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Abstract

Freshly isolated, uncultured, autologous adipose derived regenerative cells (ADRCs) have

emerged as a promising tool for regenerative cell therapy. The Transpose RT system (InGe-

neron, Inc., Houston, TX, USA) is a system for isolating ADRCs from adipose tissue, com-

mercially available in Europe as a CE-marked medical device and under clinical evaluation

in the United States. This system makes use of the proprietary, enzymatic Matrase Reagent

for isolating cells. The present study addressed the question whether the use of Matrase

Reagent influences cell yield, cell viability, live cell yield, biological characteristics, physio-

logical functions or structural properties of the ADRCs in final cell suspension. Identical sam-

ples of subcutaneous adipose tissue from 12 subjects undergoing elective lipoplasty were

processed either with or without the use of Matrase Reagent. Then, characteristics of the

ADRCs in the respective final cell suspensions were evaluated. Compared to non-enzy-

matic isolation, enzymatic isolation resulted in approximately twelve times higher mean cell

yield (i.e., numbers of viable cells/ml lipoaspirate) and approximately 16 times more colony

forming units. Despite these differences, cells isolated from lipoaspirate both with and with-

out the use of Matrase Reagent were independently able to differentiate into cells of all three

germ layers. This indicates that biological characteristics, physiological functions or struc-

tural properties relevant for the intended use were not altered or induced using Matrase

Reagent. A comprehensive literature review demonstrated that isolation of ADRCs from

lipoaspirate using the Transpose RT system and the Matrase Reagent results in the highest

viable cell yield among published data regarding isolation of ADRCs from lipoaspirate.
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Introduction

Regenerative cell therapy, which refers to the therapeutic application of stem cells to repair dis-

eased or injured tissue, has received increasing attention from basic scientists, clinicians and

the public (e.g., [1–5]). Stem cells hold significant promise for tissue regeneration due to their

innate ability to provide a renewable supply of progenitor cells that can form multiple cell

types, whole tissue structures, and even organs (e.g., [1–5]).

Over the last years, freshly isolated, uncultured, autologous adipose-derived regenerative cells

(UA-ADRCs) have become highly attractive for the practice of regenerative cell therapy (e.g., [6–

10]) (note that freshly isolated, uncultured, adipose-derived regenerative cells were also named

“stromal vascular fraction” (SVF) in many publications; e.g., [11–13]). This is due to the fact that

UA-ADRCs have several advantages over other types of cells used in and/or under investigation

for regenerative cell therapy. First of all, UA-ADRCs do not share ethical concerns nor the risk of

teratoma formation reported for embryonic stem cells [14–16]. Neither do UA-ADRCs share the

risk of tumorigenesis that severely limits the clinical translation of induced pluripotent stem (iPS)

cells [17–19]. Second, because UA-ADRCs are autologous cells, their application does not bear the

risk of HLA mismatch associated with allogeneic cells (compromised clinical outcome after appli-

cation of allogeneic cells was reported in [20–22]). Third, adipose tissue typically has a significantly

higher stem cell density than bone marrow (5 to 10% vs. 0.1%), and harvesting adipose tissue can

be less invasive than harvesting bone marrow [23, 24]. Fourth, unlike the use of adipose derived

stem cells (ASCs) which are culture-expanded from the SVF [25–27], the use of UA-ADRCs

allows immediate usage at point of care [8–10]. This is combined with low safety concerns as no

culturing or modification are applied. Of note, when using UA-ADRCs during a surgical proce-

dure in an autologous and homologous way, they are not considered an advanced therapy medici-

nal product (ATMP) by the European Medicines Agency [28]. In contrast, expansion of ASCs in

vitro may be associated with risks such as possible loss of stemness or cell transformation [29–31].

On the other hand, recent studies on culture systems and animal models indicated non-inferiority

or even superiority of UA-ADRCs over ASCs in, for example, tendon healing [32], bone regenera-

tion [33] and rescuing heart function after acute myocardial infarction [34] (see also [13]).

For obvious reasons, an optimal system for providing UA-ADRCs at point of care should

be capable of isolating the highest possible number of living ADRCs from the lowest possible

amount of adipose tissue in the shortest possible time, and providing the cells at the highest

possible concentration in a final cell suspension.

A number of enzymatic and non-enzymatic methods were reported for isolating human

ADRCs (Tables 1 and 2; c.f. also Fig 1 and [35–38]). For enzymatic methods, cell yield between

0.0 [39] and 387×105 cells per ml lipoaspirate [40] were reported (Table 1) (mean, 14.6×105;

standard deviation, 61.5×105; median, 3.1×105; for 90% of the methods listed in Table 1 cell

yield between 0.0 and 12.2×105 cells per ml lipoaspirate was reported; Fig 1). Related cell via-

bility data (i.e., relative number of living cells) varied between 50% [41] and 94% [23] (note

that for 14 out of the 39 enzymatic methods no cell viability data were reported; Table 1).

For non-enzymatic methods, cell yield between 0.07×105 [39] and 4.44×105 [42] cells per

ml lipoaspirate were reported (Table 2) (mean, 1.1×105; standard deviation, 1.4×105; median,

0.3×105; for 90% of the methods listed in Table 2 cell yield between 0.07×105 and 2.4×105 cells

per ml lipoaspirate was reported; Fig 1). Of note, except for one method [43] no cell viability

data were reported for non-enzymatic methods (Table 2).

Altogether it follows from these data that (i) both non-enzymatic and enzymatic methods

for isolating ADRCs from adipose tissue can result in significant variability in cell yield (Fig

1A); (ii) cell viability data were reported for the majority of enzymatic methods for isolating

ADRCs from adipose tissue (25 out of 39 methods; 64%), with cell viability of 80% or higher
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Table 1. Cell yield, cell viability, number of living cells per gram lipoaspirate and other details reported in studies describing enzymatic methods for isolating

ADRCs.

R Y S O/C M/S/A CY V LCY VL PT FV

[39] 2015 (a) O M 0.0 -- -- 80 -- --

[41] 2013 (b) C S 0.07 87 0.06 130 88 --

[41] 2013 (c) C M 0.35 72 0.25 80 111 --

[44] 2014 (d) C A 0.72 91 0.66 250 98 --

[45] 2015 C A 1.00 >90 0.90 500 133 11

[46] 2016 (e) C A 1.01 84 0.85 162 89 5

[45] 2015 O M 1.03 >90 0.92 -- -- --

[41] 2013 (f) O M 1.07 57 0.61 125 115 --

[45] 2015 O M 1.47 -- -- 212 -- --

[47] 2012 O M 1.60 >90 1.44 220 -- --

[48] 2014 O M 2.30 -- -- -- -- --

[41] 2013 (g) C A 2.41 93 2.24 140 90 --

[39] 2015 (h) C A 2.55 -- -- 80 -- --

[47] 2012 C S 2.60 >90 2.34 220 -- 10

[46] 2016 (i) C M 2.85 69 1.96 102 71 7

[49] 2019 O M 2.93 76 2.23 100 82 --

[50] 2015 (j) C A 2.79 88 2.46 181 120 8

[51] 2008 (k) C A 2.95 87 2.57 86 -- --

[52] 2005 (l) C A 3.00 93 2.79 -- -- --

[53] 2006 O M 3.08 -- -- -- -- --

[54] 2014 (m) C A 3.60 85 3.06 -- -- 5

[55] 2014 (n) C M 3.60 83 2.98 400 -- --

[43] 2014 O M 3.60 67 2.41 -- -- --

[56] 2014 O M 3.68 75 2.76 -- -- --

[23] 2004 O M 4.04 94 3.80 -- -- --

[57] 2013 O M 4.07 -- -- 24 -- --

[58] 2013 O M 4.80 -- -- 55 -- --

[42] 2015 (o) C M 5.34 -- -- -- -- --

[49] 2019 O M 5.35 86 4.60 100 72 --

[46] 2016 (p) O M 5.36 82 4.39 156 65 12

[46] 2016 (q) C M 6.25 50 3.12 140 121 20

[59] 2013 O M 7.01 82 5.75 50 -- --

[59] 2013 C A 7.02 81 5.69 50 -- --

[60] 2017 (r) C M 9.06 -- -- 50 120 --

[42] 2015 (s) C A 12.1 -- -- -- -- --

[61] 2006 O M 13.1 -- -- -- -- --

[62] 2001 O M 13.3 -- -- 300 -- --

[63] 2016 (t) C M 35.0 -- -- 80 5

(Continued)
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reported for 18 out of 25 methods (72%) (Fig 1B); (iii) the data reported so far do not allow

conclusions regarding cell viability of ADRCs isolated from adipose tissue with non-enzymatic

methods (Fig 1B); and (vi) enzymatic isolation of ADRCs from adipose tissue generally results

in higher cell yield than non-enzymatic isolation (Fig 1A).

The present study tested the following hypotheses: (i) Isolation of ADRCs from human adi-

pose tissue with the Transpose RT system and the proprietary enzymatic Matrase Reagent (both

commercially available from InGeneron, Inc., Houston, TX, USA) (thereafter: “Transpose RT /

Matrase isolation” and “Transpose RT / Matrase isolated ADRCs”) results in significantly

higher cell yield, cell viability and number of living cells per ml lipoaspirate than isolation of

ADRCs from human adipose tissue without the use of Matrase Reagent but under otherwise

identical processing conditions (thereafter: “Transpose RT / no Matrase isolation” and “Trans-

pose RT / no Matrase isolated ADRCs”), but does not influence biological characteristics, physi-

ological functions or structural properties of the ADRCs in the final cell suspension. (ii)

Transpose RT / Matrase isolation of ADRCs from human adipose tissue results in a higher live

cell yield than the methods reported in those studies that are listed in Tables 1 and 2.

Materials and methods

Isolation of cells from subcutaneous adipose tissue

Subcutaneous adipose tissue was recovered by a medical practitioner from subjects via lipoas-

piration undergoing elective lipoplasty according to standard procedures with informed

Table 1. (Continued)

R Y S O/C M/S/A CY V LCY VL PT FV

[40] 2016 O M 387 -- -- 80 -- --

Abbreviations: R, reference; Y, year of publication; S, name of commercial system (if applicable; information is given here as provided in the corresponding references);

O, open isolation system; C, closed isolation system; M, manual method; S, semiautomated method; A, automated method; CY, cell yield [×105/ml lipoaspirate]; CV, cell

viability [%]; LCY, live cell yield (i.e., number of living cells) [×105/ml lipoaspirate]; VL, average lipoaspirate volume that was processed [ml]; PT, average processing

time [min]; FY, volume of the final cell suspension; --, data not provided or could not be calculated (in case of NLC).

(a), Medikhan centrifuge (Medi-Khan Inc., West Hollywood, CA, USA)

(b), Cha-Station (CHA Biotech, Kangnamgu, Republic of Korea)

(c), Lipokit with MaxStem (Medi-Khan Inc., West Hollywood, CA, USA)

(d), Celution System (Cytori Therapeutics, San Diego, CA, USA)

(e), Cytori StemSource 900/MB System (Cytori Therapeutics)

(f), Multi Station (PNC International, Gyeonggido, Republic of Korea)

(g), Celution800/CRS System (Cytori Therapeutics)

(h), Celution System (Cytori Therapeutics)

(i), GID SVF-2 platform (The GID Group, Inc., Louisville, CO, USA)

(j), Celution800/CRS System (Cytori Therapeutics)

(k), Celution System (Cytori Therapeutics)

(l), Celution800/CRS System (Cytori Therapeutics)

(m), Celution System (Cytori Therapeutics)

(n), GID SVF-1 device (The GID Group, Inc., Louisville, CO, USA)

(o), Lipokit Medikhan System (Medikan International Inc., Pusan, Korea)

(p), MultiStation (PNC International, Gyeonggido, Republic of Korea)

(q), LipoKit platform (Medi-Khan, Inc., Irwindale, CA, USA)

(r), Lipokit 416D (Medikhan, Seocho-gu, Seoul, South Korea)

(s), Celution System (Cytori Therapeutics)

(t), centrifuge (Lipokit; Medikhan) and shaker/incubator (Celltibator; Medikhan).

https://doi.org/10.1371/journal.pone.0221457.t001
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consent. N = 12 subjects with age ranging between 32 and 59 years (Table 3) (and three addi-

tional subjects for testing of residual collagenase activity in the final cell suspension) were con-

sented according to the IntegReview IRB approved protocol #200601001 (IntegReview IRB,

Austin, TX, USA).

A sample of recovered lipoaspirate from each subject was divided into two equal parts of 25

ml each, and was processed either with the use of Matrase Reagent (InGeneron) (Transpose

Table 2. Cell yield, cell viability, number of living cells per gram lipoaspirate and other details reported in studies describing non-enzymatic methods for isolating

ADRCs.

R Y S O/C M/S/A CY CV LCY VL PT FV

[39] 2015 (u) O S 0.07 -- -- 80 -- --

[43] 2014 O M 0.11 69 0.08 -- -- --

[48] 2014 O M 0.12 -- -- -- -- --

[48] 2014 O M 0.23 -- -- -- -- --

[58] 2013 O M 0.25 -- -- 180 -- --

[39] 2015 (v) O M 0.30 -- -- 80 -- --

[64] 2014 O M 1.25 -- -- 80 15 --

[56] 2014 (i) C S 1.39 -- -- 200 -- --

[65] 2009 O M 2.40 -- -- -- -- --

[42] 2015 (j) 4.44 -- -- 80 -- --

Abbreviations: R, reference; Y, year of publication; S, name of commercial system (if applicable; information is given here as provided in the corresponding references);

O, open isolation system; C, closed isolation system; M, manual method; S, semiautomated method; A, automated method; CY, cell yield [×105/ml lipoaspirate]; CV, cell

viability [%]; LCY, live cell yield (i.e., number of living cells) [×105/ml lipoaspirate]; VL, average lipoaspirate volume that was processed [ml]; PT, average processing

time [min]; FY, volume of the final cell suspension; --, data not provided or could not be calculated (in case of NLC).

(u), Mystem kit (Bi-Medica, Treviolo, Italy)

(v), Fatstem (CORIOS Soc. Coop, San Giuliano Milanese, Italy)

(w), StromaCell mechanical cell-separation device (MicroAire Aesthetics, Charlottesville, VA, USA)

(x), Fastem Corios (CORIOS Soc. Coop, San Giuliano Milanese, Italy).

https://doi.org/10.1371/journal.pone.0221457.t002

Fig 1. Frequency distributions of cell yield (A) and cell viability (B) data reported in the literature for enzymatic (green) and non-enzymatic (red)

methods for isolating ADRCs from adipose tissue. Interpretation of this data is illustrated by the following examples: (i) For six out of ten non-enzymatic

methods (60%) cell yield between 0 and 1×105 cells per ml lipoaspirate was reported (“a” in Panel A). (ii) For nine out of 39 enzymatic methods (21%) cell yield

between 2×105 and 3×105 cells per ml lipoaspirate was reported (“b” in Panel A). (iii) For only one out of ten non-enzymatic methods (10%) cell viability was

reported (between 60.1% and 70%) (“c” in Panel B). (iv) For ten out of 39 enzymatic methods (20.5%) cell viability between 80.1% and 90% was reported (“d” in

Panel B). (v) Unfortunately, for nine out of ten non-enzymatic methods (90%) as well as for 14 out of 39 enzymatic methods (36%) no cell viability data were

reported (“e” in Panel B).

https://doi.org/10.1371/journal.pone.0221457.g001
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RT / Matrase isolation) or only mechanically without the use of Matrase Reagent but under

otherwise identical processing conditions (Transpose RT / no Matrase isolation). The Matrase

Reagent is a GMP certified, proprietary enzyme blend of collagenase and neutral protease.

Processing was performed as described in the tissue processing procedure section found in

the 11011E Transpose RT Instructions for Use (11011–01 IFU; InGeneron, Inc.) (Fig 2), com-

prising the following steps: (i) The recovered lipoaspirate (25 ml) was loaded together with 2.5

ml reconstituted Matrase (in case of Transpose RT / Matrase isolation) and lactated Ringer

solution (preheated to 39˚ C) into a processing tube up to the MAX FILL line (Fig 2A). (ii) The

filled processing tubes were subjected in an inverted position inside the Transpose RT system

to repetitive acceleration and deceleration for 30 minutes at 39˚ C (Fig 2B). (iii) The processed

lipoaspirate solution was filtered through a 200 μm filter (Fig 2C) and transferred into a wash

tube. After filling the wash tube with saline (room temperature) up to the MAX FILL line, the

cells were separated from the rest of the tissue by centrifugation at 600g for 5 minutes at room

temperature (Fig 2D). Then, the SVF/ ADRCs (approximately 2 ml) were extracted through a

swabable luer vial adapter at the bottom of the wash tube, and the remaining substances (fat,

debris and liquid) were discarded (Fig 2E). (v) The cells were returned into the empty wash

tube and (after adding fresh saline up to the MAX FILL line) centrifugated again for 5 minutes

(Fig 2F). (vi) The previous washing step was repeated (Fig 2G and 2H). (vii) Finally, the con-

centrated SVF/ ADRCs (approximately 3 ml) were extracted (Fig 2I) and slowly pushed

through a luer coupler into a new sterile syringe for further application to the patient.

The final cell suspension was analyzed for cell yield, cell viability, number of living cells per

ml lipoaspirate and cell size. The respective differentiation capacity into the three germ layers

was assessed for both Transpose RT / Matrase isolated ADRCs and Transpose RT / no Matrase

isolated ADRCs.

SVF yield statistics, expansion, and cryopreservation

Cell counts and viability were determined using the FDA approved NucleoCounter NC-200

device (ChemoMetec Inc., Bohemia, NY, USA) as described by the manufacturer’s protocol.

For expansion, SVF was plated at a cell density of 7×106 in T75 tissue culture flasks in 15 ml

of MesenCult MSC basal medium (Stem Cell Technologies, Cambridge, MA, USA) supple-

mented with MesenCult MSC Stimulatory Supplement, PenStrep (Gibco, Waltham, MA,

USA), Fungizone (Life Technologies, Carlsbad, CA, USA) and L-Glutamine (Corning Life Sci-

ences, Tewksbury, MA, USA), at 37˚ C under 5% CO2. Cells were passed once reaching 75%

Table 3. Subjects’ demographics.

Subject # Age Sex Race

1 36 Female Caucasian

2 59 Female Caucasian

3 46 Female Caucasian

4 49 Female Caucasian

5 37 Female Caucasian

6 36 Female Caucasian

7 39 Female Black

8 36 Female Caucasian

9 32 Female Hispanic

10 32 Female Hispanic

11 38 Female Caucasian

12 42 Female Caucasian

https://doi.org/10.1371/journal.pone.0221457.t003
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confluency using 0.25% Trypsin (Sigma-Aldrich, St. Louis, MO, USA) for 5 min at 37˚ C.

Then, cells were plated at a cell density of 7.5×105 in T75 tissue culture flasks in 15 ml of com-

plete MSC medium. Cells were cryopreserved by resuspending ASC cell pellets in Prime-XV

MSC FreezIS DMSO-free media (Irving Scientific, Santa Ana, CA, USA) at cell densities

between 2×106 and 5×106 cells/ml. The samples were frozen overnight at -80˚C in freezing

containers designed to cool at a rate of -1˚ C/min (Mr. Frosty, Thermo Scientific, Waltham,

MA, USA).

Analysis of colony forming units

The colony forming unit (CFU) assay was performed according to [66]. To this end, freshly

isolated SVF/ADRCs from each subject were plated into a 6-well plate (Corning Life Sciences)

at two different cell densities. The cells were plated at densities of 50,000 and 100,000 total cells

in 2 ml of complete MSC medium in each well; these experiments were repeated in triplicate.

Cells were incubated at 37˚ C under 5% CO2 for 14 days to allow CFUs to form. Medium was

changed every 2–4 days. After day 14 the medium was aspirated, the cells were washed twice

Fig 2. Isolation of ADRCs from human adipose tissue with the Transpose RT system and the Matrase Reagent (both from InGeneron, Inc., Houston, TX, USA).

Details are provided in the text.

https://doi.org/10.1371/journal.pone.0221457.g002
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in PBS and fixed in 2 ml of 10% formalin at room temperature for 30 min with gentle rocking.

Cells were then washed three times with DI water and stained with 2 ml hematoxylin (Bio-Rad

Laboratories, Hercules, CA, USA) for 15 min at room temperature. The cells were then washed

with warm tap water until the wash ran clear. CFUs were quantified by manually counting the

entire well; each sample was counted at both cell concentrations and in triplicate. Colonies

containing > 50 fibroblast colony-forming units (CFU-F) were counted. CFU-F frequency

was calculated by dividing the number of colonies by the number of seeded cells.

Analysis of embryoid body formation

Embryoid bodies are defined as spherical clusters of both pluripotent and committed stem

cells that can organize in a developmental-specific manner and give rise to mature cells from

any differentiation lineage (reviewed in, e.g., [67].

To form embryoid bodies, freshly isolated ADRCs were plated into ultra-low adherent

flasks (Corning Life Sciences) at a density of 60,000 cells/cm2 in GMEM (Gibco) supplemented

with 2 mM L-Glutamine (Corning Life Sciences), non-essential amino acids (Sigma-Aldrich),

B27 (Life Technologies), 0.6% glucose (Sigma-Aldrich), 10 ng/ml human bFGF (Invitrogen

Life Technologies), 20 ng/ml human EGF (Life Technologies), 1 U/ml human thrombin

(EMD Millipore, Burlington, MA, USA) and 2 μg/ml ciprofloxacin (Sigma-Aldrich). Cells

were incubated at 37˚ C under 5% CO2 and half of the medium was changed every 3 days. The

diameter of embryoid bodies was measured on photomicrographs using ImageJ software.

Differentiation assays

ASCs on their 3rd or 6th passage were assayed for differentiative potential into adipogenic, oste-

ogenic, hepatogenic and neurogenic cell lines.

Adipogenic differentiation. ASCs on their 3rd passage were plated onto a 12 well plate at

40,000 cells per well in 1.5 ml of complete MSC medium and allowed to grow for 2 days. On

day 3 all of the medium was aspirated and replaced with either complete MSC medium or

StemPro Adipogenic differentiation medium (Life Technologies) and incubated for 2 weeks,

changing media every 3–4 days. Then, the presence of intracytoplasmic lipids (triglycerides)

was assessed with Oil red-O staining as previously described [60]. Percentage of adipocytes

was calculated by microscopic inspection. The percentage of adipocytes was determined by

calculating the ratio of Oil red-O positive cells versus total cells.

Osteogenic differentiation. ASCs on their 3rd passage were plated onto a 12 well plate at

20,000 cells per well in 1.5 ml of complete MSC medium and allowed to grow for 2 days. On

day 3 all of the medium was aspirated and replaced with either complete MSC medium or

StemPro Osteogenic Differentiation medium (Life Technologies) and incubated for 2 weeks,

changing media every 3–4 days. Then, the presence of calcific deposits was investigated with

Alizarin red staining (Alfa Aesar, Haverhill, MA, USA) as described in the protocol.

Hepatogenic differentiation. ASCs on their 3rd passage were plated onto a 12 well plate

at 20,000 cells per well in 1.5 ml of MesenCult MSC medium (Stem Cell Technologies) and

allowed to grow for 2 days. Hepatogenic differentiation was achieved using the Human Mesen-

chymal Stem Cell Hepatogenic Differentiation Medium kit (Cyagen, Santa Clara, CA, USA).

Then, the presence of structures containing a high proportion of carbohydrate macromole-

cules (glycogen, glycoprotein and proteoglycans) was investigated with Periodic Acid Schiff

staining (Sigma-Aldrich) as described in the protocol.

Neurogenic differentiation. Nunc Lab-Tek II 4-well chamber slides (Thermo Fisher)

were pre-coated with Poly-D-Lysine (Trevigen, Gaithersburg, MD, USA)/Laminin (Gibco)

solution (10 μg/ml each) on day 0. Then, 20.000 ASCs on their 6th passage were seeded per
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well on day 1 and cultured for 24 hours before exposure to Mesencult MSC medium (Stem

Cell Technologies) or neurogenic differentiation medium. The latter consisted of Neuroba-

sal Medium (Thermo Fisher) supplemented with 2% B27 (Thermo Fisher) and containing

10 μM Forskolin (Stem Cell Technologies), 5 μg/ml insulin (Sigma-Aldrich), 500 μM

1-methyl-3-isobutylxanthine (IBMX) (Sigma-Aldrich), 50 μM ascorbic acid (Sigma-

Aldrich), 10 ng/ml nerve growth factor (NGF) (Thermo Fisher), 1% L-Glutamine (Corning

Life Sciences) and 1% Pen/Strep (Gibco). Cells were cultured in neurogenic differentiation

medium for 21 days with media changes every 3–4 days.

After 21 days of culturing cells in neurogenic differentiation medium or control medium,

they were fixed with 10% formalin (Sigma-Aldrich). Then, cells were treated with PBS contain-

ing 0.3% Triton X-100 (Sigma-Aldrich) and 5% normal goat serum (Jackson Immunoresearch,

West Grove, PA, USA) at room temperature for 1 h to block non-specific binding sites prior to

the addition of primary antibodies. Afterwards, cells were incubated with primary antibodies

against microtubule-associated protein 2 (MAP2) (rabbit polyclonal, 1:100, ab32454; Abcam,

Cambridge, UK) or Beta III Tubulin (β3TUB) (rabbit monoclonal, 1:200, β3-Tubulin (D71G9)

XP Rabbit mAb #5568; Cell Signaling Technology, Danvers, MA, USA) for 2 h at room tem-

perature. (MAP2 is a neuron-specific cytoskeletal protein that is used as a marker of neuronal

phenotype [68], and β3TUB is a tubulin thought to be specifically involved during differentia-

tion of neuronal cell types [69].) Antibodies were diluted in antibody dilution buffer (PBS con-

taining 1% bovine serum albumin (VWR, Radnor, PA, USA) and 0.3% Triton X-100 (Sigma-

Aldrich)). After incubation with primary antibodies, the cells were washed three times with

PBS, followed by incubation with goat anti-rabbit secondary antibody conjugated with Alexa

Fluor 594 (Thermo Fisher) for 1 h at room temperature. Then, cells were again washed three

times with PBS, followed by counterstaining with DAPI (Sigma-Aldrich). Finally, chambers

were removed from the slides, and coverslips were mounted with Vectashield Antifade Mount-

ing Medium (Vector Laboratories, Burlingame, CA, USA).

PC-12 cells (a model system for neuronal differentiation [70]) were used as positive con-

trols. PC-12 cells were seeded onto COL IV (Santa Cruz, Santa Cruz, CA, USA) coated Nunc

Lab-Tek II 4-well chamber slides, with 8,000 cells per well in neurogenic culture medium.

Cells were cultured for 6 days and fixed with 10% formalin. Immunofluorescent detection of

MAP2 and β3TUB was performed as described for ASCs.

RNA isolation and quantitative PCR

RNA isolation was performed using Trizol (Life Technologies) in accordance with the man-

ufacturer’s protocol. Total RNA was purified using the Direct-Zol RNA miniprep kit (Zymo

Research, Irvine, CA, USA) as described in the protocol. cDNA was generated using iScript

Reverse Transcriptase SuperMix (Bio-Rad Laboratories). Then, relative mRNA levels of

Oct4 (a transcription factor associated with self-renewal [71], Klf4 (a marker of stemness

[71]) and Hes1 (another known stem cell marker [72]) were measured using the SsoAd-

vanced Universal SYBR Green Supermix (Bio-Rad Laboratories) according to the manufac-

turer’s protocols in a Bio-Rad CFX96 Real-Time PCR detection system (Bio-Rad

Laboratories). All samples were analyzed in triplicate. Qualification of RNA and cDNA was

performed using a NanoDrop spectrometer (Thermo Fisher Scientific). Primer probe sets

were custom oligos (Sigma-Adrich) (Table 4).

Amplification curves and melting curves were illustrated by CFX Maestro software (Ver-

sion 1.1; Bio-Rad Laboratories). Relative mRNA levels were determined by the ΔΔCt quantifi-

cation method using the CFX Maestro software. Baseline correction and threshold setting

were performed using the automatic calculation offered by the software.
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Testing for residual collagenase activity in cell preparations prepared with

the use of Matrase Reagent

In this experiment ADRCs were isolated from lipoaspirate from n = 3 additional subjects

using the ARC system (InGeneron; a slight modification of the Transpose RT system, adapted

for additional use with larger portions of adipose tissue) and Matrase Reagent following the

manufacturer’s instructions for use. The resulting cell preparations were tested for collagenase

activity using a commercially available assay (EnzChek Gelatinase/Collagenase Assay Kit; Invi-

trogen, Carlsbad, CA, USA) following the manufacturer’s instructions for use.

Microscopy

Images were obtained using an Axio Vert.A1 microscope (Carl Zeiss Microscopy, Jena, Ger-

many) equipped with LD A-Plan 10x/0,25 and LD A-Plan 20x/0.30 objectives (Carl Zeiss

Microscopy), Leica DMC4500 camera (2560 × 1920 pixels; Leica Microsystems, Wetzlar, Ger-

many) and Leica Application Suite software (version X 3.3.3.16958; Leica).

Final figures were constructed using Corel Photo-Paint X7 and Corel Draw X7 (both versions

17.5.0.907; Corel, Ottawa, Canada). No adjustments of contrast and brightness were made.

Statistical analysis

Mean and standard error of the mean (SEM) were calculated for all variables. The D’Agostino

and Pearson omnibus normality test was used to determine whether the distribution of the inves-

tigated variables of the Transpose RT / Matrase isolated cells and the Transpose RT / no Matrase

isolated cells were consistent with a Gaussian distribution. Differences between the groups of cells

were tested with nonparametric Wilcoxon matched-pairs signed rank test. In all analyses, an effect

was considered statistically significant if its associated p value was smaller than 0.05. Calculations

were performed with GraphPad Prism (Version 5; Graph Pad Software, San Diego, CA, USA).

Results

Cell yield, cell viability, number of living cells per ml lipoaspirate and cell

size

Compared to Transpose RT / no Matrase isolation, Transpose RT / Matrase isolation of

ADRCs from lipoaspirate resulted in the following, statistically significant differences in the

final cell suspension (all values given as mean ± SEM): (i) approximately nine times higher cell

yield (7.2×105 ± 0.90×105 Transpose RT / Matrase isolated ADRCs per ml lipoaspirate vs.

0.84×105 ± 0.10×105 Transpose RT / no Matrase isolated ADRCs per ml lipoaspirate;

p< 0.001; n = 12 matched pairs of samples) (Fig 3A); (ii) approximately 41% higher mean cell

Table 4. Primer probe sets used in the present study.

Gene Oligos

Oct4 Oct4-F: 50-GCAAGCCCTCATTTCACCA-3’
Oct4-R: 50-GCCCATCACCTCCACCAC-30

Klf4 Klf4-F: 5'-AAGAGTTCCCATCTCAAGGCACA-3’
Klf4-R: 5'-GGGCGAATTTCCATCCACAG-3’

Hes1 Hes1-F: 5'-CCTGTCATCCCCGTCTACAC-3’
Hes1-R: 5'-CACATGGAGTCCGCCGTAA-3’

GAPDH� GAPDH-F: 5'-CGCTCTCTGCTCCTCCTGTT-3’
GAPDH-R: 5'-CCATGGTGTCTGAGCGATGT-3’

�GAPDH was used for normalization.

https://doi.org/10.1371/journal.pone.0221457.t004
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viability (85.9% ± 1.1% in case of Transpose RT / Matrase isolated ADRCs vs. 61.7% ± 2.6% in

case of Transpose RT / no Matrase isolated ADRCs; p< 0.001; n = 12 matched pairs of sam-

ples) (Fig 3B); and (iii) approximately twelve times higher mean number of living cells per ml

lipoaspirate (6.25×105 ± 0.79×105 Transpose RT / Matrase isolated ADRCs per ml lipoaspirate

vs. 0.52×105 ± 0.08×105 Transpose RT / no Matrase isolated ADRCs per ml lipoaspirate;

p< 0.001; n = 12 matched pairs of samples each) (Fig 3C).

Of importance, the mean relative number of viable cells obtained by Transpose RT /

Matrase isolation (85.9%) exceeded the proposed minimum threshold for the viability of cells

in the SVF of 70% established by the International Federation for Adipose Therapeutics and

Science (IFATS) [73], whereas the mean relative number of viable cells obtained by Transpose

RT / no Matrase isolation (61.7%) did not (Fig 3B).

The difference in mean cell diameter between Transpose RT / no Matrase isolated ADRCs

(10.2μm ± 0.1μm) and Transpose RT / Matrase isolated ADRCs (10.6μm ± 0.1μm) was only

Fig 3. Results of quantitative analysis of Transpose RT / no Matrase isolated ADRCs and Transpose RT / Matrase isolated ADRCs. The panels

show Tukey boxplots of the number of cells isolated per ml lipoaspirate (A), the relative number of viable cells (B), the number of viable cells isolated

per ml lipoaspirate (C) and the diameter of cells (D) of Transpose RT / no Matrase isolated ADRCs (red bars) and Transpose RT / Matrase isolated

ADRCs (green bars). In (B) the threshold of 70% viable cells established by the International Federation for Adipose Therapeutics and Science (IFATS)

[73] is indicated by a dashed line. Results of Wilcoxon matched-pairs signed rank test are indicated (n = 12 paired samples each). ���, p< 0.001.

https://doi.org/10.1371/journal.pone.0221457.g003
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approximately 4% and did not reach statistical significance (p = 0.05; n = 12 matched pairs of

samples) (Fig 3D).

Accordingly, both the number and viability of cells in the final cell suspension were statisti-

cally significantly higher after Transpose RT / Matrase isolation of ADRCs from human adi-

pose tissue than after Transpose RT / no Matrase isolation.

Colony-Forming unit assay

ASCs derived from Transpose RT / Matrase isolated ADRCs formed on average 16 times more

CFUs per ml lipoaspirate (4973±836; mean ± SEM) than ASCs derived from Transpose RT /

no Matrase isolated ADRCs (307±68) (p = 0.002; n = 10 matched pairs of samples) (Fig 4).

Expression of regenerative cell-associated genes in adipose-derived stem

cells derived from uncultured, autologous, adipose-derived regenerative

cells

Embryoid body formation was observed after culturing ASCs for seven days in serum free

media (Fig 5). The embryoid bodies had a spherical appearance and defined borders. The

majority of the embryoid bodies were small in diameter (<100 μm), some were medium (100–

200 μm), and a few were large (>200 μm) in diameter. No statistically significant differences

were observed in the formation or the size of the embryoid bodies derived from Transpose

RT / no Matrase isolated ADRCs and from Transpose RT / Matrase isolated ADRCs (Fig 6).

Furthermore, it was found that the use of Matrase Reagent in the process of isolating cells

from lipoaspirate had no statistically significant impact on the relative levels of mRNA for the

regenerative cell-associated genes Oct-4, Klf4 and Hes1 for both conventional monolayer cul-

tures (Fig 7A, 7C and 7E) and embryoid body cultures (Fig 7B, 7D and 7F) (mean and SEM of

relative gene expression values as well as corresponding p-values are summarized in Table 5).

Accordingly, the use of Matrase Reagent in processing lipoaspirate with the InGeneron

Transpose RT System did not alter expression of regenerative cell-associated genes in the final

cell suspension.

Differentiation potential of adipose-derived stem cells

Adipogenic differentiation potential. ASCs on their 3rd passage (derived from both

Transpose RT / Matrase isolated ADRCs and Transpose RT / no Matrase isolated ADRCs)

were cultured for two weeks in adipogenic differentiation medium or control medium. Then,

the presence of intracytoplasmic lipids (triglycerides) was assessed with Oil red-O staining,

and relative numbers of Oil red-O positive cells were evaluated. It was found that the use of

Matrase Reagent in the process of isolating ADRCs from lipoaspirate had no impact on the

visual appearance of the cells after induction of adipogenic differentiation (Fig 8), and no sta-

tistically significant impact on the relative number of Oil red-O positive cells (Fig 9).

Osteogenic differentiation potential. ASCs on their 3rd passage (derived from both

Transpose RT / Matrase isolated ADRCs and Transpose RT / no Matrase isolated ADRCs)

were cultured for two weeks in osteogenic differentiation medium or control medium. Then,

the presence of calcific deposits was investigated with Alizarin red staining. It was found that

the use of Matrase Reagent in the process of isolating ADRCs from lipoaspirate had no impact

on the visual appearance of the cells after induction of osteogenic differentiation (Fig 10).

Hepatogenic differentiation potential. ASCs on their 3rd passage (derived from both

Transpose RT / Matrase isolated ADRCs and Transpose RT / no Matrase isolated ADRCs)

were cultured for ten days in hepatogenic differentiation medium or control medium. Then,
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the presence of structures containing a high proportion of carbohydrate macromolecules (gly-

cogen, glycoprotein and proteoglycans) was investigated with Periodic Acid Schiff staining. It

was found that the use of Matrase Reagent in the process of isolating ADRCs from lipoaspirate

had no impact on the visual appearance of the cells after induction of hepatogenic differentia-

tion (Fig 11).

Neurogenic differentiation potential. ASCs on their 6th passage (derived from both Trans-

pose RT / Matrase isolated ADRCs and Transpose RT / no Matrase isolated ADRCs) were cul-

tured for three week in neurogenic differentiation medium or control medium. Then, the

morphology of the cells was investigated with phase contrast microscopy, and expression of MAP2

and β3TUB with immunofluorescence. It was found that as a result of induction of neurogenesis,

the cells showed key characteristics of a neuronal phenotype, i.e., slender processes (Fig 12) and

expression of both MAP2 and β3TUB (Fig 13). PC12 cells served as positive controls (Fig 14). The

use of Matrase Reagent in the process of isolating ADRCs from lipoaspirate had no impact on the

visual appearance of the cells after induction of neurogenic differentiation (Figs 12 and 13).

Residual collagenase activity in cell preparations prepared with the use of

Matrase Reagent

It was found that the collagenase activity was below the detection limit of the used assay

(Fig 15).

Fig 4. Results of colony forming unit assay. The panel shows Tukey boxplots of the number of colony forming units per ml lipoaspirate

formed by ASCs derived from Transpose RT / no Matrase isolated ADRCs (red bars) and from Transpose RT / Matrase isolated ADRCs

(green bars) after culturing for 14 days in complete MSC media. Results of Wilcoxon matched-pairs signed rank test are indicated (n = 10

paired samples). ��, p< 0.005.

https://doi.org/10.1371/journal.pone.0221457.g004
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Discussion

Aronowitz and colleagues [46] proposed to judge a system or method for isolating ADRCs

from adipose tissue by the following factors: nucleated cell count, nucleated cells per milliliter

of tissue processed, cellular viability, level of residual enzymatic activity, data from flow cytom-

etry and CFU-F assay, infection control, ease of use, cost to operate and processing time.

There are currently several systems offered and methods described in the literature for clin-

ical therapeutic usage (or that are under clinical evaluation) that process adipose tissue with

(Table 1) or without (Table 2) the use of enzymes. It was the aim of this study to evaluate the

effect on cells, efficiency and safety regarding cell viability in direct comparison between pro-

cessing human lipoaspirate with or without the use of an enzyme under otherwise identical

processing conditions. InGeneron’s Transpose RT system utilizes a proprietary method for

isolating ADRCs from adipose tissue. Specifically, this method uses the enzymatic activity of

Matrase Reagent to release the cells from the extracellular matrix.

We observed a substantial, statistically significantly lower cell yield and cell viability in the

final cell suspension isolated by just mechanical processing of human lipoaspirate without the

use of Matrase Reagent, due to less efficient release of cells from the extracellular matrix when

Fig 5. Formation of embryoid bodies. The panels show embryoid bodies that were formed after culturing ASCs derived from Transpose RT /

no Matrase isolated ADRCs (A, C) and from Transpose RT / Matrase isolated ADRCs (B, D) for seven days in serum-free media. The scale bar

in (D) represents 100 μm in (A, B) and 50 μm in (C, D).

https://doi.org/10.1371/journal.pone.0221457.g005
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no enzyme was used. Specifically, the live cell yield of Transpose RT / Matrase isolated ADRCs

was approximately twelve times higher in the final cell suspension than the live cell yield of

Transpose RT / no Matrase isolated ADRCs. Of importance, the mean relative number of 86%

viable Transpose RT / Matrase isolated ADRCs exceeded the proposed minimum threshold

for viability of cells in the SVF of 70% established by IFATS [73], whereas the mean relative

number of 61% viable Transpose RT / no Matrase isolated ADRCs did not.

In Fig 16 cell yield and live cell yield data obtained in this study for Transpose RT / Matrase

isolated ADRCs and Transpose RT / no Matrase isolated ADRCs are compared with corre-

sponding data reported in the literature (c.f. Tables 1 and 2). For only six out of 39 enzymatic

methods (15%) a higher cell yield was reported than for Transpose RT / Matrase isolated

ADRCs found in this study (Fig 16A). However, the cell yield reported for one of these enzy-

matic methods (387×105) [63] was approximately 80 times higher than the average cell yield

reported for all other 38 methods listed in Table 1 (4.8×105). Because the authors of [40] did

not compare their extraordinarily high cell yield data with any of the data listed in Table 1, the

cell yield reported in [40] should be treated with caution. Moreover, no cell viability data were

provided in those six studies [40, 42, 60–63] that reported higher cell yield for enzymatic meth-

ods than found in this study for Transpose RT / Matrase isolated ADRCs. Accordingly, live

cell yield could only be calculated for 25 out of the 39 enzymatic methods (64%) listed in

Fig 6. Quantitative analysis of the size of embryoid bodies. The panel shows Tukey boxplots of the diameter of embryoid bodies that

were formed after culturing ASCs derived from Transpose RT / no Matrase isolated ADRCs (red bars) and from Transpose RT / Matrase

isolated ADRCs (green bars) for seven days in serum-free media. The Wilcoxon matched-pairs signed rank test showed no statistically

significant differences between the groups (p = 0.109; n = 4 paired samples).

https://doi.org/10.1371/journal.pone.0221457.g006
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Fig 7. Results of gene expression analysis. The panels show Tukey boxplots of relative gene expression (arbitrary units) of Oct4 (A, B), Klf4

(C, D) and Hes3 (E, F) of ASCs in conventional monolayer cultures (A, C, E) or obtained from embryoid bodies (B, D, F) after culturing

Transpose RT / no Matrase isolated ADRCs (red bars) or Transpose RT / Matrase isolated ADRCs (green bars), respectively. The Wilcoxon

matched-pairs signed rank test showed no statistically significant differences between the groups (p> 0.05; n = 8 paired samples each).

https://doi.org/10.1371/journal.pone.0221457.g007
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Table 1, and live cell yield found in this study for Transpose RT / Matrase isolated ADRCs was

higher than live cell yield calculated for any of these 25 enzymatic methods (Fig 16B). Likewise,

live cell yield could only be calculated for one out of the ten enzymatic methods (10%) listed in

Table 2, and live cell yield found in this study for Transpose RT / no Matrase isolated ADRCs

was higher (Fig 16B).

For considerations of clinical usage, these findings have an important impact: the signifi-

cantly lower viability of cells isolated just mechanically without Matrase Reagent means that

nearly 40% of the cells that would be transferred to a patient are not viable. In this regard is of

note that Aronowitz and colleagues [46] already pointed out that the viability of the cells in the

final cell suspension is a very important clinical factor because nonviable cells may provide no

therapeutic value but could potentially lead to excess localized inflammation at the treatment

site because of excessive cellular debris [46]. This should also be taken into account when con-

sidering the use of a non-enzymatic method for isolating ADRCs from human adipose tissue.

As pointed out above, for nine out of the ten non-enzymatic methods for isolating ADRCs

listed in Table 2 no cell viability data were provided, and both the non-enzymatic method

described in [43] and Transpose RT / no Matrase isolation of ADRCs described in this study

Table 5. Results of statistical analysis.

Variable Transpose RT / no Matrase isolation of

ADRCs

Transpose RT / Matrase isolation of

ADRCs

P value

Cell yield, cell viability, live cell yield and cell size

Cell yield [×105] 0.84, 0.10, 12 7.24, 0.89, 12 <0.001

Cell viability [%] 61.7, 2.61, 12 85.9, 1.12, 12 <0.001

Live cell yield

[×105]

0.53, 0.08, 12 6.25, 0.79, 12 <0.001

Cell diameter

[μm]

10.2, 0.08, 12 10.6, 0.06, 12 0.05

Colony Forming Unit assay

CFUs [number] 307, 68, 10 4973, 836, 10 0.002

Formation of embryoid bodies

Diameter [μm] 97.4, 11.6, 4 97.8, 11.4, 4 0.979

Expression of regenerative cell-associated genes

ASCs: Oct4 1.09, 0.20, 8 0.90, 0.11, 8 0.461

ASCS: Klf4 1.16, 0.18, 8 1.39, 0.26, 8 0.195

ASCs: Hes1 1.06, 0.20, 8 1.48, 0.49, 8 0.742

EB: Oct4 1.66, 0.31, 10 1.28, 0.25, 10 0.322

EB: Klf4 0.57, 0.07, 10 0.51, 0.07, 10 0.557

EB: Hes1 1.01, 0.11, 9 1.11, 0.15, 9 0.496

Adipogenic differentiation potential

OrO+ [%] 33.1, 3.17, 7 38.7, 4.72, 7 0.109

All data are provided as {mean, standard error of the mean [SEM], number of paired samples}. P-values were

obtained using nonparametric Wilcoxon matched-pairs signed rank test. Cell yield and live cell yield data represent

numbers of cells per ml lipoaspirate; relative gene expression data are provided in arbitrary units. Calculations were

performed with GraphPad Prism (Version 5; Graph Pad Software, San Diego, CA, USA). Note: the different numbers

of paired samples in the gene expression studies are related to the quantity and amount of mRNA generated for each

sample. Samples that yielded either insufficient amount of mRNA or lower quality mRNA were not analyzed for the

relative level of gene expression. Abbreviations: CFUs, colony forming units; ASCs, adipose-derived stem cells; EB,

embryoid bodies; OrO+, No. of Oil red-O positive cells.

https://doi.org/10.1371/journal.pone.0221457.t005

Isolation of adipose tissue derived regenerative cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0221457 September 3, 2019 17 / 33

https://doi.org/10.1371/journal.pone.0221457.t005
https://doi.org/10.1371/journal.pone.0221457


resulted in cell viability data that were below the threshold of 70% viable cells established by

IFATS [73].

Cells isolated in this study from lipoaspirate were able to form CFUs independent of

enzyme usage, indicating the presence of stem cells in both methods of isolating ADRCs from

adipose tissue. However, Transpose RT / Matrase isolated ADRCs formed on average 16 times

more CFUs per ml lipoaspirate than Transpose RT / no Matrase isolated ADRCs. These results

are in line with previously reported studies comparing enzymatic to non-enzymatic extraction

of ADRCs from lipoaspirate [58], as well as with results of cells isolated from adipose tissue or

just from the tumescence fluid portion [61]. These data implicate that in order to even match

the number of spheroids formed from Transpose RT / Matrase isolated ADRCs, 16 times

more adipose tissue would be required as starting material for processing without enzyme. In

other words, instead of 100 g patient derived adipose tissue for enzymatic processing, 1600 g

for the just mechanical process would be required. This could mean a more complex recovery

procedure and potentially higher morbidity, especially in patients at increased risk of bleeding.

In this regard it was speculated in a recent study addressing treatment of osteoarthritis [74]

that augmenting non-enzymatically isolated ADRCs with platelet rich plasma (PRP) could

Fig 8. Adipogenic differentiation potential of ADRCs. The panels show the results of culturing ASCs on their 3rd passage (derived from Transpose

RT / no Matrase isolated ADRCs (A, C) or Transpose RT / Matrase isolated ADRCs (B, D), respectively) for two weeks in adipogenic differentiation

medium (A, B) or control medium (C, D). The presence of intracytoplasmic lipids (triglycerides) was assessed with Oil red-O staining; cells were

counterstained with hematoxylin. The yellow arrows indicate single Oil red-O positive cells. The scale bar in (D) represents 100 μm in (A-D).

https://doi.org/10.1371/journal.pone.0221457.g008
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overcome the increased need for adipose tissue. However, no cell yield and no cell viability of

the non-enzymatically isolated ADRCs were reported in [74]; no comparison of application of

ADRCs with or without simultaneous application of PRP was performed; and clinical outcome

was not validated with magentic resonance imaging, arthroscopy and microscopic evaluation

of biopsies in [74].

Aside from substantial differences in cell yield, cell viability and live cell yield, Transpose

RT / Matrase isolated ADRCs showed no statistically significant differences in the expression

of regenerative cell-associated genes Oct4, Hes1 and Klf4 compared to Transpose RT / no

Matrase isolated ADRCs. Besides this, both Transpose RT / Matrase isolated ADRCs and

Transpose / no Matrase isolated ADRCs were able to differentiate into all three germ layers

(i.e., into the adipogenic, osteogenic, hepatogenic and neurogenic lineages). This was in line

with all enzymatic and non-enzymatic methods for isolating ADRCs listed in Tables 1 and 2

for which differentiation into all three germ layers was investigated.

In a joined position statement published by IFATS and the International Society for Cellu-

lar Therapy (ISCT) in 2013 regarding SVF and culture-expanded ASCs it was stated that pri-

mary stable positive surface markers for stromal cells are CD13, CD29, CD34 (>20%), CD44,

CD73 and CD90 (>40%), whereas primary negative surface markers for stromal cells are

Fig 9. Quantitative analysis of adipogenic differentiation potential of ADRCs. The panel shows Tukey boxplots of the relative

number of Oil red-O positive cells obtained after culturing ASCs on their 3rd passage (derived from Transpose RT / no Matrase isolated

ADRCs (red bars) or Transpose RT / Matrase isolated ADRCs (green bars), respectively) for two weeks in adipogenic differentiation

medium. The Wilcoxon matched-pairs signed rank test showed no statistically significant differences between the groups (p = 0.109;

n = 7 paired samples).

https://doi.org/10.1371/journal.pone.0221457.g009
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CD31 (<20%) and CD45 (<50%) [73]. Furthermore, at least 20% of the SVF would contain a

stromal cell population that is immunopositive for the surface marker CD34 and immunone-

gative for the surface markers CD31, CD45 and CD235a (i.e., CD31-/CD34+/CD45-/CD235a-

cells) [73]. This statement was based on an earlier position statement published by ISCT in

2006 that described the following minimal criteria for defining multipotent mesenchymal stro-

mal cells (MSCs): being adherent to plastic, expressing the surface markers CD73, CD90 and

CD105, and having the ability to differentiate into osteoblasts, adipocytes and chondrocytes

[75]. It should be pointed out that a major shortcoming of this definition of multipotent MSCs

is the fact that, for example, fibroblasts are also adherent to plastic and express the surface

markers CD73, CD90 and CD105, without having the ability to transdifferentiate into other

lineages or being MSCs [71]. Furthermore, the true pluripotent stem cells do not yet express

CD73, CD90 and CD105 [76]. Rather, expression of cell surface markers is a dynamic process.

For example, when cultured in fetal bovine serum or platelet lysate culture media, MSCs can

turn on new surface markers [76]. Alternatively, MSCs in culture can lose their surface marker

Fig 10. Osteogenic differentiation potential of ADRCs. The panels show the results of culturing ASCs on their 3rd passage (derived from Transpose

RT / no Matrase isolated ADRCs (A, C) or Transpose RT / Matrase isolated ADRCs (B, D), respectively) for two weeks in osteogenic differentiation

medium (A, B) or control medium (C, D). The presence of calcific deposits was investigated with Alizarin red staining; cells were counterstained with

hematoxylin. Cells of an osteogenic lineage are stained bright to deep red and easily visible as dense red patches. The scale bar in (D) represents 100 μm

in (A-D).

https://doi.org/10.1371/journal.pone.0221457.g010
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expression, such as for example the loss of the previously expressed progenitor marker CD34

or the endothelial progenitor marker CD31 [76].

Nevertheless, Tables 6 and 7 summarize the relative amount of ADRCs expressing the sur-

face markers CD13, CD29, CD34, CD44, CD73, CD90, CD31 and CD45 as reported in all

studies describing enzymatic and non-enzymatic methods for isolating ADRCs listed in Tables

Fig 11. Hepatogenic differentiation potential of ADRCs. The panels show the results of culturing ASCs on their 3rd passage (derived

from Transpose RT / no Matrase isolated ADRCs (A, C, E) or Transpose RT / Matrase isolated ADRCs (B, D, F), respectively) for ten

days in hepatogenic differentiation medium (A-D) or control medium (E, F). The presence of structures containing a high proportion of

carbohydrate macromolecules (glycogen, glycoprotein and proteoglycans) was investigated with Periodic Acid Schiff staining; cells were

counterstained with hematoxylin. As a result of induction of hepatogenesis the morphology of the cells changed from a fibroblastic

spindle shape to a rather polygonal shape typically associated with hepatocytes. The scale bar in (F) represents 100 μm in (A, B, E, F) and

50 μm in (C, D).

https://doi.org/10.1371/journal.pone.0221457.g011
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1 and 2 (note that in some studies surface markers were investigated but relative amounts of

ADRCs expressing a certain surface marker or a combination of surface markers were not pro-

vided). The data summarized in Tables 6 and 7 demonstrate that (i) for only very few methods

[49, 53, 54, 58] the relative amount of CD34+ ADRCs was determined, with substantial varia-

tion among methods (range, 35% - 81%); (ii) for most methods CD34 was determined together

with at least one other surface marker, resulting in a range of published data between 0.8%

(CD34+/CD90-/CD31-/CD45-/CD105-/CD146+ cells; [51]) and 44% (CD34+/CD31-/CD45-

cells; [41]); (iii) the relative amount of CD45+ ADRCs varied between 6% [42] and 50% [54]

for enzymatic methods, and between 8% [42] and 82% [58] for non-enzymatic methods; (iv)

for only few methods the relative amounts of CD13+ cells, CD29+ cells, CD44+ cells, CD73+

cells, CD90+ cells and CD31+ cells were determined; and (v) for no any method the relative

amount of CD31-/CD34+/CD45-/CD235a- cells (as proposed in [73]) was determined.

Most importantly, the data summarized in Tables 6 and 7 do not show any correlation

between the cell yield and any single surface marker or any combination of surface markers,

respectively. Neither do these data allow any differentiation between reported enzymatic and

non-enzymatic methods for isolating ADRCs from human adipose tissue. Rather, the vast

Fig 12. Neurogenic differentiation potential of ADRCs (1). The panels show the results of culturing ASCs on their 6th passage (derived from

Transpose RT / no Matrase isolated ADRCs (A, C) or Transpose RT / Matrase isolated ADRCs (B, D), respectively) for three weeks in neurogenic

differentiation medium (A, B) or control medium (C, D). Cells were imaged with phase contrast microscopy. As a result of induction of neurogenesis,

the cells developed characteristic, slender processes (arrows in A, B). The scale bar in (D) represents 50 μm in (A-D).

https://doi.org/10.1371/journal.pone.0221457.g012
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majority of reported enzymatic and non-enzymatic methods were not characterized according

to the position statements published by IFATS and ISCT [73, 75].

Considering the available data summarized in Tables 6 and 7 and the general concerns

about characterizing ADRCs and MSCs by surface markers outlined above it appears reason-

able to hypothesize that determining surface markers of ADRCs is in principle not suitable for

characterizing a method for isolating ADRCs from adipose tissue. This was the reason why no

such characterization was performed in this study.

In any case, the available surface marker data do not allow to conclude that using enzymes

in the process of isolating ADRCs from human adipose tissue subjects the cells to substantial

manipulation. Rather, the available surface marker data suggest that using enzymes in the pro-

cess of isolating ADRCs from human adipose tissue does not subject the cells to substantial

manipulation.

Of importance, after processing cells with Matrase Reagent following the manufacturer’s

instructions for use, the collagenase activity in the final cell suspension was not present (Fig

15). This suggests that the enzyme has only a supportive function in releasing the cells but has

no presence or effect in the final cell suspension.

In summary, this study demonstrates that isolating ADRCs with the use of Matrase Reagent

did not alter or induce biological characteristics, physiological functions or structural proper-

ties of the cells relevant for the intended use. Due to the high yield of viable, pluripotent cells

in the final cell suspension isolated from lipoaspirate (or adipose tissue in general) with the

Transpose RT system and the use of Matrase Reagent, cells are neither required to be cultured

nor expanded, nor is any genetic manipulation necessary such as overexpression of embryonic

genes as in the case of iPS cells.

Fig 13. Neurogenic differentiation potential of ADRCs (2). The panels show the results of culturing ASCs on their 6th passage (derived

from Transpose RT / no Matrase isolated ADRCs (A, C, E, G) or Transpose RT / Matrase isolated ADRCs (B, D, F, H), respectively) for three

weeks in neurogenic differentiation medium (A, B, E, F) or control medium (C, D, G, H). Cells were processed with immunofluorescence for

the detection of respectively microtubule-associated protein 2 (MAP2) (A-D) or beta III Tubulin (β3TUB) (E-H), and were counterstained

with DAPI. As a result of induction of neurogenesis, the cells expressed both MAP2 (A, B) and β3TUB (E, F). The scale bar in (H) represents

50 μm in (A-H).

https://doi.org/10.1371/journal.pone.0221457.g013

Fig 14. Expression of microtubule-associated protein 2 (MAP2) and beta III tubulin (β3TUB) by PC12 cells as positive control. The panels

show the results of culturing PC12 cells for 6 days in neurogenic culture medium. Cells were processed with immunofluorescence for the detection

of respectively MAP2 (A) or β3TUB (B), and were counterstained with DAPI. The scale bar in (B) represents 50 μm in (A, B).

https://doi.org/10.1371/journal.pone.0221457.g014
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Regarding the definition of minimal manipulation of cells, the U.S. Food and Drug Admin-

istration (FDA) has stated the following: “Processing that does not alter the relevant biological
characteristics of cells” and “Examples of relevant biological characteristics of cells or nonstruc-
tural tissues include differentiation and activation state, proliferation potential, and metabolic
activity” [77]. Furthermore, Transpose RT / Matrase isolation of ADRCs is performed directly

at point of care, i.e., not outside of a direct patient care setting [78]. Recently, the FDA has

approved clinical studies using Transpose RT / Matrase isolated ARDCs under Investigational

Device Exemption (IDE) and not under Investigational New Drug Application (IND) [79–83].

The European Medicine Agency has defined advanced therapy medicinal products

(ATMPs) as follows: “Cells or tissues shall be considered ‘engineered’ if they fulfil at least one of
the following conditions: 1) the cells or tissues have been subject to substantial manipulation, so
that biological characteristics, physiological functions or properties relevant for the intended
regeneration, repair or replacement are achieved. The manipulation listed in Annex I, in particu-
lar, shall not be considered as substantial manipulations; and 2) the cells or tissues are not
intended to be used for the same essential function or functions in the recipient as in the donor”

Fig 15. Measurement of collagenase activity in cell preparations that were prepared with the use of Matrase Reagent

following the manufacturer’s instructions for use. No collagenase activity was detected in cell preparations (the red dot at

Y = X = 0 [indicated by the red arrow] represents the mean of two independent measurements for each sample). The

standard curve for the used assay (EnzChek Gelatinase/Collagenase Assay Kit E12055; Invitrogen) is depicted by the green

line. Because this high-sensitivity assay can detect enzyme activity down to a minimum concentration of 2×10−3 U/ml,

activity of the enzyme in the final cell preparation was not present or less than two-thousands of a unit per ml.

https://doi.org/10.1371/journal.pone.0221457.g015
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[28]. Accordingly, in report EMA/CAT/228/2013 the European Medicine Agency has classi-

fied Transpose RT / Matrase isolated ARDCs as not substantially manipulated and classified as

non-ATMP [84].

Conclusions

For the practice of medicine our findings do not support the hypothesis that ADRCs should

preferentially be isolated from adipose tissue without enzyme, as proposed in some studies in

the literature [37, 74]. Rather, the results of this study as well as a wealth of data from the litera-

ture (Tables 1 and 2, Figs 1 and 16) clearly show that non-enzymatic (i.e., just mechanical) iso-

lation of ADRCs from adipose tissue may result in significantly lower cell yield (and most

probably also in lower cell viability) than enzymatic isolation of ADRCs from adipose tissue.

In order to obtain a comparable cell yield just by mechanical processing without enzyme,

larger initial amounts of adipose tissue must be recovered, let alone the potentially higher

amount of non-living cells in the final cell suspension [46]. Transpose RT / Matrase isolated

Fig 16. Cell yield and live cell yield obtained with Transpose RT / Matrase isolation of ADRCs and Transpose RT / no Matrase isolation of ADRCs

compared with corresponding data reported in the literature. Panels A and B show individual data as well as mean ± standard error of the mean of cell

yield (A) and live cell yield (B) obtained with Transpose RT / Matrase isolation of ADRCs (black dots), enzymatic methods for isolating ADRCs reported in

the literature (listed in Table 1) (green dots), Transpose RT / no Matrase isolation of ADRCs (black crosses) and non-enzymatic methods for isolating

ADRCs reported in the literature (listed in Table 2) (red dots). Panels C and D show the same data as a function of the year of publication.

https://doi.org/10.1371/journal.pone.0221457.g016
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Table 6. Relative amount of ADRCs expressing certain surface markers as reported in studies describing non-enzymatic methods for isolating ADRCs.

R Y CY CD13 CD29 CD34 CD44 CD73 CD90 CD31 CD45

[39] 2015 0.0 -- -- -- -- -- -- -- --

[41] 2013 0.07 -- -- 28(a) -- -- -- (a) (a)

[41] 2013 0.35 -- -- 26(a) -- -- -- (a) (a)

[44] 2014 0.72 -- -- -- -- -- -- -- --

[45] 2015 1.00 -- -- 20(b) -- -- -- 4(c) --

[46] 2016 1.01 -- -- 11(a) -- -- -- (a) (a)

[45] 2015 1.03 -- -- 25(b) -- -- -- 5(c) --

[41] 2013 1.07 -- -- 22(a) -- -- -- (a) (a)

[45] 2015 1.47 -- -- -- -- -- -- -- --

[47] 2012 1.60 -- -- 42(b) -- -- -- -- 36

[48] 2014 2.30 -- -- -- -- 60(d) (d) -- (d)

[41] 2013 2.41 -- -- 44(a) -- -- -- (a) (a)

[39] 2015 2.55 -- -- -- -- -- -- -- --

[47] 2012 2.60 -- -- 41(b) -- -- -- -- 34

[46] 2016 2.85 -- -- 9(a) -- -- -- (a) (a)

[49] 2019 2.93 33 76 60 60 48 68 45 23

[50] 2015 2.79 -- -- 36(e) -- -- (e) -- 5(f)

[51] 2008 2.95 -- -- 0.8(g) -- -- -- 8(h) --

[52] 2005 3.00 -- -- -- -- -- -- -- --

[53] 2006 3.08 37 47 60 64 25 55 22 --

[54] 2014 3.60 -- -- 35 -- -- -- 8(i) 50

[55] 2014 3.60 -- -- -- -- -- -- -- --

[43] 2014 3.60 -- -- -- -- -- -- -- --

[56] 2014 3.68 -- -- -- -- -- -- -- --

[23] 2004 4.04 -- -- -- -- -- -- -- --

[57] 2013 4.07 -- -- -- -- -- -- -- --

[58] 2013 4.80 -- 90 81 6 37 81 -- 28

[42] 2015 5.34 -- -- 20(a) -- -- -- -- 6

[49] 2019 5.35 48 89 67 68 59 76 55 31

[46] 2016 5.36 -- -- 9(a) -- -- -- (a) (a)

[46] 2016 6.25 -- -- 7(a) -- -- -- (a) (a)

[59] 2013 7.01 -- -- 18(b) -- -- -- 27(i) --

[59] 2013 7.02 -- -- 43(b) -- -- -- 25(i) --

[60] 2017 9.06 -- -- -- -- -- -- -- --

[42] 2015 12.1 -- -- 19(a) -- -- -- -- 13

[61] 2006 13.1 -- -- 28(j) -- -- -- 4(k) 30(l)

[62] 2001 13.3 -- -- -- -- -- -- -- --

[63] 2016 35.0 -- -- -- -- -- -- -- --

(Continued)
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ADRCs are—upon the respective induction—capable to differentiate into all three germ layers

without prior genetic manipulation. In line with earlier recommendations in the literature

[46] characterization of ADRCs for clinical use should include analysis of nucleated cell count,

nucleated cells per milliliter of tissue processed, cellular viability, level of residual enzymatic

activity and data from CFU-F assay. On the other hand, analysis of surface markers of ADRCs

should no longer be considered suitable for characterizing a method for isolating ADRCs from

adipose tissue.
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R Y CY CD13 CD29 CD34 CD44 CD73 CD90 CD31 CD45

[40] 2016 387 -- -- -- -- -- 22(m) (m) --

Surface marker data are given in percent. Abbreviations: R, reference; Y, year of publication; CY, cell yield [×105/ml lipoaspirate]; --, data not provided.

(a), CD34+/CD31-/CD45- cells

(b), CD34+/CD31- cells
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(e), CD34+/CD90+/CD45-/CD146- cells

(f), CD34-/CD45+/CD14+ cells

(g), CD34+/CD90-/CD31-/CD45-/CD105-/CD146+ cells

(h), CD34+/CD90+/CD31+/CD45-/CD105-/CD146+ cells

(i), CD34+/CD31+ cells

(j) CD34+/CD90+/CD31-/CD45-/CD105-/CD146- cells
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Table 7. Relative amount of ADRCs expressing certain surface markers as reported in studies describing non-enzymatic methods for isolating ADRCs.

R Y CY CD13 CD29 CD34 CD44 CD73 CD90 CD31 CD45

[39] 2015 0.07 -- -- -- -- -- -- -- --

[43] 2014 0.11 -- -- -- -- -- -- -- --

[48] 2014 0.12 -- -- -- -- 60(a) (a) -- (a)

[48] 2014 0.23 -- -- -- -- 60(a) (a) -- (a)

[58] 2013 0.25 -- 48 24 5 9 23 -- 82

[39] 2015 0.30 -- -- -- -- -- -- -- --

[64] 2014 1.25 -- -- -- -- -- -- -- --

[56] 2014 1.39 -- -- -- -- -- -- -- --

[65] 2009 2.40 -- -- -- -- -- -- -- --

[42] 2015 4.44 -- -- 25(a) -- -- -- -- 8

Surface marker data are given in percent. Abbreviations: R, reference; Y, year of publication; CY, cell yield [×105/ml lipoaspirate]; --, data not provided.

(a) CD45-/CD73+/CD90+ cells

(b), CD34+/CD31-/CD45- cells.

https://doi.org/10.1371/journal.pone.0221457.t007
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