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Abstract

The Cancer Genome Atlas (TCGA) provides a genetic characterization of more than ten

thousand tumors, enabling the discovery of novel driver mutations, molecular subtypes, and

enticing drug targets across many histologies. Here we investigated why some mutations

are common in particular cancer types but absent in others. As an example, we observed

that the gene CCDC168 has no mutations in the stomach adenocarcinoma (STAD) cohort

despite its common presence in other tumor types. Surprisingly, we found that the lack of

called mutations was due to a systematic insufficiency in the number of sequencing reads in

the STAD and other cohorts, as opposed to differential driver biology. Using strict filtering

criteria, we found similar behavior in four other genes across TCGA cohorts, with each gene

exhibiting systematic sequencing depth issues affecting the ability to call mutations. We

identified the culprit as the choice of exome capture kit, as kit choice was highly associated

with the set of genes that have insufficient reads to call a mutation. Overall, we found that

thousands of samples across all cohorts are subject to some capture kit problems. For

example, for the 6353 samples using the Broad Institute’s Custom capture kit there are

undercalling biases for at least 4833 genes. False negative mutation calls at these genes

may obscure biological similarities between tumor types and other important cancer driver

effects in TCGA datasets.

Introduction

The Cancer Genome Atlas (TCGA) has been a valuable resource for shining light on tumor

genetic and molecular biology, allowing for the move towards targeted therapy oncology clini-

cal trials like NCI’s MATCH [1]. One of TCGA’s many strengths is the coverage and depth of

their whole-exome sequencing (WES) protocol; the average of approximately 100x coverage

[2] has been used to confidently call mutations even at allele frequencies of 0.2 or below using

MuTect [3]. This mutation calling power has enabled important translational research such as

identifying targetable driver mutations [4]. The scope of TCGA suggests it potential value for
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identifying systematic driver effects across cancer types. At the same time, this broad scope

makes it more susceptible to measurement errors. For example, Buckley et al. found technical

artifacts in TCGA germline samples due to whole chromosome amplification resulting in spu-

rious indel calls [5].

To understand which processes are most important in cancer development, it is critical to

have accurate assessments of which mutations recur in different cancer types. However, there

may be other spurious mutation annotations in TCGA due to systematic biases. For example,

CCDC168 is a protein-coding gene with poorly understood function known to be mutated in

several cancer types. Studies based on TCGA data have reported that this locus is susceptible

to microsatellite-instability events resulting in frameshift mutations in colorectal cancer but

not in gastric cancer, and this has been interpreted as a functional distinction between the

tumor types [6]. This finding is puzzling, as a subtype of stomach adenocarcinomas is subject

to microsatellite instability [7], which would provide a mechanism for CCDC168 frameshift

mutations to occur in stomach adenocarcinomas as well. We therefore hypothesized that the

lack of CCDC168mutations in stomach adenocarcinoma might be due to measurement bias.

In this work, we have investigated whether CCDC168mutations and other TCGA muta-

tions are impacted by measurement bias by considering features in each cancer sample associ-

ated with a failure to call mutations. We show that measurement bias associated with the

exome capture platform explains the CCDC168effect. Moreover, we demonstrate how these

platform biases affect mutation calling throughout TCGA data. Our results indicate that

potentially false negative somatic mutation calls due to insufficient coverage recurrently

impact at least 701 genes. Over 8000 samples across a wide variety of TCGA tumor cohorts

used the implicated capture kits. Due to these false negatives, different tumor types may be

more mutationally similar than previously reported, and the impact of these genes on cancer

may have been underestimated.

Results

CCDC168 shows a systematic lack of mutations in stomach

adenocarcinoma

To better understand why TCGA stomach adenocarcinoma samples (STAD) lack CCDC168
mutations, we first manually inspected read depth in individual STAD samples. This revealed

low numbers of reads aligning to the CCDC168 locus (S1 Fig). We then analyzed this behavior

across all STAD samples, which showed that overall 425 of 441 STAD tumor samples had

fewer than 1,000 aligned reads along the gene, with 50% of samples having 12 or fewer reads

(Table A in S1 Tables). Given the exon length of 21,470 base pairs (Methods), a read count of

1000 would yield only 2.7x coverage over the gene. We calculated the average exon coverage

across CCDC168, and this showed no samples exceeding 6.4 (Table A in S1 Tables and A in S2

Fig). Mutation callers typically use 30x coverage to call an SNV in short-read sequencing [8].

Therefore, the lack of called mutations in CCDC168 can be attributed to insufficient coverage

at the locus.

Some genes systematically lack mutation calls across multiple cohorts

We then searched for other genes with a systematic lack of mutation calls and analyzed

whether they had cohort-specific biases. To do this we analyzed non-silent mutations using all

TCGA MAF files. 22017 of 22022 genes had at least one cohort where no mutation was called

in any of the cohort samples. Here we use the term cohort to refer to TCGA samples from dif-

ferent tissues, e.g. stomach adenocarcinoma, colon adenocarcinoma, etc. To distinguish

TCGA WES capture kit biases
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potential genes subject to cohort-specific measurement biases from those with true low muta-

tion rates, we considered only genes that met minimum criteria for mutational prevalence in

the overall TCGA set (Methods). This yielded 136 high-confidence genes having strong

cohort-specific biases for mutational absence (Table B in S1 Tables). Several genes showed bias

across multiple cohorts. For example, CCDC168 lacked mutation calls in 17 cohorts, i.e. over

half of all cohorts in TCGA. Other genes with similar behavior included SETD1B and SOX11,

which lacked called mutations in 20 and 14 cohorts, respectively.

Multiple genes lack sufficient coverage for mutation calling

We next explored whether these cases of mutational absence were due to a systematic lack of

coverage. To test this, we downloaded reads from TCGA WES samples aligned to the 136

genes (Methods). We set a minimum average depth threshold of 25x across all bases in a

gene’s canonical exons to assess if a gene had sufficient coverage to call a mutation. At this

threshold, Mutect has a sensitivity approaching 0.99 for an allele fraction of 0.3 [3], which

approximates the 60% tumor purity requirement for TCGA [9] for a heterozygous mutation.

We saw that CCDC168 systematically lacked sufficient coverage to call mutations in 14 other

cohorts (Fig 1) at the 25x threshold. Notable exceptions were testicular germ cell cancer

(TGCT) and thymoma (THYM), for which every sample in each cohort had sufficient cover-

age yet no CCDC168mutations were called, indicating these to be true negative findings.

Four other genes had similar patterns as CCDC168, i.e. where large numbers of samples

within multiple cohorts had insufficient coverage to call mutations. We defined undercovered
cohorts as those in which over 75% of samples had insufficient coverage to call mutations for a

given gene. The four genes which had multiple undercovered cohorts were the long non-cod-

ing RNAs (lncRNAs)MALAT1 and XIST and the protein-coding genes SETD1B and SOX11.

The undercovered cohorts of the three protein coding genes had strong similarities, with

PRAD tumors in particular uniformly showing insufficient coverage at all three gene loci (Fig

1 and B in S2 Fig). Additionally,MALAT1 and XIST shared identical undercovered cohorts

(Fig 1 and C in S2 Fig). Interestingly, undercovered cohorts of the three protein-coding genes

and those of the lncRNAs were mutually exclusive (Fig 1), suggesting distinct reasons for these

behaviors.

Capture kit choice explains undercovered cohorts

These gene- and cohort-specific behaviors suggested that systematic sequencing quality issues

might be responsible for the insufficient coverage and lack of mutation calls. A potential

Fig 1. Cohorts with insufficient coverage to call mutations. Table of the five genes of interest and coverage status by

cohort. Coverage status is determined by the fraction of samples in the cohort which have sufficient coverage in the

gene to call a mutation. Cohorts with at least one sample with a called mutation in the gene were not considered and

are labeled white.

https://doi.org/10.1371/journal.pone.0204912.g001

TCGA WES capture kit biases
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culprit is the exome capture kit, which we hypothesized had gene-specific inefficient pulldown

in some cohorts. To investigate this, we retrieved information on each sample’s capture kit

using the NIH’s Genomic Data Commons (GDC) Search and Retrieval API (Methods). We

found that cohorts annotated as assayed with the Custom V2 Exome Bait capture kit exclu-

sively were undercovered for at least one of CCDC168,SETD1B, or SOX11 (Tables C and D in

S1 Tables). The Custom V2 Exome Bait capture kit appears to be a proprietary exome capture

kit manufactured by Agilent and used by the Broad Institute for TCGA (Table 1). The TGCT

and THYM cohorts used different capture protocols, and neither were undercovered for these

genes despite no called mutations. The common capture kit for undercovered cohorts in the

two lncRNAs was the SeqCap EZ HGSC VCRome developed by Roche NimbleGen (now

known only as Roche) and used by Baylor University. However, the three cohorts with suffi-

cient coverage of the lncRNAs in all samples used other capture protocols. All samples in

TCGA used paired-end sequencing chemistry, negating it as a confounder to explain the

observed differences between tumor histologies. These associations provide strong evidence

that capture kits have biases that lead to failure to call mutations in some cohorts.

This kit-specific effect also explained variations in coverage within the cohorts that exhib-

ited complete absence of mutations in at least one of the five genes. For example, in the kidney

renal papillary cell carcinoma (KIRP) cohort, the usage of the custom kit explained all 120

cases with insufficient coverage at the SETD1B and SOX11 loci (Fig 2A). For the kidney renal

clear cell carcinoma (KIRC) cohort, an additional 90 samples had insufficient coverage for

other kits (Fig 2B), notably for SOX11when studied with Roche NimbleGen’s SeqCap EZ

Human Exome Library v2.0 kit. In ovarian serous cystadenocarcinoma (OV), where 512 sam-

ples lacked sufficient coverage in one of the three protein-coding genes, the 10 samples with

sufficient coverage were all measured with Roche NimbleGen’s SeqCap EZ Human Exome

Library v3.0 kit (Fig 2C). These findings show a clear association between exome capture kits

and samples with insufficient coverage at the five genes of interest.

Underestimation of gene mutation rates in cohorts

We then expanded our scope to include TCGA cohorts where mutations had been observed,

focusing on the five genes described above. Again we found that coverage bias was impacted

by capture kit choices. The KIRP cohort used the Custom V2 Exome Bait kit, SeqCap EZ

Table 1. Capture kits used in TCGA.

Manufacturer Exon Capture Kit Name Bait Type Probe Length # Samples User

Agilent Custom V2 Exome Bait Unknown Unknown 6353 BI

Agilent SureSelect Human All Exon 38 Mb v2 cRNA 120 (Adjacent) 493 WUGSC

Agilent SureSelect Human All Exon 50 Mb cRNA 120 (Adjacent) 7 WUGSC

Agilent SureSelectXT Human All Exon V5 cRNA 120 (Adjacent) 83 WUGSC

Roche NimbleGen Gapfiller_7m Unknown Unknown 48 BCM

Roche NimbleGen SeqCap EZ HGSC VCRome Unknown Unknown 1395 BCM

Roche NimbleGen SeqCap EZ Human Exome Library v2 DNA 60–90 (Tiled) 1094 WUGSC

Roche NimbleGen SeqCap EZ Human Exome Library v3 DNA� 60–90 (Tiled)� 1367 WUGSC

Eight exon capture kits were used in TCGA, with the Custom V2 Exome Bait kit used by the Broad Institute accounting for a majority of WXS samples. Attributes are

derived from Sulonen et al. [10], except for Agilent’s SureSelectXT Human All Exon V5 [11]. Adjacent probes are non-overlapping whereas tiled probes overlap in the

targeted regions. Unknown indicates information not publicly-available.

Attributes with an asterisk (�) for the SeqCap EZ Human Exome Library v3 kit are not reported and assumed to be the same as the previous version.

BI = Broad Institute. WUGSC = Washington University Genome Sequencing Center. BCM = Baylor College of Medicine.

https://doi.org/10.1371/journal.pone.0204912.t001
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HGSC VCRome kit, and derivatives such as the VCRome V2.1-PKv1 kit. As expected from the

intercohort analysis, the samples using the Custom V2 Exome Bait kit had insufficient cover-

age at the three protein coding loci, whereas the samples using the SeqCap EZ HGSC VCRome

kits had insufficient coverage at the two lncRNA loci (Fig 3A). This effect had not been clear at

the cohort level as CCDC168,MALAT1, and XIST each had at least one mutation called in the

KIRP cohort.

As other examples, we also checked the extent of the capture kit effect in the COAD (Fig

3B) and rectum adenocarcinoma (READ) (Fig 3C) cohorts. We chose these because each of

these cohorts had mutation calls in at least one sample for the five genes of interest. We

observed that many samples had insufficient coverage in these genes. Again as in the interco-

hort analysis, individual samples using a SeqCap EZ HGSC VCRome kit showed insufficient

coverage in the lncRNAs. Fewer than 20% of samples in these two cohorts showed sufficient

coverage ofMALAT1 and XIST. Therefore, these genes are particularly susceptible to underes-

timation of the mutation rate. Similar effects were observed for the exon capture kits Gapfil-

ler_7m, a proprietary capture kit developed by Roche NimbleGen and used by Baylor

University, and Agilent’s SureSelect Human All Exon 38 Mb v2 in these two cohorts.

Custom V2 Exome Bait capture kit poorly covers human exome

We next sought to determine the full extent of insufficiently-covered genes associated with the

Custom V2 Exome Bait and SeqCap EZ HGSC VCRome kits, as these account for 6353 and

1395 samples in TCGA respectively. We obtained the SeqCap EZ HGSC VCRome capture

Fig 2. Capture kit explains insufficient coverage. In cohorts assayed by heterogeneous capture kits, samples with insufficient coverage can be differentiated by kit. In

KIRP (A), samples using the Broad’s Custom V2 Exome Bait kit have insufficient coverage in SETD1B and SOX11, whereas samples that use other kits have sufficient

coverage. The KIRC cohort (B) shares this behavior, with Roche NimbleGen’s SeqCap EZ Human Exome Library v2.0 kit also yielding insufficient coverage in SOX11.

In OV (C) all the kits except Roche NimbleGen’s SeqCap EZ Human Exome Library v3.0 kit yielded insufficient coverage of the three protein-coding genes.

https://doi.org/10.1371/journal.pone.0204912.g002
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target BED file [12] and quantified the base-level overlap with canonical exons of TCGA

genes, which we defined as genes with a called mutation in any TCGA cohort (Methods). A

gene with fewer than 80% of bases overlapping between the capture target and canonical exon

coordinates was initially considered undercovered. We observed 17828 undercovered genes

out of the 20974 TCGA genes for which a canonical exon was identified. These included

MALAT1 and XIST which were due to a complete lack of coverage in their loci (S3 Fig), sup-

porting false negative mutation calling in these genes. However, most cases of undercovered

genes were due to the inclusion of untranslated regions (UTRs). When only considering the

coding sequences (CDS), only 2353 genes were observed to be undercovered (Table E in S1

Tables). We also quantified the base-level probe coverage of Integrated DNA Technology’s

xGen Exome Research Panel [13], a newer capture kit. We found only 873 undercovered genes

(Table F in S1 Tables), likely a result of improved chemistries and synthesis technologies.

Unlike the two previous exome capture kits, the Custom V2 Exome Bait kit does not have a

publicly-available probe target design file. To find undercovered genes, we retrieved the base-

level sequencing depth for TCGA genes’ canonical CDS from all samples in the Uterine Carci-

nosarcoma (UCS) cohort (Methods). We adjusted the definition of an undercovered gene

such that 80% of bases must have an average sequencing depth greater than 20 across the 57

samples. We found 4833 undercovered genes using this modified definition, which included

CCDC168,SETD1B, and SOX11 (Table G in S1 Tables), accounting for 23% of TCGA genes.

For these 4833 genes, we further applied the undercovered definition to individual exons, with

an undercovered exon defined as one with fewer than 80% of bases having a sequencing depth

greater than 20 (Table G in S1 Tables). CCDC168and SETD1B had uniformly low depth across

all bases and exons, with no bases having an average depth greater than 20 (Fig 4A). SOX11
had low depth over large portions of its single coding exon (Fig 4A), with 55% of bases having

an average depth less than 20. These examples represent two modes for undercovered genes—

Fig 3. Capture kit is associated with samples lacking sufficient coverage in 5 recurrent genes. The KIRP cohort (A) uses both the Custom V2 Exome Bait kit, which is

associated with insufficient coverage in the 3 protein-coding genes, and the SeqCap EZ HGSC VCRome kit, which associates with insufficient coverage in the lncRNAs.

In both the COAD (B) and READ (C) cohorts, samples using the SeqCap EZ HGSC VCRome kit have insufficient coverage on the lncRNAs. Gapfiller_7m and

SureSelect Human All Exon 38 Mb v2 are also associated with systematic biases in coverage on the five genes.

https://doi.org/10.1371/journal.pone.0204912.g003

TCGA WES capture kit biases
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either absent or incomplete capture probe coverage. Additionally, we found 1258 genes where

all coding exons were undercovered.

To assess the consequences of poor capture of nearly a quarter of the human exome, we

compared undercovered genes by kit to 369 known cancer genes [14]. For the Custom kit, 53

cancers genes were undercovered (Table H in S1 Tables). Only two, CRLF2 and U2AF1, were a

result of absent probe coverage whereas the rest, such as VHL, were due to incomplete probe

coverage (Fig 4B). The SeqCap EZ HGSC VCRome and xGen Exome Research Panel kits had

29 and 5 undercovered cancer genes respectively with only one each with absent probe cover-

age (Table H in S1 Tables), in line with fewer overall undercovered genes from these two kits.

While the small number of cancer genes with absent coverage is reassuring, the number of

incompletely-covered cancer genes by the Custom V2 Exome Bait kit accounts for a non-triv-

ial number of known cancer genes.

To better understand the limitations of the Custom V2 Exome Bait kit, we assessed the read

depth at previously identified MSI loci [6] in the STAD cohort, another cohort which exclu-

sively used the Custom V2 Exome Bait kit (Table C in S1 Tables). Undercoverage of several

genes (ACVR2A, ASTE1, KIAA2018, SLC22A9, and TGFBR2)were common events across

Fig 4. Custom V2 Exome Bait kit base coverage of select genes. Heatmaps of base-level depth in the UCS cohort for the three previously-identified undercovered

genes associated with the Custom V2 Exome Bait kit (A) and three cancer genes (B). Coding exons are plotted separately to highlight absence of probe coverage, such as

in CCDC168, or incomplete probe coverage, such as in VHL, across different regions. Base coordinates follow chromosomal coordinates and are limited to CDS regions.

https://doi.org/10.1371/journal.pone.0204912.g004
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multiple tumor types, including STAD. In each of these cases, such as with ACVR2A (A in S4

Fig), the average read depth within the MSI loci across all TCGA-STAD samples was greater

than 60 (Table I in S1 Tables), indicating that these are likely true-positive MSI loci. CCDC168,

SMAP1, and SPINK5were less common MSI events not seen in STAD. As previously shown,

the coverage at the CCDC168 locus was poor and explained the lack of MSI events. The two

SMAP1MSI loci had an average read depth of 27.3 and 11.2 (Table I in S1 Tables), much lower

in comparison to the rest of the genetic loci (B in S4 Fig) and suggesting another false-negative

MSI location in STAD. Coverage at and around MSI loci is important as alignment discrepan-

cies due to slippage could lead to spurious single nucleotide variant calls. We note that current

TCGA pipelines do ameliorate this effect (S5 Fig). The three SPINK5MSI loci had average

read depths of 97.5, 179.2, and 20.9 (Table I in S1 Tables and C in S4 Fig). MSI loci previously

identified as absent in STAD may be false negatives as a result of poor read coverage.

Discussion

We have demonstrated that choice of exon capture kit systematically impacts mutation calling

in a cohort-dependent manner, and in particular we considered five genes as case studies that

were repeatedly uncalled across diverse cohorts even at stringent filtering criteria. These effects

are due to insufficient coverage associated with poor capture. Although we expected some vari-

ability in exome capture efficiency between methods [15] and heterogeneous gene coverage

across samples [16], our study reveals strong biases in TCGA that have not been previously

reported. 6353 samples, i.e. over half of TCGA, were assayed with the Custom V2 Exome Bait

kit which we found to undercover at least 4833 genes. As only a few mutations drive any given

tumor [14], these methodological issues have the potential to substantially alter the under-

standing of a patient’s tumor genetics.

All of the 5 undercovered genes that we initially identified have known or presumed roles

in cancer. For example, overexpression ofMALAT1, i.e. metastasis-associated lung adenocarci-

noma transcript 1, is known to be associated with metastasis markers in non-small cell lung

cancer [17,18] and colorectal cancer [19]. ReducingMALAT1 expression leads to reduced

growth and metastasis in bladder cancer mouse models [20], making it a potential therapeutic

target. SOX11 is a tumor suppressor in glioma [21] and prognostic marker in epithelial ovarian

cancer [22] among other roles. Its primary mechanism in tumorigenesis is silencing by DNA

methylation [23]. Such an alteration is actionable though, as epigenetic modifiers such as the

DNA methyltransferase inhibitor 5-Aza-dC have been shown to increase expression of SOX11
and slow growth [24].

XIST has been shown to have a role in several cancer types. Deletion of XIST in blood cells

of female mice results in X reactivation and blood neoplasms [25]. XIST has also been pro-

posed to act as a tumor suppressor in breast cancer by regulating phosphorylated AKT [26],

and as an oncogene in non-small cell lung cancer by downregulating the tumor suppressor

KLF2 [27]. SETD1Bmutations have been found in multiple cancers [28]. Frameshift mutations

commonly occur at the locus, likely related to microsatellite instability [29] in ways similar to

CCDC168.SETD1B is part of the H3K4 methyltransferase family KMT2, in which fusion

events in several members are implicated as drivers in mixed lineage leukemia (MLL) [30].

Histone modification in colon cancer also relates to tumorigenic transcriptional signatures

[31], although not necessarily causally as in MLL.

The finding of poor coverage at 4833 genes, including 53 known cancer genes, by the Cus-

tom V2 Exome Bait kit presents an important problem to be aware of in cancer genomic analy-

sis. 1258 of these genes have absent or poor probe coverage spanning the entire coding region,

a nontrivial fraction of the genome with little interpretable information. Kit dependencies can

TCGA WES capture kit biases

PLOS ONE | https://doi.org/10.1371/journal.pone.0204912 October 3, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0204912


bias comparisons between tumor histologies, and likely explain a prior report that CCDC168
and SMAP1 are sites of microsatellite instability in colon adenocarcinoma but not stomach

adenocarcinoma [6]. Low coverage could exacerbate variant mis-calling, particularly if poorly-

covered regions are subject to alignment issues as might be expected at MSI loci. However,

prior studies have shown that local realignment near indels has improved the ability filter out

false-positive SNVs in these regions [32]. The remaining 3575 genes with poor coverage of spe-

cific coding regions also constitute a sizeable fraction of the exome. For these, specific muta-

tions within a gene may be underreported, and driver mutation differences between cancer

types may be inappropriately identified. In both situations, technical sequencing artifacts are

strong confounders preventing true interpretation of genetic differences between tumor

histologies.

Several strategies should be considered to allow for comparison between samples and

cohorts assayed with separate capture kits. The first would be to restrict analyses to regions

and genes where sufficient reads occur in both groups, reducing the occurrence of falsely-iden-

tified differences. This compromise is acceptable for experiments using newer exome kits

where the union of poorly-covered regions will be smaller but may limit analyses with TCGA

cohorts using the Custom V2 Exome Bait kit. Another potential strategy would be to pool

reads in poorly-covered regions at the cohort level to rescue mutation calls. This would allow

for some comparisons that include Custom V2 Exome Bait kit cohorts without discarding

information at the expense of cohort-level resolution as opposed to sample-level resolution.

The drawback for this method is the increased rate of false-positive associations in order to

increase the true-positive rate.

In summary, our findings reveal strong undercalling of TCGA mutations in cancer genes

due to problems in capturing their exons for sequencing. The five genes that we focused on are

merely the most extreme of more systematic biases, as we found at least 4833 other genes that

are undercalled in the samples assayed by the Custom V2 Exome Bait capture kit and 2353 in

samples assayed by the SeqCap EZ HGSC VCRome capture kit. Such biases may hide shared

driver mechanisms in tumors of different histologies, obscuring key differences and similari-

ties between tumors as well as samples within cohorts. In both cases, this would lead to spuri-

ous subtyping based on mutational status. TCGA is an invaluable resource for understanding

the genetics of cancer, but it is important to be cognizant of its biases. Otherwise measurement

issues such as choice of exome capture kit will confound attempts at broad understanding

across cancers.

Methods

Filtering initial genes of interest

To identify genes with potential false negative mutation calls, we analyzed each TCGA cohort’s

MAF file obtained from the Genomic Data Commons (GDC). We searched for genes with at

least a minimal mutation rate across all cohorts and then identified cohorts that appeared to

have a spurious lack of called mutations for that gene. For each non-silent mutation, we looked

for cohorts where zero patients have a called mutation in a gene. As a first filtering step, we

eliminated rarely mutated genes by retaining only those with at least a 5% mutation rate across

cohorts having non-zero mutation calls. There are also many small cohorts where it would not

be unlikely for a gene to have zero called mutations, even at a 5% true mutation rate. Therefore

only genes where three or more cohorts had no called mutations were considered further,

eliminating cases isolated to smaller cohorts. The remaining 136 genes are shown with their

respective sets of cohorts lacking mutation calls in Table B in S1 Tables.
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Filtering genes for interrogating Custom V2 capture kit

To identify all genes affected by the Custom V2 Exome Bait capture kit, we chose genes with

no called mutations in the 14 cohorts using the kit exclusively. Only those genes which had an

associated Gencode v22 name were chosen to probe further as GDC’s BAM Slicing API uses

Gencode v22 gene names to retrieve reads.

Retrieving gene-specific reads

We used GDC’s BAM Slicing API to download gene-specific reads for each sample based on

the gene-cohort associations in Table B in S1 Tables, for all cohorts for the five genes of inter-

est, and for the seven additional MSI loci. For retrieving reads from all TCGA genes, we

instead downloaded all whole-exome BAM files for the TCGA-UCS cohort from GDC’s Data

Portal. We processed reads using samtools version 1.5 [33] to discard duplicated reads and

those below a mapping quality of 30, calculate the average exon coverage using coordinates of

UCSC canonical exons (S1 Data) and determine base-level depth across all TCGA genes.

Canonical exons were retrieved from UCSC Genome Browser’s Table Browser using assembly

GRCh38, track GENCODE v24, group Genes and Gene Predictions, and table knownCanoni-

cal. Average exon coverage results for cohorts can be found in S3.

Querying TCGA sample information

We used GDC’s Search and Retrieval API to query TCGA sample information for all cohorts.

We restricted our query to the WES BAM files for tumor samples only. Retrieved information

consisted of filename hash ids necessary for the BAM Slicing API and metadata regarding the

whole-exome capture kit used for sequencing.

Capture target BED comparison versus canonical exons

BED files obtained from the respective manufacturer’s websites were converted from the hg19

genome assembly to hg38 with UCSC Genome Browser’s LiftOver, using the default webtool

parameters. TCGA genes, defined as a gene with a called mutation in any TCGA cohort, were

identified by aggregating all mutations across all 33 tumor types’ MAF files. Exon and CDS

coordinates were drawn from canonical exons used previously and retrieved from UCSC

Genome Browser’s Table Browser using assembly GRCh38, track GENCODE v24, group

Genes and Gene Predictions, and table knownGenes. Of the 22042 genes with a called muta-

tion, 20974 mapped to UCSC canonical exons.

Code and data availability

Bash and Python scripts to perform the work in this manuscript are available online at https://

github.com/TheJacksonLaboratory/GDCSlicing. Bed files of canonical exon coordinates are

available as a supplemental file (S1 Data). Calculated average exon coverage data for TCGA

samples corresponding to Figs 2 and 3 is available as a supplementary file (S2 Data). MSI loci

depth data corresponding to Table H in S1 Tables are available as a supplemental file (S3

Data). Calculated base-level depth data for TCGA-UCS samples corresponding to Fig 4 is

available upon request.

Supporting information

S1 Fig. Sparse sequencing coverage on CCDC168. IGV plot of reads aligned to the CCDC168
locus for sample TCGA-D7-6518 in STAD. After filtering, only 12 reads align to the gene, and

this is the median number for samples in STAD. For reference, microsatellite instability (MSI)
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loci previously identified in TCGA [6] are also shown in the second track. The few reads align-

ing to CCDC168 in this sample do not overlap well with the MSI loci.

(TIF)

S2 Fig. Whole cohorts with insufficient coverage. The STAD cohort (A) had no samples with

sufficient coverage of the CCDC168 locus. Other genes share this same behavior, namely

SETD1B, and SOX11 in the PRAD cohort (B), andMALAT1 and XIST in the LIHC cohort (C).

(TIF)

S3 Fig. Undercovered genes likely due to exome capture protocol design. The VCRome

exome capture kit does not contain probes for the loci containingMALAT1 (A) and XIST (B),

corresponding to the poor depth in samples using the kit. On the contrary, the VCRome kit

does contain probes for CCDC168 (C) which does have reads in samples using this kit.

(TIF)

S4 Fig. ACVR2A (A), a previously-identified stomach adenocarcinoma MSI loci, appears to

have reasonable coverage of the MSI region (third track) in two TCGA-STAD samples.

SMAP1 (B) and SPINK5 (C) are MSI loci associated with colorectal adenocarcinoma but not

stomach adenocarcinoma. TCGA-STAD samples appear to have poor coverage of the SMAP1

MSI loci whereas the SPINK5 appears to have much higher coverage of the MSI loci.

(TIF)

S5 Fig. TCGA standard alignment approaches correctly handle microsatellite instability

loci for SNV/indel calling. The co-cleaning step in the Genomic Data Commons pipeline that

incorporates local realignment around indels handles this issue. For example, we performed

BWA alignment of reads to microsatellite instability loci in CCDC168 for TCGA-COAD sam-

ple TCGA-AD-6889 without the co-cleaning step (top read track). Reads are grouped in 3 sets

based on their nucleotide at a known indel (vertical purple bar). The red circle indicates a

locus with multiple read support for an SNV prior to co-cleaning. After co-cleaning (bottom

read track), these reads no longer support SNV status.

(TIF)

S1 Tables. Supplemental Tables A-I Table A. STAD CCDC168 Coverage

Table B. Genes of Interest

Table C. Capture Kit by Cohort

Table D. Capture Kit Frequency by Cohort

Table E. SeqCap EZ HGSC VCRome Undercovered Genes and Exons

Table F. xGen Exome Research Panel Undercovered Genes and Exons

Table G. Custom V2 Exome Bait Undercovered Genes and Exons

Table H. Undercovered Cancer Genes and Exons

Table I. STAD MSI Loci.

(XLSX)

S1 Data. Bed files for canonical exons of TCGA genes.

(ZIP)

S2 Data. Calculated exon coverage from TCGA samples used to generate figures and

tables.

(ZIP)

S3 Data. Calculated base depth of MSI loci for TCGA-STAD samples used to generate

Table H in S1 Tables.

(ZIP)
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