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Abstract: Chronic non-communicable diseases are the major cause of death globally. Whole grains are
recommended in dietary guidelines worldwide due to increasing evidence that their consumption can
improve health beyond just providing energy and nutrients. Epidemiological studies have suggested
that the incorporation of whole grains, as part of a healthy diet, plays a key role in reducing one’s
risk for cardiovascular diseases (CVDs), obesity, type 2 diabetes (T2D) and cancer. Phenolic acids
and dietary fibre are important components found in whole grains that are largely responsible for
these health advantages. Both phenolic acids and dietary fibre, which are predominantly present
in the bran layer, are abundant in whole-grain cereals and pseudo-cereals. Several studies indicate
that whole grain dietary fibre and phenolic acids are linked to health regulation. The main focus of
this study is two-fold. First, we provide an overview of phenolic acids and dietary fibres found in
whole grains (wheat, barley, oats, rice and buckwheat). Second, we review existing literature on the
linkages between the consumption of whole grains and the development of the following chronic
non-communicable diseases: CVDs, obesity, T2D and cancer. Altogether, scientific evidence that the
intake of whole grains reduces the risk of certain chronic non-communicable disease is encouraging
but not convincing. Based on previous studies, the current review encourages further research to
cover the gap between the emerging science of whole grains and human health.

Keywords: whole grains; dietary fibres; phenolic acids; cardiovascular diseases (CVDs); obesity;
type 2 diabetes (T2D); cancer

1. Introduction

Chronic non-communicable diseases are the major cause of mortality worldwide.
According to a World Health Organization (WHO, Geneva, Switzerland) report, more
than 15 million individuals between the ages of 30 and 69 die each year from chronic
non-communicable diseases; 85% of these premature deaths occur in low- and middle-
income countries [1]. Based on WHO reports for 2012 to 2016, consumption of whole grains
may decrease the risk of non-communicable diseases (e.g., type 2 diabetes, cardiovascular
diseases and obesity) [2]. The health aspects of whole grains have long been known. Grains
play an integral role in most diets as they are the primary energy source. Wheat and rice
are the most extensively consumed grains, whereas oats, barley, and buckwheat are low
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globally [3]. Some grains, such as wheat and rice, are usually consumed in refined form,
produced after removing the outer layer. In addition, whole grains consist of intact ground,
cracked or flaked kernels when the inedible parts are removed, such as hull and husk [4].
Thus, whole grain is composed of a starchy endosperm, the germ and the bran (including
aleurone), with their relative proportions the same as those in the intact kernel. In contrast,
refined grain products lack one or more components of the integral kernel. The bran and the
germ are removed from the starchy endosperm in refined grains. The starchy endosperm
alone accounts for 75–80% of the grain weight, and the bran contributes the rest, though
the percentages vary between different grains and varieties. In addition, bran is the major
component of phenolic acids, fibres and minerals in whole grains.

Epidemiological studies have shown that the intake of whole grains can reduce the
risk of certain chronic non-communicable diseases, including obesity [5], cardiovascular
diseases (CVDs) [6], type 2 diabetes (T2D) [7] and certain cancers [8]. In contrast, several
studies on refined grains have shown a link between high refined grain intake and an
increased risk of obesity [9], CVDs [10], diabetes [11–13] and cancers [14], while only a
few studies have found null associations [15–18]. These studies support health recommen-
dations to replace refined grains with whole grains. The health benefits of consuming
whole grains may be attributed to the synergistic effects of the bran and germ components,
which have inherently a higher dietary fibre content than refined grain products; the bioac-
tivity of all nutrients; and the contributions of a wide range of phytochemicals in whole
grains, such as phenolic acids/flavonoids, tocols, alkylresorcinols, avenanthramides and
oryzanols [19–22]. In particular, phenolic acids have gained great attention because of their
antioxidant, anti-inflammatory, and anti-carcinogenic activities [23,24]. Based on recently
published studies, it has been suggested that phenolic acids and dietary fibre, coupled with
whole grains, have numerous health benefits [20]. In addition, it has been well established
that bran and germ fractions have positive health effects on both animals and humans
via two mechanisms: first, by releasing indigestible fibres that influence gut microbiota
composition and activity; second, by giving substrates such as resistant starch, non-starch
polysaccharides (β-glucan and arabinoxylans) and phenolic acids that can be metabolised
into useful metabolites of microbiota [25].

Thus, whole grain products, which contain more dietary fibres than refined grain
products and often have a dietary fibre profile with a good balance of soluble and insoluble
fibre components, affect human health [26]. In fact, the benefits of consuming whole grain
cereals are connected to their higher fibre content and their content of fatty acids, vitamins,
and other bioactive components [19,27]. It has been shown that phenolic acids and dietary
fibres in whole grains have a significant effect on human health and provide protection
against chronic non-communicable diseases [28–30].

According to already published data, the intake of whole grains can lower the risk
of chronic non-communicable diseases. Therefore, there is general agreement that con-
suming whole grains may help in the prevention of several chronic non-communicable
diseases. However, evidence from prospective cohort studies is sometimes mixed, as
some individual publications have shown no significant or even contradictory findings.
These considerations have increased researchers’ interest in investigating the influence of
consuming whole grains on human health. Thus, the first aim of the present study was to
discuss the composition of phenolic acids and dietary fibres in whole grains, as they are
present in the most commonly consumed grains. Second, we discussed the effect of the
consumption of whole grains on CVDs, obesity (the proposed mechanism and the high
risk of obesity in relationship with other chronic diseases), T2D and cancers. Altogether,
the scientific evidence that the intake of whole grains prevents the risk of certain chronic
non-communicable diseases is encouraging but not convincing. Recent evidence suggests
that whole grains’ phenolic acids and dietary fibres coupled with whole grains may be more
beneficial healthwise than individual isolated components. Further studies are required to
address this research gap in the association between the consumption of whole grains and
the impact on human health.
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2. Materials and Methods

In the present study, we have summarised and reviewed the phenolic acids and
dietary fibres of whole grains. Then we examined existing literature on the association
between the consumption of whole grains and the development of the following non-
communicable chronic diseases: CVDs, obesity, T2D and cancer. All the materials for the
current review were searched for in PubMed and Google Scholar, including human studies,
such as observational (cross-sectional studies, case-control studies and cohort studies) and
intervention studies. The major keywords used for the search of literature were whole
grains, dietary fibres, phenolic acids, CVDs, obesity, T2D and cancer. In the present review,
pertinent data published in the English language in reputable peer-reviewed journals have
been included for discussion. However, all content available in the form of conference
abstracts, books and unpublished findings were excluded.

3. The Phenolic Acids and Dietary Fibres in Whole Grains
3.1. Phenolic Acids in Whole Grains

Phenolic acids are found in a variety of cereals, legumes and other seeds, where they
serve as a building material for cell wall matrices by establishing bridges with macro-
molecules, such as cellulose, hemicellulose and pectin, allowing for the formation of
compact cell wall structures. The three forms of phenolic acids in grains include free,
conjugated and bound forms [31,32]. According to the study of Adom and Liu [33], bound
phenolic acids account for 70–95% of total phenolic acids via ester or ether linked to cell wall
polysaccharides and cross links between them intramolecularly and/or intermolecularly
to form networks. Consistently, it has been demonstrated that the bran/germ fraction
contains 83% of the total phenolic content [34]. Phenolic acid is found mostly in the cortical
layer of grains, where ferulic acid is the most abundant, followed by oxalic acid, p-coumaric
acid and caffeic acid [32]. The quantity of phenolic compounds in whole-grain cereals
varies depending on grain type, variety and portion [33,35,36]. Wholegrain phenolic acids
are classified as hydroxybenzoic acids and hydroxycinnamic acid, respectively, based on
their C1–C6 and C3–C6 skeletons. The difference among these derivatives is the type and
number of functional groups substituted on the aromatic ring. p-Hydroxybenzoic, vanillic,
gallic and syringic acids are hydroxybenzoic acid derivatives, whereas hydroxycinnamic
acids include ferulic, p-coumaric, caffeic and sinapic acids [37] (Table 1), which are found
as esters and glycosides. The most common phenolic acid compounds in whole grains are
vanillic, ferulic acid caffeic, syringic and p-coumaric acids [38], which are distributed in
large quantities in aleurone, embryo and pericarp but in far less quantities in the starchy
endosperm of the cereal grains.

Table 1. Chemical structure of four hydroxybenzoic acids (a) and four hydroxycinnamic acids (b).

(a) Hydroxybenzoic Acids
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buckwheat has the lowest (36.8 µg/g). Vanillic acid is found in wheat, barley, oats, rice [40]
and buckwheat [39]. The average content ranges from 7.2 µg/g in buckwheat to 19.6 µg/g
in barley. Syringic acid has been reported in wheat [41], barley [42], oats [40], rice [43] and
buckwheat [44], and its content was the highest in buckwheat, at 49.9 µg/g, and the lowest
in barley, at 12.8 µg/g.

Table 2. Review of four hydroxybenzoic acids and four hydroxycinnamic acids in five whole grains.

Contents of Four Hydroxybenzoic Acids in Whole Grains (µg/g of Dry Weight)

Grains p-Hydroxybenzoic acid Gallic acid Vanillic acid Syringic acid References
Wheat 7.5 (4.9–10.8) 89.2 (6.5–195.0) 15.4 (3.4–57.0) 19.5 (4.0–58.5) [40,41]
Barley 110.7 (6.4–215.0) 82.6 (6.5–158.6) 19.6 (5.9–49.3) 12.8 (6.0–55.2) [40,42]

Oat 12.0 (8.1–16.0) 121.5 (1.7–241.2) 16.3 (11.4–20.5) 19.2 (17.9–20.0) [40]
Rice 25.7 (5.1–46.3) 51.7 (5.5–115.6) 19.2 (4.4–38.1) 52.3 (2.8–103.9) [40,43]

Buckwheat 64.8 (19.6–110.0) 36.8 (26–71.0) 7.2 (1.2–15.0) 49.9 (36.3–63.5) [39,44]

Contents of Four Hydroxycinnamic Acids in Whole Grains (µg/g of Dry Weight)

Ferulic acid p-Coumaric acid Caffeic acid Sinapic acid
Wheat 485.0 (11.6–870.0) 54.4 (3.5–523.0) 26.2 (0.5–51.9) 59.3 (22.4–157.8) [40,42,45,46]
Barley 381.8 (155.1–601.9) 82.2 (18.4–151.4) 13.8 (5.6–21.9) 54.3 (18.8–43.5) [40,42,47]

Oat 514.8 (249.4–1044.9) 607.3 6.4 (3.6–9.2) 62.7 (51.9–107.1) [40,47]
Rice 219.7 (68.2–554.7) 45.3 (22.8–85.0) 2.2 (1.0–3.5) 58.7 (24.2–47.2) [40,47]

Buckwheat 38.9 (4.4–122.8) 18.1 (1.7–37.7) 66.3 (8.0–105.9) 22.3 (2.2–37.7) [39,44]

Hydroxycinnamic acids include ferulic, p-coumaric, caffeic and sinapic acids. Ferulic
acid is omnipresent in plants and is derived from phenylalanine and tyrosine metabolism.
Ferulic acid is found mostly in the cell walls of wheat [42], barley [40], oats, rice [47] and
buckwheat [39,44]. The average content of ferulic acid in these grains ranges from 38.9 to
514.8 µg/g, with oats having the greatest amount and buckwheat having the lowest. Wheat,
barley [42], oats and rice [40], as well as buckwheat [39], have all been found to contain
p-coumaric acid. The average content of p-coumaric acid in these grains is 18.1 µg/g of dry
weight in buckwheat and 607.3 µg/g of dry weight in oats. Wheat, barley, oats, rice [40]
and buckwheat [39] all contain caffeic acid. The average caffeic acid contents range from
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2.2 µg/g of dry weight in rice to 66.3 µg/g of dry weight in buckwheat. Sinapic acid
can be found in a variety of plants, including wheat [45,46], barley, oats, rice [40,47] and
buckwheat [39,44]. The average content in these grains ranges from 22.3 µg/g of dry weight
in buckwheat and 62.7 µg/g of dry weight in oats.

As noted in Table 2, in the review of four hydroxybenzoic acids and four hydrox-
ycinnamic acids in five whole grains, except for buckwheat, ferulic acid has the highest
prevalence in all grains. Ferulic acid ranks second in oats, p-coumaric acid ranks first and
caffeic acid ranks second in buckwheat, and the ranking becomes more variable in the rest
of the phenolic acids found in cereals and pseudo-cereals. Oats, wheat, barley, rice and
buckwheat are in descending order of the sum of the eight reviewed phenolic acids. Oats,
wheat, barley, rice and buckwheat are in descending order of the four hydroxycinnamic
acids; and wheat, buckwheat, barley, rice and oats are in descending order of the four
hydroxybenzoic acids. According to these comparisons, each grain prefers one phenolic
acid synthesis pathway over the others, leading to a unique phenolic acid profile. Due to
low synthesis, buckwheat’s phenolic acid concentration, including p-hydroxybenzoic acid,
caffeic acid and syringic acid, is substantially lower than in other grains.

3.2. Dietary Fibre in Whole Grains

According to Health Canada 2020, dietary fibres are defined as “carbohydrates with
a degree of polymerisation of 3 or more that naturally occur in foods of plant origin
and that are not digested and absorbed by the small intestine” [48]. Based on the water
solubility of dietary fibre, they are classified into two types: insoluble dietary fibre (IDF)
and soluble dietary fibre (SDF). Dietary fibre may be derived from different sources, such
as cereals, fruits and vegetables. The quantity and composition of dietary fibre might differ
depending on the source. Cereals are a good source of dietary fibre, and both soluble and
insoluble dietary fibre help to decrease the risk of numerous chronic non-communicable
diseases [49,50].

The total dietary fibre (TDF) content of both IDF and SDF of wheat ranges from 9 to
about 20% (on a dry weight basis) [51] (Table 3). The cell walls of wheat’s starchy endosperm
cells are made up of two primary types of dietary fibre components, i.e., arabinoxylan and
β-glucan. In wheat grains, β-glucan and arabinoxylan generally account for about 20 to
70% of the total dietary fibre content. Small quantities of cellulose and glucomannan may
also be found in these cell walls.

Oats and barley are excellent sources of IDF and SDF as well as other bioactive com-
pounds. The IDF fraction is primarily found in the cereal’s bran, whereas the SDF fractions
are found mostly in the endosperm cell walls [52]. On a dry matter basis, the TDF content of
barley and oats varies from 10 to 28% [53] and 10 to 38% [54,55], respectively (Table 3). Both
oats and barley contain β-glucan as the primary non-starch polysaccharide throughout the
entire kernel; arabinoxylan is also found in both grains, although in considerably lower
concentrations. In barley and oat cereals, β-glucan and arabinoxylan account for about
20 to 70% of the total dietary fibre content. Cereals’ β-glucan is composed of cellotriosyl and
cellotetraosyl units, which are connected together by 1–3 linkages [56]. The concentration
of β-glucan in oats and barley varies, depending on the genotype: in barley, β-glucan is
distributed equally throughout the endosperm, but in oats, it is more concentrated in the
outer layers of the endosperm [57]. Whole-grain barley has the same amount of β-glucan
as oats. Barley varieties with low amylose content can even provide 1.5 to 4 times more
β-glucan as compared to oats [56].
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Table 3. The dietary fibre content of five whole grains (g/100 g).

Whole Grains TDF IDF SDF Reference

Wheat (Triticum aestivum L.; Triticum durum Desf.)
11.6–17.0 10.2–14.7 1.4–2.3 [58]
10.2–15.7 7.2–11.4 0.9–2.9 [59]

9.2 - - [60]

Barley (Hordeum vulgare L.)
14.6–27.1 - - [55]
16.8–27.9 12.0–22.1 2.6–5.0 [61]

10.1 - - [53]

Oats (Avena sativa L.)
13.7–30.1 - 11.5–20.0 [54]

10.3 6.5 3.8 [62]
11.5–37.7 8.6–33.9 2.9–3.8 [55]

Rice (Oryza sativa L.) 9.9 5.4 4.4 [63]
2.7–4.9 1.9–4.2 0.6–1.1 [64]

Buckwheat (Fagopyrumesculentum Moench.) 7.0 2.2 4.8 [65]
11.9 5.8 6.1 [66]

Note: TDF: total dietary fibre; IDF: insoluble dietary fibre; SDF: soluble dietary fibre.

The TDF level of rice varies from 2.7 to about 9.9%. This wide range of dietary
fibre level is partly due to variations across rice varieties [65,67]. The authors found that
brown rice has higher dietary fibre content than the content found in white rice, in which,
essentially, the outer kernel layers have been removed by abrasive milling. The dietary
fibres in rice kernel are mainly found in the hull and bran layer, the same as in other
grains [68]. The major components of the IDF fraction in rice are cellulose and water-
insoluble hemicellulose, whereas the SDF is made up of arabinoxylan and β-glucan [69].

The TDF content of buckwheat groats is 7–11.9%, which is lower than the dietary fibre
content found in other cereals, such as wheat, barley and oats. The majority of dietary
fibres from buckwheat groats (70%) are water insoluble [70]. Pectin, arabinogalactan and
xyloglucan are the most common water-soluble fibres in buckwheat seeds [71]. The authors
found pectin in the outer and inner epidermis of the cell walls as well as in the endosperm
of buckwheat seeds.

It has been summarised in Table 3 that oats contain the highest dietary fibre levels, from
10 to 38%, while rice contains the lowest dietary fibre level among cereals (2–5%). The ranks
become variable in the rest of the cereals. The descending order of the sum of total dietary
fibre in Table 3 is oats, barley, wheat, buckwheat and rice. In a few studies, both soluble
and insoluble dietary fibre in wheat and barley were undetected. The consumption of
whole-grain fibre has been linked to a reduced risk of chronic non-communicable diseases.
Diets rich in fibres are an important part of T2D management, since they enhance glycemic
control, blood lipids, body weight and inflammation and reduce premature mortality.
Further experimental trials are required to confirm the contents of TDF, IDF and SDF in
different whole grains.

4. Linkage between Consumption of Whole Grains and the Development of Chronic
Non-Communicable Diseases

The American Association of Cereals Chemist International (AACCI) issued a formal
definition of whole grains in 1999 [4]: The “whole grain shall consist of intact, ground,
cracked or flaked caryopsis (kernel), whose principle anatomical components including
starchy endosperm, germ and bran are distributed in the same relative proportions as
they exist in the intact caryopsis.” However, in 2006, the AACCI whole grains task force
working group broadened the definition of whole grains to include pseudo-cereals [72]
(Table 4). Pseudo-cereals were included because their overall macronutrient composition
is comparable to that of cereals and they are used in the same traditional way as cereals.
Furthermore, in recent years, whole grains have been the focus of significant scientific,
governmental and commercial interest, as epidemiological studies have increasingly evalu-
ated their defensive role against many chronic diseases, particularly those associated with
chronic non-communicable diseases, such as CVDs and T2D [73,74].



Int. J. Environ. Res. Public Health 2022, 19, 3042 7 of 21

Table 4. Botanical names of whole grains used in the study.

Cereal Type Botanical Name

Wheat Triticum spp.
Barley Hordeum spp.
Oats Avena spp.
Rice Oryza spp.

Pseudo-Cereal Botanical Name

Buckwheat Fagopyrum spp.

Chronic non-communicable diseases (CVDs, obesity, T2D and cancer) are increasing
rapidly worldwide [75]. Whole grains have numerous beneficial impacts on human health
due to dietary fibres and phenolic compounds, which have been found to be associated
with a reduced risk of chronic non-communicable diseases [20,76]. Several studies have
suggested that people who consume three or more servings of whole grains/day have a
20–30% lower risk of diseases than those who consume a small amount of whole grains and
this level of protection is not observed with the consumption of refined cereals [70,77,78].
A health-tracking study of professionals monitored 42,898 males and found that those
who consumed approximately three servings of whole-grain cereals per day had a 37%
lower chance of developing T2D [79]. The data brought together in prospective cohort
studies show that the intake of whole grains reduces the relative risk of T2D by 30% [80].
Another study found that, compared to refined grains, the consumption of whole grains
is inversely related to obesity [81]. A study based on 16 cohorts from seven countries
demonstrated that body mass index is negatively associated with whole-grain dietary
fibre intake [82]. Similarly, another study [83] found an inverse relationship between the
consumption of whole grains and the risk of being overweight or obese. The authors
found that the association in the male participants was stronger than that in the female
participants. Furthermore, the consumption of whole grains has been linked to a lower
risk of some cancers, including colorectal cancer [15], mouth/throat cancer and upper
digestive tract cancer [84]. As a result, multiple epidemiological investigations, notably
large prospective studies with millions of people followed for years, have discovered
an inverse link between a whole-grain diet, including bran, and the risk of chronic non-
communicable diseases [74,85,86]. In addition, research strongly supports the intake of
whole grains’ phenolic acids with a decreased risk of certain chronic non-communicable
diseases [29,30,70]. Furthermore, in a 12-week randomised double-blind placebo-controlled
study, it was documented that whole-grain dietary fibre may with phenolic acids have a
protective effect [87]. It shows that dietary fibre and phenolic acids in whole grains have
associations with an improved health status.

4.1. The Effect of Consumption of Whole Grains on CVDs

Cardiovascular diseases are the world’s leading cause of death. According to the
World Health Organization, 17.9 million people died from CVDs in 2019, representing
32% of all global deaths; CVDs were responsible for 85% of these deaths [88]. Researchers
predict that by 2030, chronic non-communicable diseases will account for more than three-
quarters of global deaths; CVDs alone will account for more deaths in low-income countries
than other diseases [89].

A study tracking health professionals [19] examined the consumption of whole-grain
cereals, bran and germ in terms of CVD risk using the data on food consumption frequency.
The authors found that the added germ has no link with CVD risk. Based on the above-
published data, the link between consuming whole-grain cereals and decreased CVD risk
is obvious, indicating that the bran of whole-grain cereals might be a significant component
in this relationship.

A systematic review has documented a significant inverse relationship between the
consumption of whole grains and the risk of CVDs, cancer and other causes of specific
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mortality [90]. In addition, a cohort study in a Spanish working population evaluated the
relationship between dietary fibre type and CVD risk factors [91]. When analysing the
blood sample, the above study found a negative association between insoluble dietary fibre
consumption and total cholesterol and blood pressure. In contrast, soluble dietary fibre
intake had an inverse relationship with triglyceride content. Cereals’ β-glucan is one of
the most common types of soluble dietary fibres that affect CVD risk. After reviewing the
scientific data, the Food and Drug Administration approved a health claim that soluble
fibres from whole grains may lower the risk of heart diseases [92]. These findings support
the advice that people eat more whole grains to improve their health.

Research on whole-grain bran shows that p-coumaric acids have free radical scaveng-
ing properties, potentially protecting against CVDs because of their ability to decrease the
low-density lipoproteins’ resistance to cholesterol oxidation [93]. A meta-analysis including
24 clinical studies [94] concluded that the consumption of whole grains lowers low-density-
lipoprotein cholesterol and total cholesterol and tends to lower triglycerides compared
with non-wholegrain control diets but has no effect on high-density-lipoprotein cholesterol.
Interestingly, they did not find a threshold dose or dose-dependent association. Another
meta-analysis study, which covered 45 prospective cohort studies and 21 randomised
controlled trials, compared the consumption of whole grains to those who never or seldom
consumed whole grains and found that those who consumed 48–80 g of whole grains/day
had an ~26% lower risk of T2D and an ~21% lower risk of CVDs [84].

The consumption of whole grains may reduce the risk of CVDs associated with
different parts of the cereal grain due to differences in the composition and constituents
of phenolic acids and dietary fibres. Whole grains contain the endosperm, the bran layer
and the germ, whereas refined grains contain only the endosperm. The bran layer and
the germ are high in dietary fibres, polyphenols and other components that may provide
cardiovascular protection. Based on the above studies, the health benefits of whole grains’
consumption are thought to be associated with fibres and phenolic acid, which is mainly in
the bran and germ fraction of the whole grains [95]. Although the processes underlying
these effects are not fully understood, they are likely to be closely related to the antioxidant
activity of whole grains [96,97]. Future prospective studies may address the question of
whether the intake of whole grains is directly related to CVDs and whether the associations
are primarily driven by phenolic acids, dietary fibres or some other related aspect of
the diet.

4.2. The Effect of Consuming Whole Grains on Obesity

Obesity is a serious health concern in developed countries, and it has been associated
with a wide range of metabolic diseases, CVDs, T2D and several types of cancer [98]. World-
wide, obesity is currently the most common metabolic disease, although the prevalence
varies widely among different countries. The increase in obesity is defined as a surplus
amount of body fat and is confined to affluent societies and developing countries. Epidemi-
ological studies have indicated that regular use of whole grains leads to a lower risk of
developing obesity [7]. A cross-cultural study of 16 cohorts from seven countries discovered
that the body mass index (BMI) and the subscapular skin fold thickness were negatively
associated with total dietary fibre consumption, suggesting that reducing fibre intake is
the key factor in body fat accumulation [99]. Furthermore, a cohort study conducted in
the Netherlands documented an inverse relationship between whole grains’ intake levels
and the incidence of overweight or obesity in both men and women, and the correlation
in men was stronger than in female participants [9]. Over a 12-year follow-up period, a
large prospective study on 74,091 females indicated that the consumption of whole grains
and bran when combined with body weight measurements reduced the risk of obesity and
weight gain by 19% and 23%, respectively [100]. In another prospective study, compared
with the lowest consumption, the highest consumption of whole grains and bran led to
a 23% lower risk of weight gain in an over 8-year follow-up period in 26,082 males [101].
According to a short-term study, the consumption of soluble dietary fibre β-glucan can
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improve the postprandial satiety feeling and reduce body weight and the intake of total
calories [102]. The authors found that consuming β-glucan from cereal sources significantly
reduces body weight. The gel-forming ability of soluble-glucan and other soluble fibres, as
well as the bulking influence of insoluble fibres, may be connected with prolonged satiety
feelings [103]. Similarly, in long-term prospective observational studies, the intake amount
of whole grains on a daily basis may contribute to a smaller waist circumference, a lower
BMI (weight in relation to height) and lower body fat levels [104,105]. The evidence from
randomised controlled research demonstrates variations in the benefits of a whole-grain
food diet in terms of body weight compared to control (non-wholegrain meals). Larger and
longer-term human intervention trials are necessary to determine if whole grains contribute
solely to a healthier lifestyle status.

Furthermore, in a small prospective study, it was documented that those who con-
sumed the highest amount of whole grains and bran showed a 7.2% reduction in obesity
during the 2-year follow-up period [106]. The epidemiological study also showed that
whole grains are inversely correlated with a reduced risk of obesity [107]. These studies
show consistent inverse correlations between the intake of whole grains and bran and BMI,
weight gain, body weight and the risk of obesity. Despite consistent inverse correlations,
there were no significant changes in absolute body weight or weight gain between the
highest- and lowest-consumption groups in these prospective trials. The results from the
cohort study performed by [106] are similar to data reported in adults [107]. The synergistic
effect of several whole-grain dietary fibre components with phenolic acids may be involved
in the protective mechanism against and obesity [19,20,28–30].

Several factors might explain the effect of whole grains on body weight management.
Whole-grain foods may enhance satiation due to their high volume, low energy density
and lower palatability. Furthermore, whole grains may improve satiety (delayed return of
appetite after a meal) for up to several hours after a meal. Grains high in soluble fibres (such
as oats and barley) enhance intraluminal viscosity, prolong gastric emptying and inhibit
nutrient absorption in the small intestine. Although preliminary evidence suggests that
whole grains may influence body weight regulation, more research is needed to determine
the independent effects of whole-grain bran, dietary fibre and phenolic acids on obesity, as
well as epidemiological studies and clinical trials, to confirm health benefits.

4.3. Relationship of High Risk of Obesity with Other Chronic Diseases

Scientific studies support the consumption of whole grains to reduce the risk of
being overweight and obese [7,25,75,81]. The major impact of the intake of whole grains
may be a reduced appetite and a longer sensation of fullness [108]. The intake of whole-
grain meals, the particle size and the structural integrity alter the quantity of chewing
necessary for ingestion of whole-grain foods. Increased chewing may induce satiation by
enhancing gastric distention, improving gut hormone responses [83,109] or slowing the
eating rate [110,111]. Whole-grain foods have a lower energy density, which is defined
as digestible energy per unit weight, than refined grain foods. The low digestible energy
per unit mass and many dietary fibres’ water-holding capabilities may contribute to this
effect [112]. According to short-term studies, individuals tend to eat a consistent weight
of food regardless of calorie content, showing that the mass of food ingested influences
hunger more than the quantity of energy consumed [113]. As a result, lowering dietary
energy density reduces energy intake without an increase in appetite [114].

Furthermore, studies have highlighted the possible role of gut microbiota in modu-
lating correlations between the consumption of whole grains and body weight manage-
ment [115–117]. Researchers have discovered that short-chain fatty acids (SCFAs) synthe-
sised during the fermentation of specific fibres within whole grains can help to regulate
body weight and composition by acting as metabolisable energy sources. In addition, SC-
FAs directly regulate the hepatic and peripheral glucose and lipid oxidation and stimulate
the secretion of the gut hormones peptide-YY and glucagon-like peptide 1 (GLP-1), which
suppress appetite, slow gastrointestinal transit and alter glucose metabolism [101,118]
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(Figure 1). A number of variables influence SCFA synthesis, including the composition
of the gut microbiota and the availability of a fermentable substrate [119]. The prebiotic
effect is the symbiotic relationship between the gut microbiota and the human host in
which specific fermentable carbohydrates selectively promote the production of colonic
bacteria beneficial to host health [120], demonstrating the relationship between substrate
availability and gut microbiota composition. Emerging data suggest that the gut mi-
crobiota is connected to human obesity [120–123] and is responsive to several dietary
variables [124], suggesting a possible function for whole grains in body weight manage-
ment via gut microbiome modulation. Though these studies provide some support for
whole-grain components having a beneficial effect on body weight control, additional
research is needed to discover whether eating smaller doses of whole grains would have a
similar beneficial effect.
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composition is mediated by the structural and physicochemical features of whole-grain meals. IR:
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4.4. Relationship of Obesity with Other Chronic Diseases

Obesity has been discovered to have a substantial relationship with insulin resistance
and T2D. In obese patients, substances such as glycerol, non-esterified fatty acids and
cytokines markers are associated with the growth of insulin resistance. In severe T2D,
the pathogenesis of T2D involves the weakening of pancreatic beta-islet cells or insulin
resistance or both [125]. Insulin resistance is the underlying cause of both T2D mellitus
and obesity. Insulin sensitivity normally changes during the life cycle, as shown during
pregnancy, puberty and the ageing process [125]. Furthermore, lifestyle modifications,
such as increased carbohydrate intake and increased physical activity, are variables that
contribute to insulin sensitivity [126]. In addition, intra-abdominal fat is more important in
insulin resistance because it is more lipolytic and does not readily respond to anti-lipolytic
insulin action [127]. CVDs are connected to T2D and obesity because of the correlation of
inflammation (low grade), as demonstrated in Figure 2. The over-expression of cytokines,
such as interleukin-6 (IL-6), IL-1, leptin, plasminogen activator inhibitor-1 (PAI-1), resistin
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monocyte chemo attractant protein-1 (MCP-1), angiotensin and tumor necrosis factor-α
(TNF-α) fibrinogen, causes inflammation and lipid accumulation, which has a disastrous
effect on blood vessels and can eventually cause endothelial dysfunction, cardiomyopathy
and myocardial infarction [128–131]. The over-expression of these cytokines is linked to
the connection between insulin resistance and T2D. However, considering whole grains’
nutritional advantage over refined grains, whole grains should be recommended as part of
a health-promoting diet.
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4.5. Proposed Mechanism of High Risk of Obesity and Cancer Risk

In addition to environmental factors and genetic susceptibility, multiple mechanisms
have been proposed to explain the epidemiologic links between obesity and cancer [132–134].
Obesity, especially central/visceral obesity, results in insulin resistance and prolonged com-
pensatory hyperinsulinemia. Increased insulin levels have been shown to induce mitogenic
effects and lead to cancer risk by activating both the insulin receptor and the insulin-like
growth factor 1 (IGF-1) receptor. Hyperinsulinemia can also decrease the production of
insulin-like growth factor-binding protein 1 (IGFBP-1) in the liver and other organs and
is linked to lower plasma insulin-like growth factor binding protein-2 (IGFBP-2) levels.
This reduction in IGFBP-1 and IGFBP-2 levels, in turn, increases IGF-1 bioavailability,
which stimulates cellular proliferation and prevents apoptosis via its receptor in various
organs [135–138] (Figure 2). Increased estrogen and androgen levels are also known to play
a role in the development of cancer, especially in endometrial and postmenopausal breast
malignancies. Circulating sex hormone-binding globulin levels have much lower produc-
tion in the liver. Insulin resistance and persistent compensatory hyperinsulinemia appear
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to be important in the pathophysiology of obesity-related carcinogenesis, which may differ
depending on the cancer type in individuals with central obesity and hyperinsulinemia.

4.6. The Effect of Consuming Whole Grains on T2D

Worldwide, T2D is a key health problem and carries a socioeconomic burden, es-
pecially in low- and middle-income countries [139,140]. Globally, the incidence of T2D
was predicted to reach 439 million by 2030 [141]. According to the authors, there will
be a 69% increase in the number of adults with T2D in developing countries and a 20%
increase in developed countries between 2010 and 2030. Wholegrain cereals’ consumption
is related to a lower incidence of T2D [6,73,75,79,80,88,131]. In long-term studies of almost
90,000 women [142] and nearly 45,000 men [143], it has been documented that the intake of
whole grains can lower the risk of developing T2D, when combined data from both studies
show an approximately 30% lower risk of developing T2D found in those who used more
whole-grain dietary fibres compared to others. According to another study, individuals
who consumed large quantities of refined grains and small amounts of whole grains had
a 57% higher risk of T2D than those who consumed large amounts of whole grains [79].
Furthermore, a health professional follow-up study that followed 42,898 men reported a
37% lower risk of T2D linked to about three servings of whole grains per day [80]. When
these data were combined together in prospective cohort studies, they indicated that the
consumption of whole-grain cereals reduces the relative risk of T2D by 30%. Randomised,
controlled dietary trials in people and other experimental research show a causal link
between the intake of whole grains and T2D prevention [144,145]. In addition, a study
found that a diet high in whole-grain products lowers the postprandial insulin and plasma
triglyceride levels in people with metabolic syndrome by 29% and 43%, respectively [146].
The researchers found that the effects of whole-grain cereals on postprandial insulin and
plasma triglyceride concentrations might explain the relationship between the consumption
of cereals and a reduced risk of T2D and CVDs. However, researchers have found largely
contrasting results in this field, clearly highlighting the need for more studies [84,147].
While the health benefits of consuming whole grains are most likely connected to the
dietary fibres and phenolic acids found in whole-grain bran [22,28–30], additional study is
needed to understand the effects deeply.

The phenolic acid in whole grains is a key contributor to overall antioxidant capacity
and lowers the risk of chronic diseases [148]. Therefore, dietary components, such as
phenolic acids, that decrease the risk of chronic diseases and a limited number of micronu-
trients that act as antioxidants may prevent the progression of metabolic syndrome and
T2D by lowering oxidative stress [149]. In addition to their antioxidant capabilities, several
cereals’ phenolic compounds have potential anti-inflammatory properties [150] and may
thus influence T2D risk via this mechanism as well [151–153]. Although not elucidated, in
clinical trials and epidemiological studies, the consumption of whole-grain bran has been
linked with a reduced risk of T2D, probably due to the phenolic acids and fibres which
are embedded in the bran [154]. In addition, the high nutritional and fibre contents in
general and the physical structure of whole grains are thought to be the major cause of
T2D [155,156]. Furthermore, one cohort study reported a negative association between
total fibre consumption, particularly cereal fibres, and the incidence of T2D, and found
that the fibre derived from fruits or vegetables does not influence the risk [86]. Adjustment
for cereal fibre significantly decreased the connection between the consumption of whole
grains and T2D risks, indicating that the relation may be due to cereals’ fibre or factors
correlated with the intake of the cereals’ fibre.

The global prevalence of T2D has become a serious threat to human health in both
developing and developed countries. Diet modification is one of the most significant factors
in lowering the risk and controlling the development of diabetes complications. Scientific
data suggest that the intake of whole grains regularly may reduce the incidence of chronic
non-communicable diseases such as T2D. Because the whole-grain bran layer contains a
wide range of functional components, including dietary phenolic acids and dietary fibres,
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it is important to determine which of these components may have the most protective
benefit. We found a convincing inverse relationship between the consumption of whole
grains and T2D, which is consistent with previous research. Clinical and epidemiological
studies support the association of whole grains, phenolic acids and dietary fibres with a
lower risk of disease. However, researchers have found largely contrasting results in this
field, clearly highlighting the need for future research. We recommend more research on
the independent effects of bran, phenolic acids and dietary fibres on T2D to cover the gap
in the link between whole grains and T2D.

4.7. The Effect of Consuming Whole Grains on Cancer

According to the World Health Organization report 2021, cancer accounted for over
10 million deaths by 2020 and is considered a leading cause of death worldwide [157].
Whole-grain cereals’ intake has been found to be associated with a lower risk of cancer
in numerous studies. Several studies have found that there is strong evidence of a link
between the intake of whole grains and a lower risk of cancer diseases [8,48,55,147]. The
consumption of whole grains may prevent cancer owing to intestinal microbiota, synthesis
of short-chain fatty acids, reduced transit time, prevention of insulin resistance and an-
tioxidant activity of phenolic acids, which protect by binding carcinogens and modulating
glycemic response. This antioxidant effect is due to their phenolic acids, which alleviate
oxidative stress [158]. The phenolic acids in the whole grain affect the cellular signal trans-
duction pathways and hence influence cancer cell behavior, such as proliferation, apoptosis
and invasion [159]. Bran antioxidants may contribute to cellular protection while also
reducing oxidative damage. The ability of phenolic acids to prevent cancer has been linked
to their ability to reduce oxidative damage to cells and cell components [160,161].

A meta-analysis of six trials on whole grains [94] found that every three servings
(90 g/day) of whole grains can reduce the risk of colorectal cancer by 17%. A review of
40 studies on gastrointestinal cancer [162] revealed that those who consumed high amounts
of whole grains had a reduction in cancer risk from 21% compared to 43% in subjects
with low consumption. A meta-analysis study of over 786,000 individuals combining
results from studies conducted in the U.S., the U.K. and Scandinavian countries [163]
concluded that people who consumed 70 g of whole grains/day had a 22% lower risk
of total mortality, a 23% lower risk of CVD mortality and a 20% lower risk of cancer
mortality. However, a study of 58,279 males [164] showed no link between dietary fibre
and colorectal cancer. Cohort studies have indicated a reduction in the incidence of specific
cancers, such as colorectal in women [15], mouth/throat and the upper digestive tract
cancer [84] and endometrial cancer [165]. In another cohort study, it was found that
consuming more whole grains can reduce the incidence of colorectal cancer in women
by 19% [166]. Furthermore, the prospective National Institutes of Health-AARP Diet and
Health Study following 291,988 men and 197,623 women reported that the consumption of
whole grains could reduce colorectal cancer risk by 21% [167]. As longitudinal studies are
necessary to investigate cancer formation and progression, clinical evidence of the influence
of whole grains or their contents on cancer risk cannot be readily established. Despite
lacking support from clinical studies, preclinical studies provide a strong biochemical and
molecular mechanism for the anti-carcinogenic activity of whole grains’ phenolic acids.
For example, both ferulic acid and p-coumaric acid were found to be associated with the
inhibition of cell growth by modulating cell cycle phases in colonic cancer cells [168]. A
preclinical study [119] used human lung and colon adenocarcinoma cancer cell lines to
demonstrate that caffeic acid, ferulic acid or p-coumaric acid inhibits cell adhesion and
migration, which are important mechanisms in tumour metastasis. These preliminary
findings indicate the health benefits of phenolic acids in whole grains in cancer prevention
and protection.

Furthermore, free phenolic acids are more easily digested than bound phenolic acids
in the upper digestive tract [169]. Because it is more difficult to digest the cell walls in
bound phenolic acids, the digestion and absorption process takes place mostly in the large
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intestine. Bound phenolic acids are released from the cell wall in the large intestine in the
form of glycosidic ligand by the activity of bacteria or similar enzymes and then reformed
into glucoside, which is used by the human body via the glucose transporter in the cell.
Consistently, [170] discovered that the interaction of phenolic acids with bacteria in the large
intestine greatly decreases the risk of colon cancer and enhances the intestinal microbial
environment. In addition, it was found that whole grains’ consumption relates inversely
to colorectal cancer but the effect is small [171]. A meta-analysis of observational studies
investigated the potential role of the consumption of whole grains in reducing the risk
of pancreatic cancer [172]. The researchers concluded that a high intake of whole grains
might lower the risk of pancreatic cancer. However, more cohort and prospective studies
are needed to identify a stronger association.

Meta-analysis and observational studies have found an inverse relationship between
the consumption of whole grains and different forms of cancer; longitudinal studies are
necessary to examine cancer development and progression. Whole grains’ phenolic acids,
dietary fibre and essential micronutrients were responsible for the observed protection.
Several mechanisms have been proposed for the action of whole grains in terms of cancer,
fermentation in the colon, contribution to reduced intestinal transit and improved intestinal
health. Cereals also include antioxidants, which can protect against oxidative damage,
playing a significant role in cancer development. Other bioactive compounds included
in whole-grain cereals may influence hormonal levels and probably hormone-dependent
cancers. Furthermore, the consumption of whole grains has the ability to lower insulin
levels, which may be an indirect way of lowering cancer risk, given that several epidemio-
logical studies have indicated that higher levels of insulin are associated with a greater risk
of colon, breast and possibly other types of cancer. An indirect mechanism of protection
may be a lower risk of obesity linked with higher consumption of whole grains, which
is considered a significant risk factor for different forms of cancers. The link between
the consumption of whole grains and other forms of cancers, such as breast, pancreatic,
oral and pharyngeal cancer, is less studied and results are often conflicting. In addition,
attention should be paid to the exact possible mechanism and the independent effect of
whole-grain bran phenolic acids and dietary fibres.

5. Conclusions

Whole grains are rich in many components, including phenolic compounds and dietary
fibres, which have been linked to the reduced risk of CVDs, obesity, T2D and cancers. The
majority of health-associated components are concentrated in the bran and the germ,
which are removed during the grain-refining process. Emerging evidence suggests that
the intake of whole grains has benefits beyond providing basic nutrition, a fact sustained
by epidemiological studies, which indicate a protective role of a whole-grain diet against
obesity, CVDs, T2D and cancer. Several findings indicate those health effects may be due to
the enrichment of phenolic acids with dietary fibres in whole grains. Because whole grains
contain a wide range of dietary fibre, phenolic acids and other functional components, it
is important to figure out which of these components may have the greatest protective
effect against specific diseases. The role of the consumption of whole grains in disease
prevention is promising but not conclusive, and more clinical trials and epidemiologic
studies are needed. Future studies may address whether the whole grain’s bran and
germ are directly associated with reducing the risk of obesity CVDs, T2D and cancers
or whether the associations are primarily driven by dietary fibres, specific polyphenols
or some other related aspect of the diet and could significantly contribute to the next
generation of healthy cereal-based products. Thus, it will be of interest to ascertain the
independent effects of bran, germ and phenolic acids and different types of fibres on chronic
non-communicable diseases.
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