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Functionalizable Stereocontrolled Cyclopolyethers by Ring-Closing
Metathesis as Natural Polymer Mimics
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Abstract: Whereas complex stereoregular cyclic architectures
are commonplace in biomacromolecules, they remain rare in
synthetic polymer chemistry, thus limiting the potential to
develop synthetic mimics or advanced materials for biomedical
applications. Herein we disclose the formation of a stereocon-
trolled 1,4-linked six-membered cyclopolyether prepared by
ring-closing metathesis (RCM). Ru-mediated RCM, with care-
ful control of the catalyst, concentration, and temperature,
selectively affords the six-membered-ring cyclopolymer. Under
optimized reaction conditions, no metathetical degradation,
macrocycle formation, or cross-linking was observed. Post-
polymerization modification by dihydroxylation afforded
a novel polymer family encompassing a poly(ethylene glycol)
backbone and sugar-like functionalities (“PEGose”). This
strategy also paves the way for using RCM as an efficient
method to synthesize other stereocontrolled cyclopolymers.

Control over the absolute configuration of a synthetic
polymer main chain remains a significant challenge,[1,2]

especially in light of the importance of this regularity in
natural polymers.[3] This stereoregularity of the main chain
plays a significant role in shaping the three-dimensional
structure, and in-turn influencing the biological function of
the natural macromolecules. In addition, rings are embedded
in the backbones of many natural polymers, which restricts
the bond rotation around the stereogenic centers.[4] These
local conformational restrictions result in a specific compact
structure along the polymer backbone: that is, the six-
membered cyclic structures of cellulose and amylose back-
bones (Figure 1) form linear and helical structures, respec-
tively. However, synthetic polymers that are made of similar
1,4-linked six-membered rings that would mimic these

secondary structures present a unique challenge to synthetic
chemists, especially if conventional polymerization tech-
niques are employed.[5]

Ring-closing metathesis (RCM) has been predominantly
used to prepare small cyclic molecules, including phosphine-
boranes, sulfides, amines, phenols, and oxazolines.[6] The use
of RCM in polymer synthesis, however, remains rare,[7] with
only a few examples of the preparation of polymeric nano-
particles,[8] cyclic polymers,[9] and cyclopolymers.[10] We
hypothesized that this under-utilized post-polymerization
technique could be employed for the synthesis of cyclo-
polyethers to mimic the topology of polysaccharides, where
the configuration of all the stereogenic centers present in the
polymers is controlled (Figure 1). While the broad functional
group tolerance of metathesis catalysts suggests a broad
reaction scope, poly(ethylene glycol) backbones are espe-
cially interesting given their role as gold standard stealth
polymers in drug delivery.[11] We thus envisaged a sequence of
ring-opening polymerization (ROP), ring-closing metathesis
(RCM), and dihydroxylation (DH), as shown in Figure 1. An
initial ROP of 3,4-epoxy-1-butene (EB) would afford poly-
epoxybutene (PEB), with the chirality of the parent epoxide
leading to stereogenic control in the linear polymer. Ring-
closing metathesis would then give a 1,4-linked functionaliz-
able cyclopolyether (FCPE). Further functionalization, spe-
cifically diatereoselective dihydroxylation (DH), would pro-
duce a new stereocontrolled polymer that we have called
“PEGose”, as it has the structural features of both sugars and

Figure 1. Biopolymers serving as an inspiration for stereocontrolled
polymer synthesis, and a strategy to target the desired cis-PEGose
cyclopolymer.
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PEG, with the glycosidic bond of amylose replaced by a strong
ether link.

For this structural control, it is imperative to start with
enantiopure EB. Atactic PEB would lead to a non-stereo-
controlled cyclopolymer, where the 1,4-links would be
indiscriminately cis (amylose-like) or trans (cellulose-like;
Figure 2). Furthermore, the subsequent dihydroxylation reac-
tion would not be diastereoselective on the trans 1,4-
disubstituted six-membered rings. On the other hand, dihy-
droxylation of the cis-cyclopolymer will occur exclusively
from the top face, which is not hindered by the two
substituents.

Ring-opening and ring-closing reactions were first
explored with the commercially available racemic 3,4-
epoxy-1-butene monomer. Although PEB has been prepared
by a number of routes from the EB monomer,[12, 13] our
optimized reaction conditions used tetraphenylporphyrin
aluminum chloride [(TPP)AlCl] as an initiator[14] for the
bulk polymerization of EB at ambient temperature [Eq. (1),
see Table S1 in the Supporting Information].

The 13C NMR spectrum of the resultant PEB showed two
signals for the stereogenic carbon atom, thus confirming the
expected atacticity of the produced PEB (a-PEB), as the
catalyst is not stereoselective. Controlled low-molecular-
weight polymers were produced, with Mn,GPC values of 2100
and 3200, respectively, and Y< 1.2. Although RCM on a-PEB

will not give a stereocontrolled cyclopolyether, it was used to
establish the optimum RCM conditions. Although little
difference in molecular weight was observed by gel-perme-
ation chromatography (GPC) for the lowest molecular weight
PEB samples, because of overlap with eluent peaks, the
higher molecular weight samples (Mn,GPC 3200) showed
a clear loss of molecular weight on ring closing, correlating
well with the loss of a single ethylene molecule per repeat unit
(Table 1). Optimal ring-closing conditions for PEB included

the use of 5 mol% of the second-generation Hoveyda–
Grubbs (HG2) catalyst at high concentrations of the polymer
(+ 0.2m with respect to the monomer unit) in 1,2-dichloro-
ethane (1,2-DCE; Table 1). Note that poor conversions were
achieved with the first-generation Grubbs catalyst, likely
because of the lower reactivity and thermal stability (see
Table S2).[15]

When concentrations were kept at 0.2m (Table 1, entry 1),
no cross-linking was observed, and the polymer dispersity and
viscosity remained similar. However, at higher concentrations
(0.4m), competing ring-closing and polymer cross-linking
occurs, as evidenced by the formation of a high-molecular-
weight shoulder in the GPC traces (see Figure S1).[16] This
new polymer represents the first synthetic cyclopolyether
prepared, but its inherent atacticity prevents any overall
topological control. Thus, isotactic-rich PEB (i-PEB) was
synthesized by ROP of the R enantiomer of EB (95:5 e.r.),
which was prepared from racemic EB by JacobsenQs hydro-
lytic kinetic resolution (see page 3 in the Supporting Infor-
mation).[17] The behavior of the isotactic polymer towards
RCM was directly compared to that of its atactic derivative
under the previously optimized conditions (Table 2).

The kinetics of the cyclization of the enantiomerically
pure monomer were significantly slower than for the racemic
monomer. Plotting the reaction kinetics (Figure 3 and Fig-
ure S2) showed that the cyclization reaction progressed
quickly in the beginning, with 94 % of the pendent vinyl
groups forming cross-links within 30 min for both the atactic
and isotactic derivatives. The metathesis reaction then
significantly slowed down, especially for the more conforma-

Figure 2. Influence of polymer tacticity on RCM and resultant polymer
stereochemistry in cis- and atactic-FCPE.

Table 1: RCM of a-PEB.

Entry[a] [Olefin] Mn,st
[b] Xst

[b] Conv. [%][c] Mn,th
[d] Mn

[b] X[b]

1 0.2 3200 1.19 99 2540 2500 1.21
2 0.4 3200 1.19 99 2540 2900 1.3

[a] Reactions performed in 1,2-DCE at reflux with 5 mol% of the HG2
catalyst for 72 h. [b] Mn and X determined by GPC versus uncorrected PS
standards. [c] Determined by 1HNMR spectroscopy by integration of the
olefin signals of the produced polymer. [d] Mn,th =PEBMn,GPC W 0.8
because of the expected loss of one C2H4 per monomer unit.
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tionally rigid isotactic derivative. This profile suggests a mech-
anism originally proposed by Coates and Grubbs:[10] 1) a fast
stage when the catalyst randomly closes adjacent olefins until
only isolated olefins remain, and 2) a slow stage when the
rings rearrange along the chain until all the olefins are
cyclized. This requires that the cyclized olefins can undergo
further metathetic reactions, thus enabling a reopening and
exchange of the product rings.[18] The two-stage reactivity is
showcased through the RCM optimization, with the first stage
completed in a similarly short time regardless of the solvent
used (1,2-DCE, DCM, THF, CHCl3) or catalyst loading (2–
5%; see Tables S3–S6).

An illustration of this mechanism can be observed in the
13C NMR spectra of both the atactic and isotactic FCPE and
PEB (Figure 4), which demonstrate that greater than 99% of
the olefins of PEB are cyclized (Figure 4B,E). In the atactic
FCPE (Figure 4B), the new olefin peaks appear as broad,
overlapping resonances (d = 125–132 ppm), which reflects the
different ring configurations along the polymer backbone. On
the other hand, i-FCPE showed only two sharp olefin
resonances (Figure 4E), thereby confirming the stereocon-
trolled structure of the polymer (Figure 2, cis-cyclopolymer).
However, the spectrum of i-FCPE after 94% conversion
(Figure 4D), which was taken after 30 min, showed the 6% of
uncyclized isolated olefin signals (d = 118.3 and 135.6 ppm)
and several cyclic olefin signals (d = 125–132 ppm).

Most of these cyclic olefin peaks were not observed at the
end of the reaction (after 7 days), which purports that in the
initial metathesis stage when the catalyst randomly closes the
olefins, different ring sizes were formed (Figure 5). In the

subsequent slow stage, the rings rearrange along the chain
until only the most thermodynamically stable six-membered
rings are present.

Fixing the free rotation of the pendent olefins through
RCM has an impact on the glass transition temperature (Tg)
in both a- and i-PEB. The organized structure of i-FCPE has
a significantly higher Tg value than a-FCPE (@11 88C from
@26 88C). This is consistent with the presence of cycles
hindering segmental chain mobility in both structures.

To prepare the PEGose polymer, i-FCPE was dihydroxy-
lated under mild conditions using N-methylmorpholine N-
oxide (NMO) and OsO4 as a catalyst. This second post-
polymerization functionalization was diastereoselective, as
OsO4 attacks on the less hindered side of the ring (Figure 2),
as demonstrated by 13C NMR spectroscopy (Figure 6). The
dihydroxylation produces a unique stereocontrolled polymer
structure, with a hydrophilic surface (cis-diols) opposite the
hydrophobic backbone. This distinctive structure could have
potential applications in biomaterials, blood storage, or drug

Figure 3. The RCM of i-PEB, Mn,GPC 3940 and X 1.15, kinetic profile at
0.2m using 5% HG2 catalyst in 1,2 DCE under reflux monitored by
1HNMR spectroscopy.

Figure 4. 13C NMR spectra of the olefin region in CDCl3 of: A) a-PEB,
B) a-FCPE, C) i-PEB, D) metathesis product of i-PEB after 30 min (94%
conversion), and E) metathesis product of i-PEB after 7 days (>99 %
conversion).

Figure 5. Proposed kinetic mechanism of the RCM of i-PEB.

Table 2: RCM of PEB with HG2 catalyst.

Entry[a] PEB
Mn

[b]
X[b] Tg [88C][c] t [days] FCPE X[b] Tg [88C][c]

Mn,th
[d] Mn

[b]

rac 4380 1.18 @56 5 3500 2700 1.22 @26
R 3940 1.15 @54 7 3150 2600 1.19 @11

[a] [Olefin]=0.2m ; the reaction conversion in 1,2-DCE at reflux with
5 mol% HG2 catalyst was monitored daily until >99% by 1HNMR
spectroscopy. [b] Mn and X determined by GPC versus uncorrected PS
standards. [c] Determined by differential scanning calorimetry.
[d] Mn,th =PEBMn,GPC W 0.8.
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delivery, with face polarity shaping the surface chemistry and
self-assembly.[19, 20] While amylose, (C6H10O5)n, and PEGose,
(C6H10O4)n have similar monomer units, PEGose is connected
with an additional methylene bridge, which gives more
flexibility to the polymer backbone. Circular dichroism
(CD) was used to determine the influence of this CH2 unit
on the secondary structure of the PEGose. Indeed, PEGose
and amylose have the same prominent negative bands at l =

182 nm (Figure S25), which shows that this new PEGose has
an extended pseudohelical structure similar to amylose.[21]

Efforts to gain complementary X-ray characterization of this
self-assembly are ongoing.

Although excess NMO affords complete dihydroxylation
of the double bonds, the reaction also offers the ability to
adjust the polymer polarity by limiting this co-oxidizing
reagent. Reducing the NMO loading from 1.1 to 0.8 equiv-
alents dramatically alters the polarity and solubility of the
resultant polymer (Table 3), thereby offering a secondary

tuning for biomedical applications and leaving sites remaining
for further functionalization or drug conjugation.[22] Whereas
the parent polymer is soluble in organic solvents and the fully
dihydroxylated polymer is freely soluble in water and DMSO,
this strategy allows for a broad range of polymer polarities to
be accessed.

In conclusion, we have shown that RCM of linear,
stereoregular polymers with pendent olefins can be used to
prepare cyclopolymers with excellent control over the ring
size. Further functionalization of the latent olefin groups by
dihydroxylation provides sugar-like structures with a poly-

(ethylene glycol) backbone that leads to a new PEGose
architecture. The isotactic linear PEB leads, after RCM, to
a cyclic polymer with well-defined cis substitution patterns.
By taking advantage of the diastereoselectivity of the
subsequent dihydroxylation reaction, we were able to create
a cyclopolymer where the configuration of all the stereogenic
centers is controlled, and which mimics the natural amylose.
This new platform offers significant potential for future
functionalization, drug conjugation, and biomedical mimicry,
and is a significant focus of our future work, as is expanding
this idea to other polymer backbones.
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