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Introduction
Multiple sequence alignments (MSAs) are essential 
instruments for prediction of protein structure and function, 
phylogenetic inference, and other tasks related to sequence 
analysis.1 Data in MSAs are usually represented in a matrix 
form, such that the elements in the same column are homolo-
gous, occupy the same place in the genome/protein, and usu-
ally have a similar function in the protein structure. Because 
structure and function may diverge through time as a result 
of evolutionary processes, making such alignments becomes 
increasingly difficult when MSAs include sequences sharing a 
last common ancestor (LCA) very distant in time.2 Sequences 
in an MSA whose last common ancestor is much more evo-
lutionarily distant than that of the remaining sequences in 
the alignment can be denoted as divergent sequences. This 
scenario may also arise as a result of horizontal gene transfer 
processes and also through errors and mistakes during the 
different phases leading to an MSA. The methods used for 
aligning sequences try to maximize the number of match-
ing residues by using a scoring scheme that penalizes mis-
matches and lack of homologous residues. To this end, gaps 
are introduced in the alignment. Usually, the more divergent 
the sequences, the more gaps are introduced to make homolo-
gous sequence elements match.3–5

Gaps in an MSA can result from the acquisition or loss 
of biological information represented by nucleotide or amino 
acid residues. Occasionally, it is difficult to identify the real 
cause between these two possibilities, but in any case, in order 
to maintain the homology in not fully conserved areas, it is 
necessary to insert gaps. In addition, current methods for 
constructing MSAs are not perfect and often introduce some 
errors and noise in the alignments.6,7 These errors become 
more frequent as more divergent sequences are included in an 
MSA, and they can seriously affect subsequent analyses.8,9

Filtering the alignments through the removal of posi-
tions (columns) of dubious homology is a common practice 
to increase the phylogenetic signal in the MSA and remove 
noise.10 Most methods used in phylogenetic inference assume 
that sites evolve in an independent manner from each other. 
Thus, removing some columns is expected to enhance the 
signal-to-noise ratio in the MSA. The columns remaining 
after filtering are used to construct the phylogeny although 
evidence rejecting site independence has been published.11 
In consequence, several authors have proposed improving 
MSAs through the elimination of columns correspond-
ing to weakly conserved or very divergent regions.10,12,13 
Several software tools use this approximation. The popular 
gBlocks is based on searching for regions with contiguous 
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conserved positions, with a minimum number of gaps and 
highly conserved flanking positions.12 Other tools, such as 
T-Coffee, estimate the alignment confidence by a progressive 
approach.14 GUIDANCE also calculates a confidence score 
that measures the robustness of the guide tree used for con-
structing the alignment.15 Despite the popularity of all these 
tools, some authors indicate that current filtering methods 
still lead to inaccurate phylogenetic trees and new filtering 
methods and algorithms are needed.16

More recently, a different approach has been taken. Some-
times, a divergent sequence is included in a group of conserved 
or close (in evolutionary terms) sequences. This inclusion can 
alter the whole alignment, and in that case, gaps must be intro-
duced to maintain homologous and conserved areas. In many 
cases, gaps are inserted erroneously, and they not only become 
uninformative but can also decrease the quality of the global 
alignment.17 The distortion introduced in the alignment affects 
not only a few columns but also almost the entire MSA. In 
these situations, and in order to improve the alignment quality, 
it is necessary to decide whether divergent sequences should 
be removed from the MSA. A similar question can appear 
when working with a large number of sequences obtained from 
public databases, and we must decide which of them should 
be included in the final analyses. We may accidentally include 
nonhomologous, wrongly identified, or even reversed sequences. 
All these situations can lead to an important loss of quality in 
the data and in a waste of time until we realize of these errors. 
In these cases, we should identify those divergent sequences 
as if they were outliers from the rest of the data. Outliers are 
patterns of data that do not match with the majority of the pat-
terns in a dataset. The identification of outliers has been studied 
in the statistics community for a long time, and it is an impor-
tant area in fields such as image processing, fraud detection, 
and medical anomaly detection.18 Divergent sequences can act 
as outliers altering the results of posterior analyses and leading 
to erroneous conclusions.

OD-seq, a recently published tool, also identifies diver-
gent sequences in an MSA by finding those cases with an 
anomalous average distance compared to the remaining 
sequences.19 OD-seq computes all possible pairwise distances, 
counting the number of positions with gaps in one sequence 
and not in the other. Although this is a valid starting point, 
we consider that more information is needed to make a proper 
revision of the alignment.

We have developed a software tool to help users in the 
supervision, comparison, and decision-making tasks after 
obtaining an MSA. The principal goal of EvalMSA is to pro-
vide an objective view of the influence of each sequence on 
the quality of the MSA. We implement a novel method for 
detecting the contribution of each individual sequence to the 
insertion of gaps in the alignment, along with other classic 
methods such as sum-of-pairs (SP), and provide a statistical 
evaluation of the improvement in alignment quality if the 
offending sequences are removed from the MSA.

Methodology
EvalMSA performs different analyses in order to find diver-
gent sequences or outliers in an MSA. First, the program ana-
lyzes the original length of the sequences used to construct 
the alignment. Then, EvalMSA calculates the contribution of 
each sequence to the alignment quality to assess its relative 
importance in the MSA and assigns a weight to each sequence. 
Finally, the tool evaluates the contribution of each sequence to 
introduce gaps in the remaining sequences of the alignment 
by computing a parameter denoted gappiness. Users can also 
mark some sequences as reference in case they have been used 
as outgroups in the alignment. These reference sequences will 
not be taken into account when summarizing the results and 
in the identification of those sequences with less weight, more 
gaps, or higher gappiness value.

Preanalysis. Basic statistics on sequence length can read-
ily detect the presence of wrong/misaligned sequences in an 
MSA, possibly as the result of unnoticed errors at selecting, 
downloading, or introducing sequence data into the align-
ment. In a preliminary analysis, EvalMSA reports some 
parameters related to the original sequence lengths, such as 
mean, median, standard deviation, quartiles, and outliers. 
Typical errors, such as including a single gene into an align-
ment of complete genomes, can be identified in this way.

Gappiness value. A truly divergent sequence, evolu-
tionarily very distant from the rest, can introduce large gaps 
in a multiple alignment. Hence, we need to identify those 
sequences that introduce more gaps in the other sequences. 
To look for these sequences, we first identify the columns 
with more gaps than residues in that position. The method is 
independent of the type of residue (amino acid or nucleotide). 
For each sequence (row), we count the number of columns 
having a residue when most of the sequences have a gap. By 
calculating the number of gaps that each sequence generates 
in the rest, we can rank them by gap-generation capacity.

To evaluate the capacity of each sequence to introduce 
gaps in the alignment, a gappiness value (gpp) is calculated. 
The higher the gpp value of a sequence, the larger the num-
ber of gaps it can introduce in the remaining sequences of the 
alignment. In consequence, as the gpp value increases, the 
probability that the corresponding sequence is strongly diver-
gent from the rest increases as well.

For a given sequence, the gpp value is initialized at 0 and 
is incremented when a position is found to have a residue and 
the remaining sequences (over a threshold) have a gap. The 
value of the increment is inversely proportional to the number 
of sequences having a residue in that position. A gpp value 
is calculated for each sequence and, when the evaluation is 
completed, is compared with the rest. The sequence with the 
largest gpp value is considered as the sequence that introduces 
more gaps in the MSA. This value is calculated as follows:

Given an alignment with K sequences and L positions.
For each column in the alignment, a Cn value indicating 

the number of positions that are residues is defined (no gap).
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f(s,n) is defined as the number of residue positions with 
Cn = n, in sequence s.

Then:

	 gpp
K C f s n

L Ks
nn

k

=
−

=∑ ( ) * ( , )

*
1

An example of the application of this expression and 
more details can be found in the Supplementary files.

Evaluating the original alignment score and defining 
the gap penalty. For each alignment, the program calculates 
a score that will be a quality measure. To calculate this score, 
we use the SP method. The SP score takes into account all the 
pairwise information in the alignment and is one of the most 
popular, simple methods used for scoring an MSA. Using a 
scoring matrix in conjunction with the SP method allows us 
to score each sequence based on its similarity and mismatches 
with the rest of the sequences. A more detailed explanation 
about how the SP method is implemented in EvalMSA is pro-
vided in the Supplementary files.

This system can be used for assessing amino acid or 
nucleotide alignments through an appropriate scoring matrix. 
Scoring matrices typically do not include gap penalty values. 
One of the main problems with the SP method is the assess-
ment of gap penalties. During the alignment process, inserting 
a gap in a sequence is always penalized. This penalty depends 
on how evolutionarily close the sequences are and on whether 
it corresponds to a gap opening or a gap extension. In our case, 
we will penalize all the gaps with the same value, but this can 
be changed easily.

Sometimes, the alignment process generates large gaps due 
to errors or the use of inappropriate or very divergent sequences. 
These often lead to a serious decrease in the quality of the align-
ment. We assume that, during the evolutionary process, losing 
or gaining a residue is less likely than the substitution of an 
amino acid or nucleotide by another. A gap in just one sequence 
means lack of homology (due to insertions or deletions) to the 
rest of the sequences and represents a loss of information for 
subsequent analyses. We account for mismatches and for gaps 
when scoring sequences, but we want to maximize the gap effect 
and, in consequence, we penalize more those sequences with 
more gaps. Hence, in our analysis, a gap will be penalized more 
than a mismatch and gap penalties receive a lower value in the 
scoring matrix than perfect matches or mismatches. For any set 
of values defined in the scoring matrix, we approximately obtain 
a normal distribution (Fig. 1). The gap penalty is defined as:

	 s gap x( ) = − σ

where σ is the standard deviation and x is the lowest value in 
the matrix.

If the alignment contains symbols that are not defined in 
the scoring matrix, such as *, ?, and X, they will be assigned 
the s(gap) value.

Evaluating the weight of each sequence on the 
alignment quality. For each sequence in the MSA, we evalu-
ate its weight (or influence) on the alignment quality. For this, 
each sequence is scored with a method derived from SP.

Given N sequences of length L, aligned forming an MSA 
matrix M = N × L and a scoring matrix, which provides a score 
s(x, y) for the alignment of characters x and y, then the score for 
ith position in sequence s, w(si), in the matrix is calculated as

	 w s s m mi i
s

i
j

j j s
N( ) ( , )

,
=

= ≠∑ 1

where mi
s  is the element from sequence s in position i and mi

j  
is the element from sequence j in position i. The global score 
for sequence s, W(s), results from adding the w score for each 
position in the sequence:

	 W s w sii
L( ) ( )=
=∑ 1

The W(s) score can be interpreted as a measure of the 
influence of sequence s on the MSA quality.

Benchmarking. In order to test the accuracy and effi-
ciency of the program, we benchmarked our application with 
alignments from the Pfam database (version 29.0).20 We 
took seed alignments from peptidoglycan-binding domain 
(PGBD), ParB, and phage-coat clans and added artificial 
outliers from Pfam families from either the same or different 
clans (Table 1). Once the outliers were added, we realigned the 
sequences using MUSCLE and ClustalW as implemented in 
MEGA software21 and also using the Expresso algorithm.22 
To test if the program works with other types of data rather 
than with amino acid alignments, we downloaded the mito-
chondrial genome sequences of 13 primates from GenBank. 
We added to this dataset the mitochondrial genome sequence 
of a reptile (Crocodylus porosus) and made an alignment using 
the MUSCLE algorithm. The resulting alignments were used 
as inputs for our program.

s(gap)

x σ σ

x µ

-

Figure 1. Gap penalty value. Using all the values contained in the scoring 
matrix, we obtained the distribution represented above. A value lower 
than the rest in the scoring matrix is valued as a gap penalty.
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Implementation. The application was implemented in 
Perl, with some modules imported from BioPerl.23 The results 
are plotted with the R language, so it is necessary to install the 
R-base code in order to obtain full functionality of EvalMSA. 
Complete information about the algorithms and methods 
used to calculate the numerical values reported by EvalMSA 
can be found in the Supplementary files. We also provide the 
alignments used in the benchmarking as an example of use as 
well as the results of the analyses in the Supplementary files.

Results and Discussion
We benchmarked our application with six different alignments. 
Table 1 summarizes the different MSAs used to benchmark 
the program derived from the Pfam database. To describe the 

output of the program in detail, we will explore the results for 
alignment 5 in Table 1. To construct it, we took the seed align-
ment of the Pfam protein family Linocin M18 (PF04454). 
Then, we added three protein sequences from families belong-
ing to the same Pfam clan (CL0373) to the seed alignment 
and we realigned it. We run EvalMSA with both alignments 
and compared the results. The program was run with default 
parameters in all the cases (default gap penalty, default gap 
threshold, the substitution matrix blosum62 for amino acid 
alignments, and DNA2 for the nucleotide one).

The returned results can be easily interpreted. Figure 2A 
(left) shows an example of the preanalysis output, in which a 
usual sequence length distribution is shown. All the sequences 
have a similar length (only 30 bp of difference between the 

Table 1. MSAs used to benchmark the program.

Alignment 
number

PFAM family PFAM clan Outliers family Outliers clan

1 PG_binding_1 
(PF01471)

PGBD (CL0244) PG_binding_2 (PF08823)/PG_binding_3 
(PF09374)

PGBD (CL0244)

2 ParBc (PF02195) ParB like superfamily (CL0248) PG_binding_1 (PF01471) PGBD (CL0244)

3 ParBc (PF02195) ParB like superfamily (CL0248) PG_binding_1 (PF01471)/Hyaluronidase_1 
(PF07212)

PGBD (CL0244)/
Phage fibre 
(CL0606)

4 ParBc (PF02195) ParB like superfamily (CL0248) ParBc_2 (PF08857)/
DUF262 (PF03235)

ParB like super-
family (CL0248)

5 Linocin_M18 
(PF04454)

Phage-coat CL0373 Phage_cap_P2 (PF05125)/
DUF2184 (PF09950)/P22_CoatProtein 
(PF11651)

Phage-coat 
CL0373
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Figure 2. Default output. (A) Preanalysis boxplot showing the original sequence length distribution. (B) Weight score histogram, highlighting the 
sequences with the highest number of gaps (green line) and with the largest gappiness value (magenta line). (C) Normalized weight score distribution. 
Sequence index refers to the list of sequences listed by weight. (D) Gappiness values. Sequence index refers to the list of sequences listed by gpp value.
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Table 2. Summary of the results obtained after running the program with dataset 5 aligned with MUSCLE (see Table 1).

GeneName IndelNum Weight Normalized_weight Gappiness Normalized_gappiness

Outlier2_PF09950 169 −53117 0.000 0.015 0.024

Q97V86_SULSO/96–329 183 −50346 0.104 0.007 0.002

Outlier3_PF11651/1–404 13 −47751 0.202 0.351 1.000

Outlier1_PF05125/8–339 85 −47745 0.202 0.182 0.510

A8F8I8_PSELT/3–247 172 −37039 0.605 0.009 0.007

Q2IH48_ANADE/1–259 158 −36908 0.610 0.022 0.044

A7HIB4_ANADF/2–255 163 −36652 0.619 0.015 0.024

C0R0J8_BRAHW/1–256 161 −36595 0.621 0.017 0.031

Q5L1H9_GEOKA/8–264 160 −36564 0.623 0.027 0.059

B8GHL2_METPE/5–250 171 −36543 0.623 0.010 0.010

B4UA40_HYDS0/1–265 152 −36184 0.637 0.028 0.063

C8WPL7_EGGLE/1–257 160 −36106 0.640 0.017 0.031

C0ZHN4_BREBN/1–265 152 −35900 0.648 0.030 0.068

A7I7A2_METB6/2–249 169 −35839 0.650 0.012 0.017

Q08WR7_STIAD/2–266 152 −35405 0.666 0.028 0.063

A3DFK3_CLOTH/1–257 160 −35058 0.679 0.017 0.031

O67639_AQUAE/1–267 150 −35042 0.680 0.033 0.078

Q7MSM9_WOLSU/1–252 165 −34373 0.705 0.010 0.010

A9BEM3_PETMO/1–251 166 −34166 0.713 0.010 0.010

B2V6Y3_SULSY/1–265 152 −34053 0.717 0.028 0.063

D1B7I4_THEAS/1–249 168 −34049 0.717 0.010 0.010

B2A6K6_NATTJ/8–259 165 −33733 0.729 0.011 0.012

D4H156_DENA2/1–251 166 −33411 0.741 0.010 0.011

MARIT_THEMA/1–251 166 −33062 0.754 0.010 0.011

A6TWC5_ALKMQ/1–250 167 −32960 0.758 0.009 0.006

B8CYH7_HALOH/1–249 168 −32325 0.782 0.008 0.004

C4XPM7_DESMR/1–251 166 −31049 0.830 0.010 0.011

A9FWS5_SORC5/3–254 165 −30219 0.861 0.011 0.012

Q0RH88_FRAAA/1–253 164 −29884 0.874 0.013 0.020

D0LZ74_HALO1/1–251 166 −29877 0.874 0.009 0.008

A8L1F1_FRASN/1–253 164 −29836 0.876 0.013 0.020

B2GID2_KOCRD/1–252 165 −29170 0.901 0.008 0.005

Q2RVS0_RHORT/1–258 159 −28769 0.916 0.017 0.032

Q0SE23_RHOJR/5–254 167 −28767 0.916 0.007 0.000

B1VSP7_STRGG/1–251 166 −28218 0.937 0.007 0.001

A1B987_PARDP/1–251 166 −27970 0.946 0.007 0.001

B2JNZ6_BURP8/1–251 166 −27833 0.951 0.007 0.001

C5B5H8_METEA/1–251 166 −27569 0.961 0.007 0.001

D5UVK7_TSUPD/1–251 166 −27517 0.963 0.007 0.001

B2HH42_MYCMM/1–251 166 −27459 0.965 0.007 0.001

B8EQK3_METSB/1–251 166 −27337 0.970 0.007 0.001

A9H5P1_GLUDA/1–251 166 −27043 0.981 0.007 0.001

C0ZVK4_RHOE4/1–251 166 −26849 0.988 0.007 0.001

B9JHD1_AGRRK/1–251 166 −26780 0.991 0.007 0.001

Q5YPL3_NOCFA/1–252 165 −26532 1.000 0.008 0.005
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shortest and the longest sequences). In the right part of 
Figure 2A, it is possible to identify a pair of sequences that 
radically differ from the others in terms of sequence length. 
The weight distribution, as shown in Figure  2B, is also an 
intuitive way of evaluating the contribution of each sequence 
to the alignment quality. The left histogram shows that most 
sequences have a similar weight. The magenta line identifies 
the sequence with the highest gappiness value, and the green 
line identifies the sequence with the largest number of gaps. 
This sequence contributes markedly less than the rest to the 
alignment quality. The weight of the sequence identified as 
introducing more gaps (magenta line) does not differ much 
from the rest of the sequences. On the other hand, the right 
histogram shows that four sequences had less weight values 
than the rest. The sequences marked as having more gaps and 
the one provoking more gaps are in the left part of the histo-
gram. The same information is represented in Figure 2C but 
after normalizing the weight scores and sorting them. In this 
way, it is easier to appreciate the differences among weighting 
scores. In the left plot, most of the sequences have a high score 
and only one of them has a low weight. In the right plot, we can 
see that at least four sequences have a weight value lower than 
the rest. Three of these sequences correspond to the artificial 
outliers that we added to obtain the MSA. Finally, the distri-
butions of gappiness values are shown in Figure 2D. Again, 
by comparing the right and the left plots, we can observe that 
two of the outliers have higher gappiness values than the rest.

The plots shown in Figure 2 correspond to the standard 
output of the tool. The program also writes a Comma Separated 
Values (CSV) file with all the values calculated associated with 
the sequence names, so additional analyses can be made by the 
user. Table 2 shows the CSV file obtained from the above exam-
ple, in which we can see that the sequence with less weight value 
corresponds to outlier 2, while the two sequences with the high-
est gappiness values are outliers 3 and 1. These results mean that 
outliers 3 and 1 are the sequences that introduce more gaps in 
the rest of the sequences. So, probably, their presence is altering 
the whole alignment. The user can identify them easily as pos-
sible outliers. On the other hand, the gappiness value for outlier 
2 is really low, so it does not introduce many gaps in the rest of 
sequences. However, the weight of this sequence is the lowest 
one so the number of gaps and mismatches is higher than for 
the rest of the sequences. Hence, outlier 2 sequence should also 
be taken into account by the user as a possible outlier. In addi-
tion to these files, a plain-text file with a short summary of the 
divergent sequences identified is created.

We have not observed remarkable differences between 
alignments obtained with different algorithms, such as those 
implemented in MUSCLE and ClustalW. The outliers were 
identified correctly in both cases. Moreover, we used the 
Expresso algorithm21 to construct alignments taking struc-
tural information into account. Again, no remarkable dif-
ferences were found in the results. So, our program works 
independently from the algorithm used to align the data. 

In  addition,  we have checked that our program correctly 
identifies outliers from other data sources such as GenBank 
sequences. In Supplementary file 2, we have included an 
alignment of 13  mitochondrial genomes from primates and 
one mitochondrial genome from a reptile. EvalMSA correctly 
identifies the reptile sequence as the one with the least weight 
as well as the highest gappiness value.

Figure 3 presents the results of a benchmark test show-
ing the execution time of the program when run in a personal 
computer (Intel Core i7–4770 CPU 3.40 GHz, 16 GB RAM, 
1 TB HDD) for different MSAs. We tested the program with 
an MSA of 415 virus and 20 bacterial genomes. The execu-
tion time is fast with short (virus) genomes, but it slows down 
as the number of sequences in the MSA increases. The most 
time-consuming part of the program is the weight computa-
tion. It relies on a nested loop that goes over all the positions 
for each sequence. So, the time complexity for the program is 
O(n2). The program is highly recommended for working with 
viral and bacterial genomes as well as gene alignments.

By default, EvalMSA calculates a gap penalty that 
depends on the substitution matrix used to score the align-
ment. This value, as well as the substitution matrix and the 
gap threshold used to calculate the gpp value (as detailed in 
the Supplementary file), can be defined by the user. Also, 
by default the program provides the BLOSUM62 and 
PAM70 substitution matrices and a DNA matrix penalizing 
transitions vs transversions. Users can also define their own 
matrices to score the alignments according to their needs. In 
addition, the program accepts command-line arguments so it 
is easy to include it in a pipeline.

Although a similar tool was recently published,18 the 
software presented here provides a wider perspective on 
sequence divergence and can be used complementarily to 
OD-seq. Similarly to OD-seq, EvalMSA also penalizes gap 
occurrence, but it takes into account mismatches, gpp values, 
and the original sequence lengths and gives a graphical and 
more complete report of the results, thus facilitating a deeper 
analysis. OD-seq produces results faster, but if the user needs 
a more detailed analysis, EvalMSA returns more results and 
accounts for more diverse reasons for sequence divergence.

To compare both programs, we analyzed alignment 5 in 
Table 1 with OD-seq. This program only identified as outli-
ers the introduced sequences 1 and 3 and maintained outlier 
2 in the core alignment. The identification of outliers by OD-
seq is based on the number of gaps between sequences, but 
EvalMSA also penalizes mismatches and takes into account 
gappiness values. Hence, our program can identify the dif-
ferent outliers and the cause of their divergence from the rest 
of the sequences ( gpp value, weight, or number of gaps). In 
summary, OD-seq can be used as an initial, fast approxi-
mation, and EvalMSA can be used as a posterior tool for a 
deeper analysis.

Evaluating alignments is not a trivial or obsolete prob-
lem. The decision of including or not a sequence in a multiple 
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alignment and subsequent analyses is ultimately made by the 
investigators. It is important to have a method that allows them 
to evaluate MSAs with a unique methodology and criterion, 
so that decisions are based on objective data. Our software 
tool serves as an objective data provider so that investigators 
can make decisions based on an objective, easily reproducible 
method besides their own experience and criterion. Finally, 
EvalMSA was programmed using Perl and R, so it is portable 
to almost any platform.
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