
 International Journal of 

Molecular Sciences

Article

β-Naphthoflavone and Ethanol Reverse
Mitochondrial Dysfunction in A Parkinsonian Model
of Neurodegeneration

Jesus Fernandez-Abascal 1,*,†, Elda Chiaino 1, Maria Frosini 1 , Gavin P. Davey 2 and
Massimo Valoti 1

1 Dipartimento di Scienze della Vita, Università di Siena, 53100 Siena, Italy; maria.frosini@unisi.it (M.F.);
massimo.valoti@unisi.it (M.V.); chiaino@student.unisi.it (E.C.)

2 Department of Neurodegeneration and Systems Biology, School of Biochemistry and Immunology, Trinity
College Dublin, D02 PN40 Dublin, Ireland; gdavey@tcd.ie

* Correspondence: jxf952@med.miami.edu
† Present address: Department of Physiology and Biophysics, University of Miami, Miller School of Medicine,

1600 NW 10th Ave, Miami, FL 33136, USA.

Received: 23 April 2020; Accepted: 30 May 2020; Published: 31 May 2020
����������
�������

Abstract: The 1-methyl-4-phenylpyridinium (MPP+) is a parkinsonian-inducing toxin that promotes
neurodegeneration of dopaminergic cells by directly targeting complex I of mitochondria. Recently, it
was reported that some Cytochrome P450 (CYP) isoforms, such as CYP 2D6 or 2E1, may be involved
in the development of this neurodegenerative disease. In order to study a possible role for CYP
induction in neurorepair, we designed an in vitro model where undifferentiated neuroblastoma
SH-SY5Y cells were treated with the CYP inducers β-naphthoflavone (βNF) and ethanol (EtOH)
before and during exposure to the parkinsonian neurotoxin, MPP+. The toxic effect of MPP+ in cell
viability was rescued with both βNF and EtOH treatments. We also report that this was due to a
decrease in reactive oxygen species (ROS) production, restoration of mitochondrial fusion kinetics,
and mitochondrial membrane potential. These treatments also protected complex I activity against
the inhibitory effects caused by MPP+, suggesting a possible neuroprotective role for CYP inducers.
These results bring new insights into the possible role of CYP isoenzymes in xenobiotic clearance and
central nervous system homeostasis.
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1. Introduction

Degeneration of dopaminergic neurons in the substantia nigra is a main feature of Parkinson’s
disease (PD). Genetic and environmental factors are known to give rise to differential proteostatic
states in the brain. Additionally, cell specific energy metabolism defects and reactive oxygen species
(ROS) production can enhance neurodegeneration rates [1]. ROS can also be generated by exposure
to environmental xenobiotics or drug metabolism. In addition, genetic predisposition contributes to
selective neurodegeneration of these cells [2–5]. High oxidative stress and disruptors of mitochondrial
membrane potential (ψm) lead to a change in morphology and alteration in mitochondrial fusion-fission
dynamics [6]. These events disrupt the overall mitochondrial homeostasis, promoting apoptosis,
the release of pro-apoptotic factors, and contributing to neurodegeneration in PD and other diseases [7].
In this context, xenobiotics have emerged as one important source of oxidative stress that may lead to
mitochondrial dysfunction in the brain [8,9].

Int. J. Mol. Sci. 2020, 21, 3955; doi:10.3390/ijms21113955 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-4452-8128
https://orcid.org/0000-0002-7240-3576
http://dx.doi.org/10.3390/ijms21113955
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/11/3955?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 3955 2 of 14

A mechanism by which the cells clear xenobiotics is by the Cytochrome P-450 system (CYP),
which metabolize a wide variety of molecules [10]. In the brain, CYP represents a 0.5–2% of the total
amount of CYP found in the liver, but it still plays an important role in the metabolism of drugs
and some endogenous compounds in the central nervous system (CNS) [11]. This superfamily has
several isoforms with specific expression patterns depending on the brain area and the cell type [12,13].
In particular, the isoform CYP 2D6 has been related with the development of PD due to its ability to
metabolize several xenobiotics in dopaminergic cells and other areas [14]. Moreover, in dopaminergic
cells, the induction of CYP 2E1 by nicotine or coffee has been related with less susceptibility to
PD [15,16]. However, the contributions of CYPs isoforms to neurodegeneration and neuroprotection
toward xenobiotic insult are still poorly understood.

Induction of CYP isoforms have been generally used for the study of drug metabolism and
neuroprotection in vivo and in vitro [11]. Ethanol (EtOH) and β-naphthoflavone (βNF) are two
well-known inducers of CYP isoforms [17–19]. We previously reported that both compounds promote
the induction of CYP 2D6 and 2E1, and that CYP 2D6 can be localized in mitochondria in SH-SY5Y
cells [20]. The objective of the present study is to elucidate whether treatments with both inducers
protect mitochondria towards the neurotoxic effect of MPP+. Our results suggest that, in parallel with
induction of CYP isoforms 2D6 and 2E1, the two compounds reverse the mitochondrial impairment
promoted by MPP+.

2. Results

2.1. βNF and EtOH Treatment Reduce the Loss of Cell Viability by MPP+

To study whether the induction of CYPs by βNF and EtOH can protect towards MPP+-induced
toxicity, two different concentrations of the toxin were used in presence or absence of the two inducers
(Table 1). Under this treatment protocol, we assessed cell viability based on the MTT-to-formazan
metabolic activity [21]. Low (0.6 mM) and high (1.5 mM) concentrations of MPP+ promoted a decrease
in cell viability of 24% and 42%, respectively (Figure 1). When cells were treated with βNF prior and
during exposure to MPP+ itself (both concentrations), a significant recovery of ~17% in cell viability
was observed. EtOH showed similar results, as ~15% recovery was in fact found at both MPP+

concentrations. These results suggest that βNF and EtOH may contribute to a better cellular protection
against MPP+, possibly via CYP induction.

Table 1. Experimental protocol for drug treatments. The day after plating the cells, they were
treated for 24 h with fresh medium containing Cytochrome P450 (CYP) inducers (see column 0–24).
Afterward, the medium was replaced with fresh medium containing CYP inducers, the neurotoxin
1-methyl-4-phenylpyridinium (MPP+) or a combination of both (see column 24–48).

Sample/Group Name 0–24 h 24–48 h

Control Medium Medium
βNF βNF (4 µM) βNF (4 µM)

EtOH EtOH (100 mM) EtOH (100 mM)
MPP+ (0.6 mM) Medium MPP+ (0.6 mM)
MPP+ (1.5 mM) Medium MPP+ (1.5 mM)

βNF + MPP+ (0.6 mM) βNF (4 µM) βNF (4 µM) + MPP+ (0.6 mM)
βNF + MPP+ (1.5 mM) βNF (4 µM) βNF (4 µM) + MPP+ (1.5 mM)

EtOH + MPP+ (0.6 mM) EtOH (100 mM) EtOH (100 mM) + MPP+ (0.6 mM)
EtOH + MPP+ (1.5 mM) EtOH (100 mM) EtOH (100 mM) + MPP+ (1.5 mM)
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Figure 1. MPP+ toxicity is reduced by β-naphthoflavone (βNF) and ethanol (EtOH) treatment. SH-
SY5Y cells treated with MPP+ (0.6 mM and 1.5 mM) caused a decrease in cell viability. This was 
calculated measuring the absorbance of formazan generated by metabolism of MTT (see methods). 
However, the treatment with CYPs inducers partially reversed it for both MPP+ concentrations (see 
Table 1 for treatment details). Columns represent mean ± SEM of independent cell culture 
preparations (n ≥ 3; usually ~8), each one containing at least three biological replicates. Data are 
represented as percentage of control samples, whose absorbance was taken as 100% viability. *** p < 
0.001 vs. βNF or EtOH; ††† p < 0.001, † p < 0.05 vs. MPP+ 0.6 mM; ‡ p < 0.05 vs. MPP+ 1.5 mM, two-way 
ANOVA followed by Tukey post-test. 

The protective effect of CYP induction obtained in the MTT experiments was further 
investigated by analyzing the formation of apoptotic/necrotic cells with Annexin V/ propidium 
iodide (AV/PI) staining. The early apoptotic cell population increased in an MPP+-related 
concentration manner (+6% MPP+ 0.6 mM; +18% MPP+ 1.5 mM) (Figure 2a). The treatments with βNF 
and EtOH significantly reverted the toxic effect of both concentrations of MPP+. βNF restored this 
population to values similar to control samples (1.5%) in βNF + MPP+ (0.6 mM) treatments, while it 
reduced the early apoptotic population to 9% in βNF + MPP+ (1.5 mM) treatments. On the other hand, 
EtOH showed similar effectiveness, as it reduced AV+/PI- cells to control values (1.4%) in EtOH + 
MPP+ (0.6 mM), while in treatments with EtOH + MPP+ (1.5 mM), it significantly decreased it to 7%. 
The same protective effect was observed in late apoptotic cells with MPP+ (1.5 mM) treatments, as 
only this concentration increased the AV+/PI+ cells by 14% (Figure 2b). In this case, the treatment 
with βNF and EtOH significantly reduced it to 4.8% and 5.7%, respectively. Finally, the necrotic cells 
reached the value of 7% upon the highest MPP+ concentration used, while both CYP inducers 
significantly reduced them to values comparable to controls (Figure 2c).  

The effects of MPP+ on the cell cycle were also investigated. The neurotoxin induced a 
concentration-dependent rise in sub-G0/G1 hypodiploid cells, typical of apoptotic-mediated cell 
death. In particular, the subG0/G1 group was significantly increased at both low and high MPP+ 
concentrations (6% and 10%, respectively) when compared to either βNF or EtOH groups (Figure 
2d). The treatment with the two inducers reverted this effect only in high concentration of MPP+, 
although a similar trend could be observed for low concentrations: βNF + MPP+ (0.6 mM), 4.6%; βNF 
+ MPP+ (1.5 mM), 6%; EtOH + MPP+ (0.6 mM), 4%; EtOH + MPP+ (1.5 mM), 6.6%. These data suggest 
that βNF and EtOH decrease the apoptotic-mediated cell death caused by MPP+. 

Figure 1. MPP+ toxicity is reduced byβ-naphthoflavone (βNF) and ethanol (EtOH) treatment. SH-SY5Y
cells treated with MPP+ (0.6 mM and 1.5 mM) caused a decrease in cell viability. This was calculated
measuring the absorbance of formazan generated by metabolism of MTT (see methods). However,
the treatment with CYPs inducers partially reversed it for both MPP+ concentrations (see Table 1 for
treatment details). Columns represent mean ± SEM of independent cell culture preparations (n ≥ 3;
usually ~8), each one containing at least three biological replicates. Data are represented as percentage
of control samples, whose absorbance was taken as 100% viability. *** p < 0.001 vs. βNF or EtOH;
††† p < 0.001, † p < 0.05 vs. MPP+ 0.6 mM; ‡ p < 0.05 vs. MPP+ 1.5 mM, two-way ANOVA followed by
Tukey post-test.

The protective effect of CYP induction obtained in the MTT experiments was further investigated
by analyzing the formation of apoptotic/necrotic cells with Annexin V/ propidium iodide (AV/PI)
staining. The early apoptotic cell population increased in an MPP+-related concentration manner (+6%
MPP+ 0.6 mM; +18% MPP+ 1.5 mM) (Figure 2a). The treatments with βNF and EtOH significantly
reverted the toxic effect of both concentrations of MPP+. βNF restored this population to values similar
to control samples (1.5%) in βNF + MPP+ (0.6 mM) treatments, while it reduced the early apoptotic
population to 9% in βNF + MPP+ (1.5 mM) treatments. On the other hand, EtOH showed similar
effectiveness, as it reduced AV+/PI- cells to control values (1.4%) in EtOH + MPP+ (0.6 mM), while
in treatments with EtOH + MPP+ (1.5 mM), it significantly decreased it to 7%. The same protective
effect was observed in late apoptotic cells with MPP+ (1.5 mM) treatments, as only this concentration
increased the AV+/PI+ cells by 14% (Figure 2b). In this case, the treatment with βNF and EtOH
significantly reduced it to 4.8% and 5.7%, respectively. Finally, the necrotic cells reached the value of
7% upon the highest MPP+ concentration used, while both CYP inducers significantly reduced them to
values comparable to controls (Figure 2c).

The effects of MPP+ on the cell cycle were also investigated. The neurotoxin induced a
concentration-dependent rise in sub-G0/G1 hypodiploid cells, typical of apoptotic-mediated cell
death. In particular, the subG0/G1 group was significantly increased at both low and high MPP+

concentrations (6% and 10%, respectively) when compared to either βNF or EtOH groups (Figure 2d).
The treatment with the two inducers reverted this effect only in high concentration of MPP+, although
a similar trend could be observed for low concentrations: βNF + MPP+ (0.6 mM), 4.6%; βNF + MPP+

(1.5 mM), 6%; EtOH + MPP+ (0.6 mM), 4%; EtOH + MPP+ (1.5 mM), 6.6%. These data suggest that
βNF and EtOH decrease the apoptotic-mediated cell death caused by MPP+.
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Figure 2. βNF and EtOH treatments reduced MPP+-mediated apoptosis. (a–c) Cell viability assay with 
Annexin V/PI double staining. Both MPP+ treatments (0.6 mM and 1.5 mM) were able to increase the 
early apoptotic population (a), while only MPP+ (1.5 mM) increased the late apoptotic (b) and necrotic 
populations (c). The treatments with inducers (see Table 1) were able to rescue the apoptosis 
promoted by MPP+. d: MPP+ promotes an increase in the percentage of hypodiploid (sub G0/G1) cells, 
which was reported by the increase of PI-stained DNA content. The treatment with inducers (see 
Table 1) partially rescued the toxic effect of MPP+. Data are reported as mean ± SEM of at independent 
cell culture preparations (n ≥ 3; usually ~10). *** p < 0.001, ** p < 0.01, * p < 0.05 vs. Medium; † p < 0.05 
vs. MPP+ 0.6 mM; ‡‡ p < 0.01, ‡ p < 0.05 vs. MPP+ 1.5 mM, two-way ANOVA followed by Tukey post-
test. 

2.2. MPP+-Related ROS Production is Decreased with CYP Inducers 

The treatments with EtOH and βNF showed that, during the exposure time to MPP+, the cells no 
longer underwent late apoptosis or necrosis, and only toxic effects could be observed in early 
apoptotic populations. This suggested that the toxicity generated by MPP+ was reduced by EtOH and 
βNF, thus the production of the initial triggers of apoptosis might also have been decreased. To 
pursue this idea, we measured ROS formation and found that MPP+ (0.6 mM and 1.5 mM) increased 
DCFA fluorescence by 54% and 141%, respectively (Figure 3). Interestingly, when cells were treated 
with the inducers, the ROS production was significantly lower in EtOH + MPP+ (0.6 mM and 1.5 mM: 
9% and 16% increase compared to control samples, respectively; or −83% and −87% compared to 

Figure 2. βNF and EtOH treatments reduced MPP+-mediated apoptosis. (a–c) Cell viability assay with
Annexin V/PI double staining. Both MPP+ treatments (0.6 mM and 1.5 mM) were able to increase the
early apoptotic population (a), while only MPP+ (1.5 mM) increased the late apoptotic (b) and necrotic
populations (c). The treatments with inducers (see Table 1) were able to rescue the apoptosis promoted
by MPP+. d: MPP+ promotes an increase in the percentage of hypodiploid (sub G0/G1) cells, which
was reported by the increase of PI-stained DNA content. The treatment with inducers (see Table 1)
partially rescued the toxic effect of MPP+. Data are reported as mean ± SEM of at independent cell
culture preparations (n ≥ 3; usually ~10). *** p < 0.001, ** p < 0.01, * p < 0.05 vs. Medium; † p < 0.05 vs.
MPP+ 0.6 mM; ‡‡ p < 0.01, ‡ p < 0.05 vs. MPP+ 1.5 mM, two-way ANOVA followed by Tukey post-test.

2.2. MPP+-Related ROS Production is Decreased with CYP Inducers

The treatments with EtOH and βNF showed that, during the exposure time to MPP+, the cells no
longer underwent late apoptosis or necrosis, and only toxic effects could be observed in early apoptotic
populations. This suggested that the toxicity generated by MPP+ was reduced by EtOH and βNF,
thus the production of the initial triggers of apoptosis might also have been decreased. To pursue
this idea, we measured ROS formation and found that MPP+ (0.6 mM and 1.5 mM) increased DCFA
fluorescence by 54% and 141%, respectively (Figure 3). Interestingly, when cells were treated with
the inducers, the ROS production was significantly lower in EtOH + MPP+ (0.6 mM and 1.5 mM: 9%
and 16% increase compared to control samples, respectively; or −83% and −87% compared to MPP+
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samples, respectively). In βNF + MPP+ (0.6 mM), a decrease in ROS production was also observed,
although not significant (15% increase compared to control samples; or −72% compared to MPP+

sample), while in βNF + MPP+ (1.5 mM), the ROS production was significantly lower (−6% compared
to control samples; or −104% compared to MPP+ sample). These results suggest that treatment with
both inducers prevents cells from undergoing apoptosis, probably by reducing ROS formation caused
by the exposure to a mitochondrial-targeted toxin.
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apoptotic or necrotic cells that would be found with MPP+ (1.5 mM) treatments.  

For the MPP+ (0.6 mM) control, the fluorescent intensity of the photo-activated area decreased 
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the mitochondrial instability promoted by MPP+, resulting in normal fusion dynamics. 

Figure 3. Reactive oxygen species (ROS) production by MPP+ was decreased in cells treated with CYP
inducers. MPP+ treatments increased the production of ROS in SH-SY5Y cells at both concentrations.
When cells were treated with βNF or EtOH prior and during exposure to MPP+ (see Table 1 for
treatment details), ROS production was decreased. Columns represent the percentage related to control
(medium) samples of DCFA fluorescence, and data are presented as mean ± SEM of independent cell
culture preparations (n ≥ 5). ** p < 0.01, * p < 0.05 vs. βNF or EtOH; † p < 0.05 vs. MPP+ 0.6 mM;
‡ p < 0.05 vs. MPP+ 1.5 mM, two-way ANOVA followed by Tukey post-test.

2.3. Mitochondrial Fusion Kinetics Is Restored Under βNF and EtOH Treatment

The mitochondria is the major target for MPP+, and its fusion kinetics represent important data
to evaluate the integrity of the cells, since it can work as an indicator of the first stage of apoptosis.
To further investigate the apoptotic-inducing effects of MPP+, the mitochondrial fusion dynamics
were studied with MPP+ (0.6 mM) treatments only in order to discard false positive results from late
apoptotic or necrotic cells that would be found with MPP+ (1.5 mM) treatments.

For the MPP+ (0.6 mM) control, the fluorescent intensity of the photo-activated area decreased
from 100% to 58% in 25 minutes (Figure 4 and Supplementary Figure S1), while control condition
showed higher fusion dynamics (29% intensity at 25 min). In both βNF + MPP+ (0.6 mM) and EtOH +

MPP+ (0.6 mM) treatments, the intensity of the photo-activated area showed a higher rate of decrease
than in MPP+ (0.6 mM) control. Indeed, the results showed that 25 minutes post-activation, the plasmid
containing the photo-activatable green fluorescent protein (PA-GFP) intensity decreased from 100%
to 30% for βNF + MPP+ (0.6 mM) and to 28% for EtOH MPP+ (0.6 mM) treatment, values similar
to control samples. Moreover, at minute 45 post-activation, this intensity decreased until 19% for
βNF + MPP+ (0.6 mM) and to 15% for EtOH + MPP+ (0.6 mM) treatment, while MPP+ (0.6 mM) only
reached a 46% intensity. Under our experimental conditions, both treatments were able to avoid the
mitochondrial instability promoted by MPP+, resulting in normal fusion dynamics.
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Figure 4. MPP+-induced damage to mitochondrial fusion dynamics in SH-SY5Y cells was reversed by 
βNF and EtOH. (a) Representative confocal images of SH-SY5Y showing the PA-GFP fluorescent 
spread over the time. Pictures are a combination of red channel for the mitochondrial reporter and 
the green channel for PA-GFP. Arrowheads point the photo-activated area. Scale bar: 10 µm. (b) PA-
GFP percentage intensity in the photo-activated area at minutes 25 and 45 post-photoactivation. 
Mitochondrial fusion dynamics after treatment with βNF + MPP+ (0.6 mM) or EtOH + MPP+ (0.6 mM) 
returned to control values. Intensity in the green channel before photo-activation was taken as 0%, 
while intensity in one-minute post photo-activation was considered as 100% intensity. Columns 
represent mean ± SEM of independent cell culture preparations (n ≥ 3). * p < 0.05 vs. medium; †† p < 
0.01, † p < 0.05 vs. MPP+ 0.6 mM, two-way ANOVA followed by Tukey post-test. 

Figure 4. MPP+-induced damage to mitochondrial fusion dynamics in SH-SY5Y cells was reversed
by βNF and EtOH. (a) Representative confocal images of SH-SY5Y showing the PA-GFP fluorescent
spread over the time. Pictures are a combination of red channel for the mitochondrial reporter
and the green channel for PA-GFP. Arrowheads point the photo-activated area. Scale bar: 10 µm.
(b) PA-GFP percentage intensity in the photo-activated area at minutes 25 and 45 post-photoactivation.
Mitochondrial fusion dynamics after treatment with βNF + MPP+ (0.6 mM) or EtOH + MPP+ (0.6 mM)
returned to control values. Intensity in the green channel before photo-activation was taken as 0%, while
intensity in one-minute post photo-activation was considered as 100% intensity. Columns represent
mean ± SEM of independent cell culture preparations (n ≥ 3). * p < 0.05 vs. medium; †† p < 0.01,
† p < 0.05 vs. MPP+ 0.6 mM, two-way ANOVA followed by Tukey post-test.
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2.4. Disruption of ψm by MPP+ Is Avoided with CYP-Inducers Treatments

Because the restoration of mitochondrial kinetics is an indicator of proper mitochondrial
functioning, we then assessed whether the treatments with inducers would also be able to
restore the ψm. The red/green fluorescent intensity ratio observed when cells were treated with
MPP+ (1.5 mM) was 32.5% smaller than control samples, indicating a higher accumulation of
5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolocarbocyanine iodide (JC-1) monomers (Figure 5).
Both βNF + MPP+ (1.5 mM) and EtOH + MPP+ (1.5 mM) treatments were able to partially reverse
this decrease and showed a significant recover (89% and 90%, respectively) in the red/green ratio. An
important decrease in JC-1 aggregates in valynomicine control samples confirmed that the observed
changes were due to dissipation of the electrochemical potential. These data suggest that the possible
protection exerted by the treatments affects mechanisms that are upstream to any impairment of
mitochondrial functioning promoted by MPP+ toxicity.
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2.5. Treatments with βNF and EtOH Avoid Decrease of Mitochondrial Complex I Activity by MPP+. 

In order to assess whether CYP inducers protect the correct functioning of mitochondria from 
MPP+, a complex I activity assay was carried out. Cells were pre-incubated for 48 hours with βNF or 
EtOH at reported concentrations, then treated with MPP+ (1.5 mM) at the moment of data acquisition. 
We observed a decrease in the complex I activity of 56% compared to control (Figure 6). The inhibition 
of complex I activity obtained by rotenone confirmed that complex I was involved in the NADH 
reduction measured in this assay. Both pre-treatments with βNF and EtOH significantly reduced the 
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Figure 5. Changes in ψm by MPP+ were restored by βNF and EtOH treatments. SH-SY5Y cells
were treated with MPP+ (1.5 mM) and JC-1 was used to study the ψm. In control conditions, JC-1
accumulated inside the mitochondria, emitting red fluorescence. When the Ψm was disrupted, JC-1
accumulated in cytoplasm, emitting green fluorescence. Valinomycin (Val), which permeabilizes the
mitochondrial membrane to potassium, dissipated the mitochondrial electrochemical potential and
was used as a positive control to prevent JC-1 aggregation. Data represent the red/green ratio of treated
cells and are depicted as a percentage of control samples of independent cell culture preparations
(n ≥ 3). *** p < 0.001 vs. βNF or EtOH; ‡ p < 0.05 vs. MPP+ 1.5 mM, two-way ANOVA followed by
Tukey post-test.

2.5. Treatments with βNF and EtOH Avoid Decrease of Mitochondrial Complex I Activity by MPP+

In order to assess whether CYP inducers protect the correct functioning of mitochondria from
MPP+, a complex I activity assay was carried out. Cells were pre-incubated for 48 hours with βNF or
EtOH at reported concentrations, then treated with MPP+ (1.5 mM) at the moment of data acquisition.
We observed a decrease in the complex I activity of 56% compared to control (Figure 6). The inhibition
of complex I activity obtained by rotenone confirmed that complex I was involved in the NADH
reduction measured in this assay. Both pre-treatments with βNF and EtOH significantly reduced the
toxic effect of MPP+, showing only 33% and 11% decreases of complex I activity, respectively. These
data suggest that CYP induction predisposes the cells to be more efficient in avoiding the toxicity
produced by MPP+, and that this protection occurs before the toxin disrupts the mitochondrial complex
I activity. Overall, the presented data suggest that βNF and EtOH, possibly by inducing CYPs, protect
the SH-SY5Y cells against toxic insult by MPP+.
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3. Discussion

Exposure to xenobiotics is one of the major causes of oxidative stress and apoptosis in the CNS
and increases the risk of developing neurodegenerative diseases such as PD [22]. A mechanism by
which the cells eliminate xenobiotics is the CYP system, which is involved in the metabolism of most
of the drugs and toxins that cross the blood–brain barrier. Among the several isoforms that can be
found in this super-family, most of them can be upregulated by at least a few xenobiotics [11]. In our
previous publication, we demonstrated that βNF and EtOH are able to induce the expression of two
isoforms in SH-SY5Y cells, CYP 2D6 and 2E1 [20]. However, the mechanisms by which CYP isoforms
can influence the overall homeostasis of the brain are poorly understood. In this study, we used
SH-SY5Y cells to induce the expression of CYPs prior to exposure to MPP+, with the aim to study how
these two isoforms protect mitochondria against MPP+ toxicity. Other publication has also shown that
the apoptosis caused by MPP+ is mediated by ROS production [23]. We showed that both βNF and
EtOH treatments rescue the decrease in cell viability promoted by MPP+. Additionally, we presented
evidence that the observed neuroprotection is linked to a reduction of ROS formation, restoration
of ψm, and mitochondrial fusion kinetics. Finally, we showed that the toxic effect is avoided before
MPP+ affects the mitochondrial complex I activity. Taken together, these results suggest that induction
of CYPs by βNF and EtOH may contribute to neuroprotection of SH-SY5Y against MPP+ toxicity;
however, other molecular mechanisms involving neuroprotection pathways not related with CYPs
may not be discarded.

The difference in cell viability responses with both concentrations of MPP+ outline a possible
role of CYPs in MPP+ clearance. Indeed, the active site of CYP 2D6 is large enough to allow the
entry of MPP+ into it, while the active site of 2E1 is smaller, as reported by Gay and colleagues [24].
In this line, a higher presence of CYPs delays the toxicity promoted by MPP+, thus observing only late
apoptotic or necrotic cells with high concentrations of this toxin. Moreover, our results in mitochondrial
functionality are in agreement with those of cell viability. Despite the molecular mechanisms by which
CYP 2D6 or 2E1 avoid the toxic effects of MPP+ remain unclear, our data are congruent among them
and link the rescue in cell viability with restoration of mitochondrial functionality. It is well established
that MPP+ exerts its toxic effects through inhibition of complex I, disrupting the ATP production and
increasing ROS release [25]. According to this mechanistic action, the restoration of mitochondrial
homeostasis may be directly related to a decrease in ROS production and a correct functioning of the
respiratory chain complex I, as shown in our results.
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Consistent with our hypothesis, Mann and colleagues demonstrated that inhibition of CYP 2D6
with quinidine (0.1 µM) increased toxicity and cell death of MPP+ in SH-SY5Y cells [26]. Similar
results implicating the protective role of this isoform, although in undifferentiated and differentiated
PC12 cells, were also reported by Matoh and colleagues, who showed that cells overexpressing CYP
2D6 cDNA reduced the toxicity and the ROS production promoted by MPP+ [27]. Although the
neuroprotective role that CYP 2D6 plays in the CNS is still under debate, it may present a dual role in
terms of xenobiotic clearance. Indeed, CYP 2D6 have also been involved in the activation of MPTP
to MPP+, increasing ROS production, altering mitochondrial morphology, and decreasing complex
I activity in cultures of Neuro-2A cells expressing CYP 2D6 in mitochondria [28]. More studies are
necessary to relate the metabolic activity of CYP 2D6 to MPP+ detoxification. It has been shown by our
group as well as others that, in neurons, the CYP 2D6 isoform localizes in mitochondria, supporting a
possible interaction between both molecules [20,29–31].

Our findings are also consistent with other published studies in which the protective role of
CYP 2E1 against MPP+ toxicity is observed. The role for this isoenzyme in dopaminergic cells is
still under study. However, it has been related with MPP+ accumulation in vitro rather than with
metabolic activity [32]. In mesencephalic cell cultures from CYP 2E1-null mice, the lack of this isoform
contributed to the intracellular accumulation of MPP+ [33]. The same result was observed in CYP
2E1 knock-out mesencephalic cultures, where the MPP+ accumulation was double that in wild-type
cells [34]. However, Hao and colleagues showed opposite results in astrocytes, in which the inhibition
of CYP 2E1 activity with diallylsulphide avoided the loss of cell viability by MPP+ and decreased the
ROS production [35].

4. Materials and Methods

4.1. Products

βNF (Cat# N3633), EtOH (Cat# E7023), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT; Cat# M2128), 1-methyl-4-phenylpyridinium iodide (MPP+; Cat# D048), mitochondria
staining kit containing 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolocarbocyanine iodide (JC-1;
Cat# CS0390), 2′,7′-dichlorofluorescin diacetate (DCFH-DA; Cat# 287810), dimethyl sulfoxide (DMSO;
Cat# D8418), and the materials used for cell culture were obtained from Sigma-Aldrich (Milan, Italy).
The mitochondrial complex I activity kit (Cat# BVN-K520) was obtained from Vinci-Biochem (Florence,
Italy). The Alexa fluor 488™-Annexin V/ propidium iodide (PI) double staining kit (Cat# V13245),
the opti-MEM media (Cat# 11058021), and the Lipofectamine® 2000 reagent (Cat# 11668019) were
purchased from Life Technologies (Monza, Italy). The mitochondrial reporter (Ds-Red vector) and
the plasmid containing the photo-activatable green fluorescent protein (PA-GFP) gene were kindly
provided by Professor Richard Youle, NIH (Bethesda, MD, USA).

4.2. Cell Culture and Treatments with CYP Inducers and/or MPP+

Human neuroblastoma SH-SY5Y cells (ECACC Cat# 94030304) were obtained from Sigma-Aldrich
(Milan, Italy) and cultured into polystyrene-coated flasks in RPMI medium (Cat# R8758) supplemented
with 10% fetal bovine serum (Cat# F2442), 100 U/mL of penicillin, and 100 µg/mL streptomycin (Cat#
P4333). Cells were incubated at 37 ◦C in 5% CO2 and medium was changed two times a week. Once a
week, when flasks were at about 80% confluency, the culture was passaged at a ratio of 1:10. Only
cultures between passages 3–18 were used.

Cells were seeded in 96-well plates at a concentration of 1.6 × 104 cells/well for MTT assay,
mitochondrial complex I activity, and JC-1 experiments, or in 24-well plates at 4.0 × 104 cells/well for
ROS detection. In Annexin V/PI and cell cycle experiments, the cells were seeded in 6-well plates at a
concentration of 4 × 105 cells/well. After 24 h, the cells were treated as summarized in Table 1, except
for mitochondrial complex I activity experiments (see corresponding section for treatment details).
In brief, the medium was replaced with fresh medium containing βNF (4 µM) or EtOH (100 mM), and
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cells were incubated for another 24 h. The medium was then replaced with fresh medium containing
the same inducer plus MPP+ (0.6 or 1.5 mM) and left for additional 24 hours. Afterwards, cells were
used for data acquisition as detailed below. The study was not pre-registered, and no blinding or
sample size calculation was performed.

4.3. MTT Assay

The transformation of MTT to formazan due to normal metabolic activity, a measure of cell
viability, was determined as previously reported [20]. In brief, the culture medium was aspirated, and
cells were treated with an MTT solution of 0.5 mg/mL in fresh medium and incubated for 90 min at
37 ◦C and 5% CO2. The solution was then aspirated, and the resulting formazan was dissolved in
DMSO. After shaking the plate for 10 min, absorbance was measured by Multiskan GO (Cat# 10588;
Thermo Scientific, Milan, Italy) plate reader with SkanIt software version 3.2 (Thermo Scientific, Milan,
Italy) at a wavelength of 540 nm. Mean values of absorbance of each treatment from independent
experiments were normalized to mean control absorbance values, taken as 100% viability.

4.4. Apoptosis Assays

Exposed phosphatidylserine was detected by flow cytometry using the Alexa fluor 488™-Annexin
V/PI double staining kit. The staining protocol used for this assay was followed according to
manufacturer indications and as previously published [36] with some modifications. In brief, after the
treatments described above, the cells were resuspended in 1X annexin-binding buffer and stained with
Alexa fluor 488™-Annexin V and PI (100 µg/mL) for 15 min at room temperature. The samples were
then read with a BD FACSCalibur Flow Cytometry System (BD Biosciences, San Jose, CA, USA) with
CELLQuest Pro software version 3.3 (BD Biosciences, San Jose, CA, USA). Excitation of both fluorescent
markers was carried out with a laser at 488 nm, and annexin V and PI were read by using channels
FL1 and FL2, respectively. A minimum of 104 cells were collected, and then samples were analyzed
with FlowJo™ software vX.0.7 (Becton, Dickinson and Company, Ashland, OR, USA). During the first
stages of apoptosis, phosphatidylserine was translocated to the extracellular surface of the membrane
and was recognized by annexin V. PI is impermeable to the plasma membrane and only could enter the
cells when this was broken during the last stages of apoptosis. Therefore, the population that resulted
as a double negative was considered to be healthy. Annexin V positive and PI negative was considered
as early apoptotic, double positive was considered as late apoptotic, and annexin V negative and PI
positive was considered as a necrotic population.

Cell cycle analysis was also performed to check for apoptotic cells by flow cytometry as previously
described by Santulli and colleagues [37]. Briefly, after the treatments detailed before, the cells were
fixed with 70% of ice-cold ethanol, treated with RNase (10 mg/mL), stained with PI (2 mg/mL), and
incubated for 30 min at room temperature in darkness. Red fluorescence (DNA) was detected through a
563–607 nm band-pass filter using a BD FACSCalibur Flow Cytometry System. A minimum of 104 cells
per sample were collected, and the percentage of apoptotic cell accumulated in the sub-G0/G1 peak
was calculated by using Cell Quest Pro software version 3.3.

4.5. Mitochondrial Fusion Dynamics

The cells were seeded in a glass bottom dish (20 mm) at a concentration of 4 × 105 cells/dish. A day
after, cells were transfected with ds-Red (to colocalize mitochondrial) and PA-GFP plasmids (to report
fusion dynamics) at a 1:1 proportion (plasmid/plasmid) in opti-MEM medium with lipofectamine
transfection reagent at 1:2 ratio (plasmid/lipofectamine). Cells were incubated overnight at 37 ◦C
and 5% CO2 and treated with inducers and MPP+ (0.6 mM) as detailed in Table 1. Data were
acquired as described by Lovy and colleagues [38] with some modifications. In brief, a small region of
interest (~10 µm2) of the cell was photo-activated at 405 nm with a 40% UV laser. One-minute
post photo-activation, cells were photographed every 5 min for 55 min. PA-GFP intensity in
pre-photo-activated pictures was taken as 0% intensity, while one-minute post photo-activation was
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considered as 100% intensity. In healthy cells, intensity decreased over the time in the photo-activated
area, indicating high fusion dynamics, while impaired mitochondria retained the fluorescent signal due
to a lower fusion rate. Data were acquired with a super-solution Leica motorized inverted microscope
(Leica SP8 Gated STED, Leica Microsystems, Ashbourne, Ireland), and analysis was performed with
Leica Application Suite X software, version 3.7 (Leica Microsystems, Ashbourne, Ireland).

4.6. Mitochondrial Complex I Activity

The Complex I activity experiments were carried out following manufacturer indications and as
described by Brown and Brand [39] with some modifications. In brief, cells were treated with βNF
(4 µM) or EtOH (100 mM) for 48 hours to promote induction of CYPs. After incubation, the medium
was replaced for assay buffer containing KCN (100 mM), fatty acid free-BSA (1:20), and bovine heart
mitochondria (1:50). Then, test compound (MPP+ 1.5 mM), positive control (rotenone, 1 µM) or vehicle,
diluted in assay buffer, were added to each well. Finally, buffer containing NADH reagent (1:23)
and ubiquinone reagent (1:34) was added to each well. Immediately after, data were acquired in a
plate reader by measuring the absorbance at 340 nm every 30 s during 15 min at room temperature.
Absorbance was plotted versus time, and slope was calculated. The complex I activity (%) was
determined by dividing the slope of each sample by the control slope value.

4.7. Mitochondrial Electrochemical Potential Gradient

Changes in the ψm were detected with a carbocyanine dye JC-1 kit following manufacturer’s
indications. Under normalψm, JC-1 accumulated inside mitochondria, forming aggregates that emitted
a red fluorescence; under depolarized ψm, JC-1 diffused to the cytoplasm and formed monomers
that emitted a green fluorescence. After treating the cells as described in Table 1, a Fluoroskan
Ascent fluorimeter (Cat# 1506450; Thermo Labsystems, Milan, Italy) was used to measure the red-
(aggregated JC-1, intact mitochondria, 525 nm excitation, 590 nm emission) or the green-fluorescence
(monomeric JC-1, disrupted mitochondria, 490 nm excitation, 530 nm emission). Mitochondrial
membrane depolarization was indicated by a decrease in the red/green fluorescence intensity ratio.
Valinomycin (0.2 ng/µL for 20 min) was used as a positive control.

4.8. ROS Detection

ROS generation was assessed as previously described by Brizi and colleagues [40] with some
modifications. In brief, after treatments described in Table 1, cells were rinsed with phosphate buffered
saline (PBS) and loaded with 10 µM 2′,7′-dichlorofluorescin diacetate (DCFDA) for 15 min at 37 ◦C,
then washed, centrifuged at 13,000× g for 5 min, and re-suspended in 0.7 mL of phosphate buffered
saline (Cat# P5493; Sigma-Aldrich, Milan, Italy). The intracellular fluorescence (504 nm excitation,
529 nm emission) was acquired with a Fluoroskan Ascent fluorimeter, and data were normalized to
mg of cellular protein of the samples and expressed as percent of untreated control cells.

4.9. Statistical Analysis

Data were reported as mean ± SEM and analyzed for statistical significance by two-way ANOVA
followed by Tukey’s multiple comparison test with IBM SPSS Statistics for windows, version 26 (IBM
Corp., Armonk, N.Y., USA). No exclusion criteria were pre-determined. No normality test to analyze
the data distribution was performed. Outliers that were two standards deviation away from the mean
were excluded from the analysis, since they likely represent technical errors.

5. Conclusions

We propose that the neuroprotection mediated by βNF and EtOH may be carried out by the
metabolic activity of CYP 2D6 in mitochondria and by the role of CYP 2E1 in the efflux and the
accumulation of MPP+. However, other pathways promoted by βNF, EtOH, and independent from
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CYP induction should not be discarded. Taken together, these results support a possible role of
CYP 2D6 and 2E1 as a potential neuroprotective system against xenobiotic insult in undifferentiated
SH-SY5Y cells. Further research is needed to establish this CYP induction model in other cell lines
and primary cultures and to confirm a direct implication of CYP in MPP+ neuroprotection, thus the
impact that these isoforms have in the metabolism of other xenobiotics bring new insights for future
therapeutic approaches.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/11/
3955/s1.
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Abbreviations

CNS Central Nervous System
CYP Cytochrome P450
DCFH 2′,7′-dichlorofluorescein
DCFH-DA 2′,7′-dichlorofluorescin diacetate
EtOH Ethanol
JC-1 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolocarbocyanine iodide
MPP+ 1-methyl-4-phenylpyridinium
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PA-GFP Photo-activatable green fluorescent protein
PD Parkinson’s disease
PI Propidium Iodide
ROS Reactive oxygen species
βNF β-naphthoflavone
ψm Mitochondrial membrane potential
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