc42), PI3K, 
and Na+/H+ exchange are usually required for this 
pathway, and kinases are required to regulate macro-
pinosome formation and closure. Although dynamin 
might not be required for some viruses to enter via 
macropinocytosis, some strains of adenoviruses and 
poxviruses require dynamin to enter the cell.

(3)	 Clathrin-mediated endocytosis, which is the process 
by which the cell internalizes the virus in a clathrin-
rich flask-shaped invagination/cavity (vesicle) known 
as a clathrin-coated pit. The virus is then delivered into 
the cytoplasm via endosomes. Clathrin and cholesterol 
are required, and dynamin and transferrin are usually 
involved in pit formation.

Fig. 1   The different virion topologies of the 12 dsDNA large and giant virus families. Image adapted from ViralZone (http://viralzone.expasy.
org/) [10]. Schematic representation of the different shapes of adenovirus and mimivirus fibers

http://viralzone.expasy.org/
http://viralzone.expasy.org/
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(4)	 Caveolar/raft endocytosis, which is similar to clath-
rin-mediated endocytosis but involves pits containing 
caveolin-1 rather than clathrin. The internalized virus is 
delivered to the cytoplasm in cave-like bodies known as 
caveolae or caveosomes, whose internal pH is neutral.

(5)	 Endocytosis based on other routes. These pathways 
involve vesicles that contain neither clathrin nor cave-
olin. However, like the clathrin- and caveolin-based 
pathways, they generally require dynamin, cholesterol 
and/or lipids. Interestingly, lymphocytic choriomen-
ingitis virus uses a dynamin-, clathrin-, and caveolin-
independent route that is also independent of actin, 
lipid rafts, and the pH [26, 27].

Mechanisms of attachment and entry utilized 
by large and giant DNA viruses

 Members of all ten viral families covered in the review 
infect a wide range of potential hosts, including humans, 
other mammals, invertebrates, fish, protozoa, and algae, 
causing serious problems in public health, livestock farming, 
and aquaculture (Table 1). As suggested by this diversity of 
potential hosts, they can use many different mechanisms to 

enter host cells, and members of the same viral family may 
use very different mechanisms to enter a given host cell type. 
To ensure an efficient virus infection, a virus may utilize 
more than one mechanism to enter a given host cell.

Adenoviridae

Adenoviruses (Ad) are non-enveloped icosahedral viruses 
with diameters of 70-90 nm (Fig. 1) that can be divided into 
seven groups and 50+ serotypes. They harbor 30 to 40-kb 
linear dsDNA genomes encoding around 45 proteins, and 
they replicate in the nucleus. Their genomes encode fiber 
proteins with a conserved N-terminal tail, a shaft, and a 
globular knob domain. The lengths of these fibers are similar 
within a serotype, but Ad-F and Ad-G encode two fiber pro-
teins: short and long [28, 29]. The fibers bind to a wide range 
of cell receptors [30]; upon binding at the plasma membrane, 
the fibers become detached from the viral core and remain 
at the surface, while the core enters the cell [30–32]. The 
coxsackie-adenovirus receptor (CAR) is a functional recep-
tor for most Ad strains [33]; it is expressed in the tight junc-
tions in the epithelial cells of some human tissues (brain, 
heart and pancreas) and various tumor cells, but not in mice 
or primates [34, 35] (Table 2). The long viral fibers are flex-
ible enough to permit the fiber knob to interact with CAR, 

Fig. 2   Schematic representation of viral attachment and fusion (upper panel) and entry mechanisms (lower panel)
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bringing the penton base of the viral capsid into contact with 
integrins in the host cell membrane. Other cellular receptors 
targeted by adenoviruses include CD46, CD80, CD86, des-
moglein-2, heparan sulphate, sialic acid, major histocompat-
ibility complex-1-α2, and vascular cell adhesion molecule-1. 
Ad-2, Ad-5 and egg drop syndrome virus enter host cells 
via clathrin-mediated endocytosis [36–38], whereas Ad-3, 
Ad-5 and Ad-35 enter via macropinocytosis [37, 39]. Longer 
lists of cellular receptors and entry pathways exploited by 
adenoviruses are given in Tables 2 and 3.

Herpesviridae (order Herpesvirales)

Herpesviruses (HVs) have an enveloped icosahedral virion 
(150-200 nm) containing a 120 to 240-kb linear dsDNA 
genome encoding 100-200 proteins (see Figure  1 and 
Table 1). They replicate in the nucleus. The >70 known 
members of this family include eight human pathogens: 
HSV-1, HSV-2, CMV, EBV, KSHV, VZV, HHV-6 and 
HHV-7. HVs are rich in glycoproteins (GPs) that can form 
heterodimeric complexes to facilitate attachment and entry 
[55, 56]. Several proteins are involved in their attachment, 
including viral GPs (gB, gC, gD, gH/gL, and the gH/gL/gO 
complex) and host cell proteins such as HVEM, integrins, 
heparan sulphate, syndecan, and neuropilin [57–62]. HVEM 
was the first recognized receptor for HSV-1/2 gD (see 
Table 3). HV has a bacteriophage-like short tail whose role 
in entry is currently unknown [63]. Interestingly, an analy-
sis of cytomegalovirus (CMV) showed that the genomes of 
clinical samples contain at least 19 genes that are absent 
in laboratory-acclimated strains [64]. Three of these miss-
ing proteins, UL128, UL130 and UL131, contribute to viral 
entry by binding to gH/gL [64–69]. HVs generally enter host 
cells by endocytosis or fusion with the plasma membrane 
[149, 71–77]. HSV-1, CMV, EBV, KSHV and VZV enter 
via endocytosis [78, 61, 79–87]. KSHV has been observed to 

enter endothelial cells by pinocytosis [88] but enters mono-
cytes via some other mechanism that may involve heparan 
sulphate, integrins, and the induction of Src and PI3 K sign-
aling [89]. Details on the entry mechanisms of HVs and 
receptors mediating their attachment and entry can be found 
in Table 3.

Baculoviridae

Baculoviruses are arthropod-specific enveloped virus with 
nucleocapsid dimensions of 21 × 260 nm (Fig. 1). They 
have circular dsDNA genomes of 80-180 kb that encode 
100-180 proteins and replicate in the nucleus. They are used 
in biocontrol against insects, and as vectors for gene trans-
fer and protein expression. Consequently, their entry into 
insect, human, and cancer cells has an increasing biological 
impact (see Tables 1 and 3). Two baculovirus phenotypes 
have been characterized: budded and occlusion-derived. 
Viruses of this family express two crucial fusogens, gp64 
(class III) and F (class I), which are functionally analogous 
and can both trigger low-pH membrane fusion during endo-
cytosis. There are evidences that gp64 facilitate virus entry 
and fusion with the plasma membrane [167–170]. Bombyx 
mori nucleopolyhedrovirus (BmNPV) enters Bombyx mori 
(BmN) cells via cholesterol-dependent macropinocytosis 
[171], while Autographa californica multiple nucleopoly-
hedrovirus (AcMNPV) grown in Spodoptera frugiperda 
(sf9) cells enters human hepatocarcinoma (HepG2) and 
embryonic kidney (293) cell lines via a dynamin-, raft- 
and RhoA-dependent phagocytosis-like mechanism [172], 
but clathrin-mediated endocytosis or macropinocytosis 
may not be involved in the virus uptake. However, recom-
binant AcMNPV from sf21 cells enters BHK-21 cells via 
low-pH clathrin-mediated endocytosis [173]. Additionally, 
a pseudotyped vesicular stomatitis virus (VSV) encoding 
gp64 grown in Sf9 cells enters the Huh7 and 293 cells via 

Table 2   Attachment cellular receptors used by adenoviruses

Cellular receptor Adenovirus strains

CAR Ad-12, 31, 2, 5, 9, 19a, 19p, 4 and 41; but not Ad-3, 7, 21, 11, 14, 35 
nor 30; due to the structure conformation of the fiber protein [34, 
40–42]

CD46 Ad-16, 21, 50, 11, 14, 34, 35, 19a and 37; but not Ad-3 or 7 [40–46]
CD80 & 86 Ad-3 and 7 [47]
DSG2 Ad-3, 7, 11 and 14 (only human DSG, but not mouse homolog) [48]
HSPG Ad-2 and 5; but not Ad-35 [49]
Integrins Ad-3, 35, 2, 5 and D60 through YGD motif instead of RGD [50]
MHC1-α2 Ad-5 utilizes α2 domain of MHC-I (MHC-I-α2) [51]
Sialic acid Ad-8, 19a and 37; but not Ad-9 or 19p [52]
VCAM-1 Ad-5 [53]
GD1a glycan Ad-8, 19a and 37; but not Ad-5, 9 or 19p [54]
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Table 3   Entry mechanism and/or cellular receptors used by viruses. The cell types used in entry assay are mentioned whenever possible; other-
wise, multiple cells might be used. “∞” means “interacts with”

Virus Cells Entry method and/or attachment receptors

Adenoviruses
 Ad-2/5 – Clathrin, myeloid, and αvβ3- and αvβ5-integrins-mediated 

endocytosis [36, 90]
 Ad-2 – Macropinocytosis [90]
 Ad-5 Afferent lymph DCs Actin-dependent macropinocytosis [39]
 Ad-3/35 EpC and haematopoietic PI3K, Rho GTPases and dynamin-dependent macropinocyto-

sis [37, 91]
 Egg drop syndrome virus Duck embryonic FbCs Low pH, clathrin-mediated endocytosis [38]

Herpesviruses
 HSV-1 HeLa, CHO and keratinocytes, but not 

neuroblastoma
Low-pH endocytosis [92–94]

Vero cells Fusion [92]
CHO Viral gB and gD, and cellular Nectin-1, HVEM and PILR-α 

are required for infection; gD ∞ Nectin-1 and gB ∞ PILR-α 
[95]; gD ∞ Nectin-1 and gB ∞ PILR-α [96–99]

EpC, neuron and keratinocytes gH/gL (RGD motif) ∞ αvβ6- and αvβ8-integrins [100]; gH/gL 
binds to αvβ3-integrin activating IFN-I and NF-κB [101]

CHO, HeLa, Vero gD ∞ HVEM [102, 103]
HeLa Syndecan-1 and syndecan-2 [104]
Nectin-1 or HVEM-deficient murine 

dermal FbCs
Delayed virus entry; HS could be an alternative receptorl; 

dynamin and cholesterol could be involved [105]
Murine cornea HVEM and nectin-1 are crucial for infection [106]
Human oligodendrocytic cells Proteolipid protein is required in entry [107]
– gD triggers fusion by forming complexes with gB or gH/gL 

[108]; gB ∞ non-muscle myosin heavy chain IIA [109]
CHO and fibroblasts gC, gB and gD are required for entry [110]; gD ∞ 3-O-sul-

fated HS [111]
 HSV-2 Retinal EpCs Nectin-1, HVEM and PILR-α [95]; gD ∞ Nectin-1 and 

PILR-α and gB ∞ PILR-α [96–99]
 HSV-6 – gH/gL/gQ ∞ CD46 [112–114]; gB and the gH/gL/gQ com-

plex are required for cell-cell fusion [115]
 HSV-7 CHO gB ∞ HS [116]
 CMV Fibroblast, EnC and retinal EpC Fusion or endocytosis [78, 117]

Multiple cells, e.g. CHO, myeloid, EpC, 
EnC and FbC

gB ∞ epidermal growth factor receptor [118] or integrins 
(does not depend on RGD motif) [119]; gH ∞ αvβ3 integrin 
as a co-receptor [120]; gB or gH/gL are required for syn-
cytium [121, 122]. gH/gL/UL128/130/131 and gH/gL/gO 
complexes are essential for fusion [123]

 EBV B lymphocytes Endocytosis [124, 125]; gp350/220 ∞ complement receptor 2 
(CR2, CD21) [126, 127]. gH/gL (KGD motif) ∞ αvβ6- and 
αvβ8-integrins [128, 79]; gp42 ∞ HLA to induce membrane 
fusion through gH/gL and gB [, 80, 81, 110, 126].

EpCs Fusion [125]; macropinocytosis and lipid raft-dependent 
endocytosis [82]

B cells, but not EpC gp42/gH/gL complex mediates fusion [83]
Nasopharyngeal EpC gB ∞ Neuropilin-1 [82]
Polarized cells BMRF2 protein ∞ integrins [84]
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Table 3   (continued)

Virus Cells Entry method and/or attachment receptors

 KSHV (HHV-8) EnC and FbC DC-SIGN, pH and clathrin mediated endocytosis [85–87]
Endothelial cells Macropinocytosis [88]
Monocytic THP-1 cells Endocytosis; clathrin, caveolin, HS, DC-SIGN, integrins, 

NF-κB, Src, and PI3K signaling are involved [89].
Human dermal microvascular EnC gB ∞ ESCRT-0 component Hrs (hepatocyte growth factor-

regulated tyrosine kinase substrate) promoting macropinocy-
tosis [129]

– gB (RGD motif) ∞ integrins [130, 57]. gB, gH/gL and K8.1 
∞ HSPG induces fusion [58, 59, 60].

 VZV B cells Endocytosis [61]
VZV-permissive human melanoma cells 

expressing integrins
gB and gH-gL ∞ αV integrins [62]

 Ovine herpesvirus 2 – gB and gH/gL induce cell-cell fusion [131]
Poxviruses
 VV MV / EV HeLa Low-pH, dynamin, actin, and cholesterol-dependent macropi-

nocytosis [132–137]
 VV MV HeLa cells Bind to CD98 and enters via endocytosis [138]
 VV MV / EV DCs Dynamin and pH-independent macropinocytosis [139], choles-

terol (lipid raft), PS, actin, kinases, GTPases, integrins and 
Na+/H+ exchangers are required [134, 140, 141].

 VV-MV HeLa or A549 Low-pH, and serine/threonine kinase PAK1 and tyrosine 
kinase [142].

 VV Human pancreatic carcinoma cell lines Entry enhanced by vascular endothelial growth factor A and 
Akt signaling pathway [143].

 VV Leukocytes Attach to heparin and laminin [144, 145]
 VV Fibroblast or HeLa Tumor necrosis factor receptor associated factor 2 [146]
 VV Drosophila DL1 cells Macropinocytosis [147]
 VV Drosophila S2 cells Low-pH endocytic pathway that requires EFC proteins [148]
 Myxoma virus Leukocytes Attach to heparin [144]
 VV and myxoma virus FbCs BSC-40 Inhibition of HS affects entry, but laminin blocks binding of 

VV [144].
 WR and IHD-J HeLa PS, kinases and actin macropinocytosis; IHD-J MV induces 

filopodia; WR utilizes tyrosine kinase, PI3K and Rac1 to 
activate blebs [136].

HeLa, B78H1 and L cells Inhibited by soluble heparin [149, 150]
B78H1 and BSC-1 Require endosomal acidification [149, 150]

 WR, monkeypox virus and 
cowpox virus

– Low-pH [150, 151]

 IHD-J, Copenhagen and Elstree 
strains

– A pH-independent fusion [150, 151]

 WR EV – Gas6 protein enhances entry by bridging viral PS to TAM 
(Tyro3/Axl/Mer) receptor tyrosine kinases [152].

 EVs – Expression of A33 and A36 at plasma membrane of the 
infected cells mediates the repulsion between EVs toward 
uninfected cells leading to rapid spread of virus [153]. A56 
(hemagglutinin) interact with K2 (serine proteinase inhibi-
tors) forming A56-K2 complex that co-localizes at the cell 
surface blocking the superinfection and fusion [154–157]. 
A56-K2 complex interacts with A16 and G9 subunits and 
prevents the superinfection [158].

Iridoviruses
 Tiger frog virus, Ranavirus 

genus
HepG2 cells pH, cholesterol, dynamin, actin and caveolin-mediated endo-

cytosis [159]
 Frog virus 3, Ranavirus genus BHK-21 cells Low pH and clathrin-mediated endocytosis [160]
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macropinocytosis and endocytosis, which is mediated by 
viral gp64, and cellular cholesterol, dynamin and clathrin 
[169]. This process also requires the host cell proteins HSPG 
and syndecan-1 [174], as well as cholesterol [169, 175].

Poxviridae

Poxviruses are widely distributed enveloped viruses 
(∼360 × 270 × 250 nm) that replicate in the cytoplasm 
(Fig. 1) [176]. They harbor a 130 to 375-kb linear genome 
that encodes ~200 proteins. Vaccinia virus (VV) is a proto-
typic virus of this class that was used as a smallpox vaccine. 
It exists in three forms [177, 178]. The first is the mature 
virion (MVs, also known as the intracellular mature virus, 
IMV or INV), which has a brick-shaped structure; it is the 
most abundant, stable and simple form and is active in host-
host transmission. The second form is the wrapped virion 
(WV or intracellular enveloped virus, IEV), which contains 
an MV core wrapped in two membranes. WVs travel to the 
cell periphery via microtubules and fuse with the plasma 
membrane, and they are then released by exocytosis as the 
third form, the extracellular virion (EV, or cell-associated 
extracellular enveloped virus, CEV, or extracellular envel-
oped virus, EEV), which is specialized for exiting and cell-
to-cell transmission within the host.

Four proteins are used for attachment to the cell surface 
(A26, A27, D8 and H3), and the MV displays the so-called 
entry-fusion complex (EFC), which consists of 11 proteins 
(A16L, A21L, A28L, F9, G3L, G9R, H2, J5, L1R, L5R and 
O3L). These proteins interact with one another and medi-
ate virus-cell fusion, membrane disruption, and cell-to-cell 
fusion [176, 179, 180] (Tables 3 and 4). Inhibition of any of 
these proteins destabilizes the complex and hence perturbs 
viral entry. MV enters host cells via endocytosis or fusion 
with the plasma membrane, leaving the virus in endosomes 
[179–184] (see Table 3). Notably, the mechanisms of fusion 
for MVs and EVs at the plasma membrane and endosome 
are identical, and both require EFC proteins. VV (MV/EV), 
WR, and IHD-J enter HeLa cells via macropinocytosis [132, 
134–139] and have also been suggested to enter via a paral-
lel endocytotic mechanism [138]. In Drosophila, VV enters 

DL1 cells by macropinocytosis [147], but it enters S2 cells 
via endocytosis [148].

Giant viruses (Mimiviridae and Marseilleviridae)

These families comprise the largest known viruses, so-called 
giant viruses (GVs). They have genomes of ~0.5-2.5 Mb that 
encode 400-2500 proteins, and they replicate in the cyto-
plasm. Representatives of these families have been isolated 
from diverse habitats, including bronchoalveolar lavage fluid 
[204] and stools [205] from patients with pneumonia, insects 
[206], and leeches [207] (for a detailed review, see reference 
[208], [209]). The nature of the relationship between giant 
viruses and pneumonia remains to be elucidated [209–212]. 
Briefly, the giant viruses were detected by serological and 
genomic methods in patients with respiratory symptoms. 
Moreover, recent images show giant virus- and virus factory-
like structures in number of human cells [213].

Mimivirus virions are 500 nm in diameter, with a 1 Mb 
dsDNA genome encoding 900 proteins. Their surfaces are 
completely covered with fibers (120 nm long) attached to 
the capsid via a disc-shaped feature except at one capsid 
vertex (Fig. 1). The outer fibers may play some role in the 
virus’ attachment to or entry into host cells [214, 215], 
but the details of its mechanisms of attachment and entry 
are unknown. Proteomic and gene silencing experiments 
revealed that the fibres consist of at least four proteins 
(R135, L725, L829, and R856); viruses in which any of 
these proteins are silenced exhibit short and deformed fib-
ers [214, 216–219], as shown in Figure 3. Further structural 
analysis showed that R135 is a component of the fibers and 
is required for host cell entry [219]. In addition, a electron 
microscopy showed that L725 aggregates form fibre-like 
architectures [217]. The fibers’ shape differs from that in 
other viruses, and the fiber proteins exhibit no sequence 
similarity to proteins encoded by other viruses. It should 
be noted that some giant viruses lack external fibers – for 
instance, marseilleviruses (which are 200 nm in diameter 
with 350-kb circular dsDNA genomes) have topologies simi-
lar to those of mimiviruses but have only short (12 nm) or 
no fibers [216].

Table 3   (continued)

Virus Cells Entry method and/or attachment receptors

 ISKNV, Megalocytivirus Mandarin fish fry cells Major capsid protein ∞ caveolin-1 and induces caveolin-
endocytosis [161, 162]

 SGIV Grouper spleen cell line pH-dependent clathrin-endocytosis and macropinocytosis 
[163]; the deletion of VP088 envelope protein inhibits viral 
entry [164].

 Large yellow croaker iridovirus Bluegill fry (BF-2) cells 037L (RGD motif) ∞ integrins inducing fusion [165, 166]
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Mimiviruses enter amoebae or macrophages via a phago-
cytosis-like mechanism that depends on dynamin, actin and 
PI3-K [220, 221]. Unlike poxviruses, the entire virion with 
fiber can be seen inside the host. Further analyses showed 
that individual Marseillevirus virions enter A. castella-
nii cells via phagocytosis or in vesicles, endocytosis and 
micropinocytosis, were also suggested, but remain to be 
investigated [222]. Because the closely related Mimiviruses 
enter cells via phagocytosis, it seems very plausible that 
Marseillevirus could also enter via such a mechanism. It 
should be noted that the original host of most giant virus 
strains, including APMV, is not known; neither amoebae nor 
macrophages are their natural hosts. The tropism of these 
viruses and their interactions with their natural host cells 
thus remain to be elucidated.

Phycodnaviridae

The Phycodnaviridae are marine enveloped viruses with 
dimensions of 100-220 nm that have 330 to 560-kb linear 
dsDNA genomes and replicate in the cytoplasm of algae 
(Fig. 1). Despite having algal hosts, their entry pathways 
resemble those used by bacteriophages and animal viruses. 
Paramecium bursaria chlorella virus (PBCV-1) attaches 
to host cells via a viral vertex and degrades the host cell 
wall at the site of attachment like a bacteriophage [223]. 
To this end, it encodes chitinases, chitosanase, β -1,3-glu-
canase, and alginase enzymes that catalyze cell wall lysis 
[224]; it also encodes potassium ion channel proteins, which 

have a putative role in entry [225, 226]. After entry, PBCV 
leaves an empty shell at the cell surface. Another mem-
ber of this family, Emiliania huxleyi virus 86, enters host 
cells via endocytosis or fusion of the outer lipid membrane 
surrounding the capsid, which is similar to animal virus 
entry [227]. The intact virion can be seen in the cytoplasm 
before the capsid breaks down to release the genome. Ecto-
carpus fasciculatus virus infects zoospores or gametes of 
brown algae that lack cell walls [228]. It fuses with the 
outer plasma membrane of the host cell, leaving the capsid 
outside the cell surface, and injects its genomic cargo into 
the cytoplasm.

Asfarviridae

These are enveloped viruses (175-215 nm, see Figure 1) 
with 170 to 190-kb linear dsDNA genomes encoding around 
150 genes. They infect macrophages and monocytes of pigs 
and argasid ticks, and they replicate in the nucleus and/
or cytoplasm. The early steps in the binding and entry of 
African swine fever virus (ASFV) into host cells are largely 
unknown [229]. The ASFV-E70 and Ba71V strains enter 
Vero cells and macrophages by low-pH-, dynamin-, and 
clathrin-dependent endocytosis, which requires actin, small 
GTPase Rab7 and PI3-K. Additionally, cholesterol may be 
needed to liberate the virus from endosomes into the cyto-
plasm [230–234]. There is also evidence that ASFV can 
enter via macropinocytosis, which requires actin, kinases 
and Na+/H+ exchange [235].

Table 4   Poxviruses entry proteins, cellular receptors and functions. 1, N-terminal, 2, C-terminal transmembrane domain

Protein Roles

Attachment
A26 Binds to laminin [185]; A25 and A26 may act as fusion suppressors [180, 186].
A27 Binds to heparan sulfate, but not chondroitin [187]; binds with A17 protein forming a complex that mediates pH-

dependent cell-to-cell fusion and syncytium formation [188].
D8 Binds to chondroitin sulfate and mediates the adsorption of MV [189]
H3 Binds to heparan sulfate [190]
Entry (entry-fusion complex, EFC)
A16L 2; interacts with G9 and with A56/K2 to prevent superinfection; A16-deficient virion fails to induce syncytia [191].
A21L 1; interacts with H2; [192]
A28L 1; interacts with H2 and both are required for entry and cell-cell fusion [177, 179, 193–195].
F9 2; important for entry; F9-deficient virus binds to the cell, but the core fails to penetrate into the inside [177, 196].
G3L 1 [197]
G9R 2; binds to A16 and A26 suppressing fusion [198, 199].
H2 1, binds to A28 and both are required for entry and cell-cell fusion [177, 179, 194, 195].
J5 2 [200]
L1R 2; binds with uninfected cell receptors; L1 mutant virus is lethal, as it is required in assembly and fusion [177, 196, 

201]
L5R 2 [202]
O3L 1 [203]
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Iridoviridae

The iridoviruses include both enveloped and non-enveloped 
viruses with dimensions of 120-350 nm that replicate in the 
cytoplasm of insect and fish cells (Fig. 1). They harbor 100 
to 200-kb linear dsDNA genomes with circularly permuted 
and redundant termini. The enveloped viruses fuse with the 
cell membrane of the host cell, whereas the non-enveloped 
viruses enter via endocytic pathways [236] (see Table 3). 
Frog virus 3, tiger frog virus, and infectious spleen and 
kidney necrosis virus enter BHK-21, HepG2 and Mandarin 
fish fry cells, respectively, by endocytosis [159–162]. The 
VP088 protein encoded by SGIV facilitates both endocytosis 
and macropinocytosis into a grouper spleen cell line [163, 
164].

Ascoviridae

These viruses (~130 nm diameter, 200-400 nm in length) 
infect invertebrates; they replicate in the nucleus and harbor 
150 to 190-kb circular dsDNA genomes that encode 180 

proteins (Fig. 1). They are phylogenetically related to iri-
doviruses, and their entry mechanisms are obscure. How-
ever, Heliothis virescens ascovirus-3e infections are known 
to require actin rearrangement [237].

Conclusion and future perspectives

Viruses enter host cells via several mechanisms, depend-
ing on the host cell type and viral strain. Concerns about 
the risks of viral outbreaks have prompted efforts to char-
acterize emerging pathogens and predict the emergence and 
properties of new viruses. A further motivating factor for 
such studies is the possibility of developing non-cytotoxic 
antiviral drugs that act outside host cells by preventing viral 
attachment or entry rather than disrupting viral replication 
inside cells. This review details the entry pathways exploited 
by large dsDNA viruses. Their entry pathways are affected 
by several factors, including the external topology of the 
virions (particularly the presence of surface protrusions and 
their topology), the targeted cell type, the cellular receptors 
that are present, and the viral protein content.

Fig. 3   Silencing any one of the four fiber-associated proteins in mimivirus produces viruses bearing short and deformed fibers compared to the 
wild-type control (WT). The images are adapted from reference [216]
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While viruses from the same viral family often have simi-
lar topologies and encode proteins with similar sequences 
and structures, they may still use different entry mechanisms. 
As mentioned in Table 3, the virus protein(s) may bind to 
one or more receptors and co-receptors (see herpesviruses 
for examples). The binding may activate number of factors 
(proteins/pathways) that are relevant to infection. These fac-
tors could be characteristics of other entry pathways (see, 
for example, entry of KSHV). Additionally, the MV form 
of vaccinia virus can enter cells by direct fusion with either 
the plasma membrane or the membrane of a vesicle after 
endocytosis.

It is worth emphasizing that additional factors could 
affect the entry mechanism. Among these factors is pro-
tein sequence similarity; some viral proteins exhibit func-
tional and structural similarities despite having little or no 
sequence similarity. For example, the HSV-1 protein gB is a 
class III fusogen that resembles (especially in its post-fusion 
conformation) the gG protein of the RNA rhabdovirus VSV 
and the baculovirus protein gp64 [72, 238–241]. Addition-
ally, the EBV protein gp42 is a functional homolog of HSV 
gD, but the two share no sequence similarity [110]. The 
functional motifs of viral proteins appear to play central 
roles in determining the entry pathways available to specific 
viruses, so their analysis could enable prediction of entry 
pathways and virus-host cell interactions [14, 242]. Closely 
related viruses that infect the same host generally have simi-
lar functional motif profiles [242]. Another factor that may 
be important is ubiquitination of viral proteins inside host 
cells, which can affect infection and microtubule trafficking. 
For instance, the adenovirus protein VI recruits Nedd4 E3 
ubiquitin ligases via interactions involving its PPxY motif 
[14, 61, 243, 244]. Biophysical factors may also affect viral 
entry. For example, the entry of CMV into vascular endothe-
lial cells is promoted by low levels of shear stress [245]. 
Similarly, the fusion of the enveloped HSV requires a nega-
tive curvature of the lipid bilayer and can thus be suppressed 
by factors that prevent the formation of such negative cur-
vature [246].

Differences in observed entry pathways for different 
strains or different samples of the same viral strain may be 
due to differences in experimental design and conditions 
[61], the use of a non-physiological host in vitro (e.g., non-
wild-type cells), or the use of a laboratory strain whose gene 
content differs from that of the wild-type virus, as in the case 
of CMV [64]. It is generally accepted that cell lines (i.e., 
immortalized cells) often differ genetically and phenotypi-
cally from cells in native tissues (or primary cells). Conse-
quently, the type of cell used when studying viral entry may 
profoundly affect the results obtained. It has also been shown 
that baculoviruses grown in different insect cell types enter 
mammalian cells via different mechanisms [247]. These 
results clearly show that there are several aspects of viral 

entry into host cells that are very poorly understood. Com-
parative studies could potentially shed important light on 
this topic and help to clarify unknown aspects of virus-host 
cell interactions. In addition, more comprehensive informa-
tion on viral topology and protein sequences will help to 
understand virus tropism. Further studies in this area should 
focus on predicting viral entry mechanisms and the evolution 
of interactions between host cells and viruses. Efforts should 
also be made to identify optimal experimental conditions 
for viral entry in different cell types and for different viral 
families.
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