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Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in
allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell fac-
tor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated
release of inflammatory mediators. Activation of various signaling pathways in mast cells
results in changes in cell morphology, adhesion to substrate, exocytosis, and migration.
Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also
play an important role in initial stages of FcεRI and other surface receptors induced trigger-
ing. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments
build up from polymerized actin are affected in activated cells by kinases/phosphatases,
Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucle-
ation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its
nucleation promoting factors and formins in case of microfilaments.The dynamic nature of
microtubules and microfilaments in activated cells depends on many associated/regulatory
proteins. Changes in rigidity of activated mast cells reflect changes in intermediate fila-
ments build up from vimentin. This review offers a critical appraisal of current knowledge
on the role of cytoskeleton in mast cells signaling.
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INTRODUCTION
Mast cells play an essential role in innate immunity, allergy, and
inflammation. When activated they release mediators that are
pivotal for initiation of inflammatory reactions associated with
allergic disorders. Activation of mast cells in allergic inflammatory
response occurs via the high affinity receptor for IgE (FcεRI) fol-
lowing receptor aggregation induced by antigen-mediated cross-
linking of IgE occupied FcεRI. This response is profoundly influ-
enced by other factors that modulate the threshold levels of mast
cell triggering. Cell-surface receptors, such as the stem cell factor
(SCF) receptor, c-Kit, and the specific G protein-coupled receptors
(GPCRs) synergistically enhance FcεRI-mediated mast cell exocy-
tosis (degranulation) (Kalesnikoff and Galli, 2008; Gilfillan and
Rivera, 2009).

The first defined step in FcεRI signaling is phosphorylation of
the immunoreceptor tyrosine-based activation motifs (ITAMs) in
the cytoplasmic tails of the FcεRI β and γ subunits by Src-family
protein tyrosine kinase (PTK) Lyn. Tyrosine-phosphorylated
ITAMs of the FcεRI γ subunits serve as docking sites for the tan-
dem Src homology (SH)2 domains of the non-receptor tyrosine
kinase Syk (spleen tyrosine kinase) of the Syk/Zap-70 family. Syk
bound to ITAMs adopts an active conformation that facilitates its
phosphorylation by Lyn and further increase in enzymatic activity.
Consequently, Syk phosphorylates a number of its targets critical
for further propagation of the signal, including the transmem-
brane adaptor linker proteins (TRAPs), linker for activation of T
cells (LAT), and non-T cell activation linker (NTAL) (Dráber et al.,
2012). Phosphorylated TRAPs serve as plasma membrane dock-
ing sites for cytoplasmic SH2 domain containing molecules like

growth factor receptor-bound protein 2 (Grb2) and phospholi-
pase Cγ (PLCγ). After membrane anchoring and activation, PLCγ

hydrolyses phosphatidylinositol 4,5-biphosphate (PIP2) and pro-
duces diacylglycerol (DAG) and inositol 1,4,5,-triphosphate (IP3)
that binds to its receptors on endoplasmic reticulum (ER). This
results in Ca2+ efflux from ER. Subsequently, depletion of Ca2+
from ER lumen induces Ca2+ influx across the plasma mem-
brane through store-operated Ca2+ channels. The influx leads to
enhancement in free cytoplasmic Ca2+ concentration, a step which
is substantial for further signaling events (Blank and Rivera, 2004;
Rivera et al., 2008). The stimulatory effect of cross-linking of IgE
receptors with antigen can be mimicked in part by pervanadate, a
compound that effectively inhibits protein tyrosine phosphatases
(Teshima et al., 1994).

Mast cells also express on their surfaces receptors for a num-
ber of ligands known to be potent mast cell chemoattractants.
The most thoroughly investigated of these is SCF, a natural lig-
and for c-Kit (Meininger et al., 1992). Others include agonists of
GPCRs, such as prostaglandin E2 (PGE2), which positively regu-
lates mast cell responses through the EP3 receptor (Weller et al.,
2007). There is some evidence for the hypothesis that IgE sensi-
tized mast cells migrate toward the antigen, potentially through
the release of chemoattractants from the mast cells themselves
(Ishizuka et al., 2001).

Degranulation can also be induced, independently of FcεRI
aggregation, by thapsigargin, a compound that discharges intra-
cellular Ca2+ stores by inhibition of the Ca2+-ATPase pumps
located in ER membrane (Thastrup et al., 1990). Similarly,
stimulation with basic secretagogues, such as anaphylatoxins,
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neuropeptides, compound 48/80, and poly-L-lysine, results in acti-
vation of distinct FcεRI-independent pathways (Lagunoff et al.,
1983). These stimuli share a common characteristic of being
polycations which are able to penetrate through the plasma mem-
brane and stimulate the G-proteins (Bueb et al., 1992; Deng et al.,
2009).

Activation of mast cells is accompanied by changes in cell
morphology, enhanced adhesion to various substrates, migra-
tion, and exocytosis. All these processes are dependent on the
activity of cytoskeletal proteins. The cytoskeleton of mast cells
is formed by three types of filamentous structures: microtubules
formed by tubulin dimers, microfilaments composed of actin,
and intermediate filaments of vimentin-type. These cytoskeletal
networks differ in their organization, protein compositon, and
functions. In cells, there is equilibrium between soluble and poly-
meric state of principal building proteins that form corresponding
cytoskeletal structures. Research has mostly focused on microfil-
aments and microtubules, that both play a critical role in these
processes. Data on the involvement of intermediate filaments in
mast cell activation are still very limited. A simplified model of

early signaling events leading to cytoskeleton reorganization after
FcεRI aggregation is shown in Figure 1.

Cytoskeleton of activated mast cells has been studied in various
cellular models ranging from mouse bone marrow-derived mast
cells (BMMCs) and isolated rat peritoneal mast cells (RPMCs) to
mouse BMMC lines (e.g., MC/9), rat basophilic leukemia cell lines
(e.g., RBL-2H3), or human mast cell lines (e.g., HMC-1). Typi-
cal distribution of microtubules and microfilaments in interphase
RBL-2H3 cells is shown in Figure 2.

This review presents a critical survey of current knowledge on
the role of cytoskeleton in mast cells signaling. Basic characteris-
tic properties of particular cytoskeletal systems are outlined at the
beginning followed by evaluation of their participation in mast
cell activation.

MICROTUBULES
MICROTUBULES AND TUBULINS
Microtubules are cytoskeletal polymers essential for many cellular
activities such as maintenance of cell shape, division, migration,
positioning of organelles, and ordered vesicle transport powered

FIGURE 1 | Simplified model of early signaling events leading to

cytoskeleton reorganization after FcεRI aggregation. Aggregation of the
FcεRI by multivalent antigen induces activation of the Src kinase Lyn, which
phosphorylates (red dots) ITAM motifs of FcεRI β and γ subunits (green),
followed by anchoring of the Syk kinase to FcεRI through interaction of
Syk-SH2 domains with phosphorylated ITAMs. Aggregation also leads to
activation of Fyn kinase that phosphorylates the adaptor Gab2.
Transmembrane adaptor proteins NTAL and LAT are phosphorylated by Syk
giving rise to formation of binding sites for various SH2-containing proteins
such as Grb2. In this way it brings Gab2 and phosphoinositide-3-kinase
(PI3K) to the membrane. Activated PI3K phosphorylates
phosphatidylinositol- 4,5-biphosphate (PIP2) to yield
phosphatidylinositol-3,4,5-triphosphate (PIP3), a binding site for PH-domain

containing proteins like kinase Btk. This process further propagates the
signal through activation of phospholipase Cγ (PLCγ) that hydrolyses PIP2 to
inositol 1,4,5,-triphosphate (IP3) and diacylglycerol (DAG). The binding of IP3

to its receptor (IP3R) triggers release of Ca2+ from endoplasmic reticulum;
STIM1 couples depletion of Ca2+ from endoplasmic reticulum with
activation of Ca2+ channels and influx of extracellular Ca2+ by the so called
store-operated Ca2+ entry (SOCE). DAG and Ca2+ activate conventional
protein kinase C (cPKC). DAG also recruits Ras guanyl nucleotide-releasing
proteins (RasGRPs) for subsequent activation of Ras family proteins that
stimulate PI3K. The PIP3 also recruits nuclotide exchange factors that
subsequently lead to activation of the Rho family of GTPases (RhoA, Rac,
and Cdc42). Enhanced concentration of Ca2+ as well as activated kinases
and GTPases modulate cytoskeleton arrangements.

Frontiers in Immunology | Molecular Innate Immunity May 2012 | Volume 3 | Article 130 | 2

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Dráber et al. Mast cell cytoskeleton

FIGURE 2 | Distribution of microtubules and F-actin in RBL-2H3 cells.

Microtubules (A) and F-actin (B) have distinct subcellular organization in
resting interphase RBL-2H3 cells. While microtubule arrays radiate from
perinuclear centrosomes, F-actin does not have a single organizing center
within the cell and is more concentrated at cell periphery. Cells were fixed

with formaldehyde and extracted with Triton X-100 before staining with rabbit
antibody to α-tubulin [(A); green] and rhodamine-conjugated phalloidin [(B);
red]. DNA was stained with DAPI (blue). Superposition of α-tubulin and F-actin
is shown in (C). Scale bar, 20 μm. Photography E. Dráberová (Institute of
Molecular Genetics AS CR, Prague).

by motor proteins. They are organized into radial cytoplasmic
networks in interphase cells, bipolar spindles in mitotic cells,
and midbodies during cytokinesis. The basic building blocks of
microtubules are heterodimers of globular α- and β-tubulin sub-
units, which are arranged in a head-to-tail fashion to form 13
protofilaments that constitute cylindrical and left-handed helical
microtubule wall with outer diameter around 25 nm (Kreis and
Vale, 1999). Microtubules are thus inherently polar, and contain
two structurally distinct ends: a slow-growing minus end, expos-
ing α-tubulin subunits, and a fast-growing plus end, exposing
β-tubulin subunits (Nogales and Wang, 2006). Typically, micro-
tubule minus ends are stably anchored in microtubule-organizing
centers (MTOC) as centrosomes, whereas the plus ends are highly
dynamic and switch between phases of growth and shrinkage.
The properties of microtubule can be regulated by incorporation
of alternative tubulin isotypes, post-translational modification
(PTM) of tubulin subunits, and binding of microtubule associated
proteins (MAPs) (Amos and Schlieper, 2005; Verhey and Gaertig,
2007).

Both tubulin subunits are encoded by multiple genes, which
are in a large part phylogenetically conserved; eight α-tubulin and
seven β-tubulin isotypes were identified in human (Luduena and
Banerjee, 2008; Katsetos and Dráber, 2012). The secondary and
tertiary structures of the α- and β-monomers are essentially iden-
tical, and reflect more than 40% identity over their entire sequence
(Nogales et al., 1998). Each tubulin monomer binds one molecule
of GTP, non-exchangeably in α-subunit and exchangeably in β-
subunit. Most of the studied microtubules appeared to have a
seam along their length. This is due to 12-nm helical pitch in com-
bination with the 8-nm longitudinal repeat between αβ-tubulin
dimers (Wade and Hyman, 1997).

MICROTUBULE DYNAMICS AND NUCLEATION
Polymerization and depolymerization of microtubules is dri-
ven by the binding, hydrolysis, and exchange of GTP on the
β-tubulin monomer. GTP hydrolysis is necessary for switching

between alternating phases of growth and shrinkage separated
by catastrophe (transition from growth to shrinkage) and res-
cue (transition from shortening to growth) events. Polymerization
is initiated from a pool of GTP-loaded tubulin subunits. Grow-
ing microtubule sheets maintain a “cap” of tubulin-GTP subunits
to stabilize the straight tubulin conformation within the micro-
tubule lattice (Carlier, 1991). A loss of this cap results in rapid
depolymerization. The polymerization-depolymerization cycle is
completed by exchanging GDP of the disassembly products with
GTP (Figure 3) (Akhmanova and Steinmetz, 2008). These char-
acteristics result in dynamic instability (Mitchison and Kirschner,
1984), an essential feature of microtubules that allows them to
search through the cell for targets, such as the chromosomal
kinetochores, the cell cortex, and actin cytoskeleton (Desai and
Mitchison, 1997). The stability and dynamics of microtubules are
actively regulated by a number of cellular factors as well as a variety
of ligands, among them are well-known drugs (e.g., vinblastine,
nocodazole and paclitaxel) that potently suppress the dynamic
instability of microtubules (Jordan and Kamath, 2007).

One of the key components required for microtubule nucle-
ation and stabilization is the γ-tubulin (Oakley and Oakley, 1989),
a highly conserved, but minor, member of the tubulin family con-
centrated in interphase cells in MTOCs (Stearns et al., 1991). In
mitotic cells γ-tubulin appears on spindle poles and along spin-
dle fibers, during cytokinesis it is found in midbodies (Julian et al.,
1993; Nováková et al., 1996). γ-Tubulin has also been found to bind
to membranous components of the cell (Chabin-Brion et al., 2001;
Dryková et al., 2003). Contrary to αβ-tubulin dimers only two
functional genes exist in mammalian cells that code very similar
γ-tubulins (Wise et al., 2000; Vinopal et al., 2012). The γ-tubulin is
associated in complexes with other proteins. The human γ-tubulin
small complex (γTuSC) comprises two molecules of γ-tubulin and
one molecule each of GCP (γ-tubulin complex protein) 2 and 3.
The large γ-tubulin-ring complex (γTuRC) derives from γ-TuSCs
by condensation and association with proteins GCP4, GCP5 and
GCP6 (Murphy et al., 2001). Soluble γ-tubulin can associate with
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FIGURE 3 | Dynamic instability of microtubules. Polymerization of
microtubules is initiated from a pool of GTP-loaded tubulin subunits (pink
beads). GTP hydrolysis changes the conformation of the protofilament
from a slightly curved tubulin-GTP to a more sharply curved tubulin-GDP
structure. The curved tubulin-GDP (lilac beads) is forced to remain
straight when it is part of the microtubule wall. Growing microtubule
sheets presumably maintain the “cap” of tubulin-GTP subunits to
stabilize the straight tubulin conformation within the microtubule lattice
(1). Closure of the terminal sheet structure generates a metastable,
blunt-ended microtubule intermediate (2) which may pause, undergo
further growth or switch to the depolymerization phase. A shrinking
microtubule is characterized by fountain-like arrays of ring and spiral
protofilament structures (3). The polymerization–depolymerization cycle
is completed by exchanging GDP of the disassembly products with GTP
(4). Transition from growth to shrinkage is termed catastrophe; transition
from shortening to growth is called rescue. Reprinted by permission
from Macmillan Publishers Ltd: (Nature Reviews in Molecular Biology;
Akhmanova and Steinmetz, 2008).

αβ-tubulin dimers irrespective of the size of γ-tubulin complexes
(Sulimenko et al., 2002). Several reports indicated that kinases
might be involved in the regulation of γ-tubulin interactions
(Kapeller et al., 1995; Vogel et al., 2001; Kukharskyy et al., 2004).

MODULATION OF MICROTUBULE FUNCTIONS BY
POSTTRANSLATIONAL MODIFICATIONS AND ASSOCIATED PROTEINS
αβ-Tubulin dimers can be separated according to their isoelec-
tric points to more than 20 isoforms, far more than expected
from the number of isotypes that are actually expressed (Wolff
et al., 1982; Linhartová et al., 1992). This fact reflects extensive
PTMs of both tubulin subunits. Most PTMs of tubulin subunits
take place after polymerization into microtubules, and modified

tubulins are non-uniformly distributed along microtubules. More
than fifteen tubulin PTMs have been described; well character-
ized PTMs include acetylation, detyrosination, polyglutamylation,
and polyglycylation. Diverse PTMs form the biochemical “tubu-
lin code” that can be read by factors interacting with micro-
tubules. Specific microtubule regions can be distinguished bio-
chemically and functionally by the presence of PTMs on tubulins
(Westermann and Weber, 2003; Verhey and Gaertig, 2007). It
appears that modifications could participate in targeting the mol-
ecular motors and MAPs to defined subsets of microtubules inside
the cell (Janke and Bulinski, 2011).

Proteins interacting with microtubules are involved in micro-
tubule growth, stabilization, destabilization, and connection of
microtubules to other cellular organelles. The mechanochemical
ATPases kinesins and dyneins (microtubule motor proteins) use
microtubules as pathways for intracellular transport. A wide vari-
ety of microtubule regulatory proteins promote the functional
diversity of microtubules (Lyle et al., 2009a,b; Wade, 2009).
Regulation can occur on many levels, including regulation of
tubulin monomer folding or microtubule nucleation. Microtubule
stability and dynamics is regulated by a large number of proteins
that belongs to microtubule-stabilizing MAPs, microtubule sever-
ing proteins, microtubule-disassembly, or assembly promoters and
microtubule plus-end tracking proteins (+TIPs) that specifically
accumulate at growing microtubule plus ends. To essential +TIPs
belongs the end-binding protein 1 (EB1) that directly interacts
with tubulin dimers (Dráber and Dráberová, 2012). Subcellular
localization of γ-tubulin and EB1 in resting RBL-2H3cells is shown
in Figure 4.

MICROTUBULES IN ACTIVATED MAST CELLS
CHANGES IN MICROTUBULE ORGANIZATION AND DYNAMICS IN
ACTIVATED CELLS
It is well established that agents inhibiting tubulin polymerization
suppress the exocytosis (Urata and Siraganian, 1985; Tasaka et al.,
1991) and that the movement of secretory granules in mast cells is
dependent on intact microtubules (Martin-Verdeaux et al., 2003;
Smith et al., 2003; Nishida et al., 2005).

Activation of BMMCs cells leads to changes in topography
of microtubules. Compared to resting cells, FcεRI aggregation
in BMMCs attached to poly-L-lysine resulted in accumulation
of microtubules in cell periphery detectable by immunofluores-
cence microscopy. Similarly, activation of BMMCs by pervanadate,
that mimics the stimulatory effect of antigen, induced enhanced
formation of microtubules (Sulimenko et al., 2006). The same
effect was also observed when BMMCs were activated and fixed
in cell suspension before attachment to glass slides by cytospin
(Nishida et al., 2005). When prior to activation the cells were
attached to fibronectin, what more closely resembles the natural
conditions existing in connective tissue where mast cells are con-
gregated (Galli et al., 2008), prominent protrusions containing
microtubules appeared in activated cells (Hájková et al., 2011).
Attachment of BMMCs to fibronectin alone failed to generate such
protrusions (Figure 5).

Microtubule dynamics can be examined by live cell imag-
ing of tagged-EB1. When microtubule plus-end dynamics in
cells expressing EB1-GFP was monitored by means of time-lapse
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FIGURE 4 | Distribution of microtubule proteins in RBL-2H3 cells.

In resting RBL-2H3 cells, microtubules, formed by αβ-tubulin dimers
(A,D) originate from centrosomes where the γ-tubulin is concentrated
(B). Growing microtubules are marked by plus-end tracking protein
EB1 (E). Cells were fixed with cold methanol before staining with
rabbit antibody to α-tubulin dimer [(A,D); green fluorescence], mouse

monoclonal antibody to γ-tubulin [(B), red fluorescence], or
monoclonal antibody to EB1 [(E), red fluorescence]. DNA was stained
with DAPI (blue). Superposition of α-tubulin and γ-tubulin is shown in
(C). Superposition of α-tubulin and EB1 is shown in (F). Scale bar,
20 μm. Photography E. Dráberová (Institute of Molecular Genetics AS
CR, Prague).

FIGURE 5 | Reorganization of microtubules and F-actin in

activated BMMCs. Resting BMMC (A–D) or thapsigargin-activated
BMMC (E–H) attached to fibronectin were fixed in formaldehyde and
extracted in Triton X-100. Cells were double label stained for α-tubulin
(A,B,E,F) and F-actin (C,D,G,H), and examined with laser scanning
confocal microscope. The stacks of confocal sections were

deconvoluted and subjected to three-dimensional reconstruction using
Huygens deconvolution software. The resulting 3-D images are viewed
from top of the cells (A,C,E,G) and from the plane perpendicular to the
plane of cell adhesion (B,D,F,H). The same cell is represented in (A–D)

or (E–H). Scale bar, 5 μm. Photography Z. Hájková (Institute of
Molecular Genetics AS CR, Prague).
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imaging using total internal reflection fluorescence microscopy
(TIRFM), the number of growing microtubules in the periphery
of activated cells was found substantially increased compared to
non-activated cells (Figure 6). It is known that the engagement
of integrins by their ligands activates some signaling pathways

FIGURE 6 | Changes in the number of growing microtubules in cell

periphery during mast cell activation as determined byTIRFM

time-lapse imaging in living cells. (A) Time-lapse imaging of resting (a,b)

and thapsigargin-activated (c,d) BMMCs expressing EB1-GFP. Still images
of EB1 (a,c) and tracks of EB1 comets over 20 s created by maximum
intensity projection of 20 consecutive frames (b,d). Scale bar, 5 μm. (B)

Histogram of microtubule growth rates in the cell periphery of resting (−Tg)
and thapsigargin-activated (+Tg) cells. A total of 15 different cells were
tracked in five independent experiments. Values indicate mean ±SE, n = 15
(**p < 0.01; ***p < 0.001). Reproduced by permission from reference
Hájková et al. (2011). Copyright 2011; The American Association of
Immunologists, Inc.

that modulate signals originating from other receptors (Schwartz
et al., 1995). When mast cells were activated via FcεRI and inte-
grins simultaneously, phosphorylation events were prolonged, and
intensified (Lam et al., 2003). Thus, generation of protrusions in
activated cells could reflect a response to such integrated signals.

STORE-OPERATED Ca2+ ENTRY AND MICROTUBULES IN ACTIVATED
CELLS
The store-operated Ca2+ entry (SOCE) is important for
the replenishment of intracellular stores by means of
sarco/endoplasmatic reticulum Ca2+-ATPase (SERCA) pumps
located in ER membrane (Parekh and Putney Jr, 2005; Smyth
et al., 2006). A key component in SOCE is the stromal interact-
ing protein 1 (STIM1; Roos et al., 2005), that represents the Ca2+
sensor responsible for communicating the depleted state of intra-
cellular Ca2+ compartments to store-operated Ca2+ channels. In
quiescent cells with ER filled with Ca2+, STIM1 is distributed
homogenously throughout ER (Dziadek and Johnstone, 2007)
but relocates upon release of Ca2+ from ER stores to distinct
puncta on ER in close proximity to the plasma membrane (Liou
et al., 2005). Aggregated STIM1 activates members of the Orai
family of store-operated Ca2+ channels, resulting in opening of
plasma membrane Ca2+ release-activated Ca2+ (CRAC) chan-
nels and Ca2+ influx into the cell (Prakriya et al., 2006). In this
way STIM1 serves as a major regulator of SOCE. In addition,
transient receptor potential channels (TRPC) and ion exchang-
ers also contribute to the generation of Ca2+ signals that may
be global or have dynamic (e.g., waves and oscillations) and spa-
tial resolution for specific functional readouts (Ma and Beaven,
2009). SOCE has been described in various cell types includ-
ing mast cells activated by antigen stimulation, which induces
IP3 mediated Ca2+ release from ER stores. Aggregation of FcεRI
receptors triggered in RBL cells significant oligomerization of
STIM1 and formation of STIM1 puncta near the plasma mem-
brane (Liou et al., 2007). Further study showed that clustering
of STIM1 with Orai 1 at plasma membrane of antigen-activated
RBL-2H3 cells was depended on the extent of Ca2+ store deple-
tion (Calloway et al., 2009). The results pointed to the capability
of TRPC proteins to interact with STIM1 and Orai proteins in
mast cells. This could add further flexibility to the Ca2+ “tool
kit” that is available to activated mast cells (Ma and Beaven,
2011).

Colocalization of ER-embedded STIM1 with microtubules has
been described for several cell types including DT40 B cells (Baba
et al., 2006), HEK293 cells (Mercer et al., 2006; Smyth et al.,
2007), and mast RBL-2H3 cells (Calloway et al., 2009). Moreover,
comet-like movement of STIM1, resembling +TIPs, was reported
in living cells (Grigoriev et al., 2008), and STIM1 was found to
contain a short sequence (SxIP) responsible for direct binding to
EB1 (Honnappa et al., 2009). Comet-like movement of STIM1 was
substantially reduced after addition of thapsigargin (Hájková et al.,
2011), a compound that inhibits SERCA (Thastrup et al., 1990).
This is in agreement with the impaired association of STIM1 with
microtubules observed in antigen-activated RBL-2H3 cells (Cal-
loway et al., 2009). Data on fluorescence resonance energy transfer
(FRET) imaging of EB1 and STIM1 showed that STIM1 dissoci-
ated from EB1 and associated with SERCA upon store depletion
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of Ca2+. The process seems to be reversible, since the replenish-
ment of intracellular Ca2+ stores also restored the STIM1-EB1
interactions (Sampieri et al., 2009). Moreover, no effect on SOCE
was observed in cells with depleted EB1 (Grigoriev et al., 2008).
Considering these findings together, it is likely that interaction
of STIM1 with EB1 on growing microtubules is not essential for
the transport of STIM1 to plasma membrane during mast cell
activation.

After depletion of intracellular Ca2+ stores, STIM1 accumulates
into puncta, i.e., discrete subregions of ER located in a close prox-
imity (10–25 nm) to plasma membrane (Cahalan, 2009). STIM1
puncta are formed several seconds before the opening of Ca2+
channels (Wu et al., 2006), and it could therefore be inferred that
microtubules are involved in this process. However, microtubule
disruption by nocodazole had no effect on puncta formation in
activated BMMCs, while the comet-like movement of STIM1 was
abolished (Hájková et al., 2011). This is in line with observa-
tions that uptake of extracellular Ca2+ was only partially inhibited
in nocodazole-pretreated and thapsigargin-activated BMMCs.
This may suggest that STIM1 aggregation beneath the plasma
membrane and subsequent opening of Ca2+ release-activated
Ca2+ channels do not require intact microtubules in activated
mast cells (Hájková et al., 2011). Previous studies often reported
discordant effects of nocodazole treatment on SOCE or I CRAC,
the current most frequently associated with SOCE, in various
cell types. While no effect of nocodazole was observed in RBL-
1 (Bakowski et al., 2001; Smyth et al., 2007) and DT40 cells (Baba
et al., 2006), significant inhibition was demonstrated in other cell
types, such as RBL-2H3, BMMCs (Oka et al., 2005), and HEK
293 (Smyth et al., 2007). It appears that other factors next to cell
type, like the treatment protocol or the method of Ca2+ depletion,
might modify the results of the experiments. It is also possible that
microtubules play a supporting role in SOCE signaling by opti-
mizing the location of ER containing STIM1 before cell activation
(Smyth et al., 2007; Galan et al., 2011).

Protrusions containing microtubules were found in BMMCs
stimulated by three types of activators that induced depletion
of Ca2+ from internal stores (FcεRI aggregation, pervanadate, or
thapsigargin treatment). Formation of protrusions was inhibited
in cells with decreased level of STIM1 and with correspondingly
reduced influx of extracellular Ca2+. Protrusions in BMMCs with
depleted level of STIM1 were restored after introduction of human
STIM1. These data together with the absence of protrusions in
cells activated in Ca2+-free media suggest that STIM1 regulated
Ca2+ influx plays a crucial role in generation of these microtubule
enriched structures. Changes in the concentration of cytoplasmic
Ca2+also affected a microtubule plus-end dynamics and altered
chemotactic response. Altogether these results support the con-
cept of a tight crosstalk between microtubular network and Ca2+
signaling machinery in the course of mast cell activation (Hájková
et al., 2011). The presence of aggregated STIM1 in protrusions
could help organize Ca2+ release-activated Ca2+ channels (Caha-
lan, 2009) and open locally these channels to bring about SOCE.
These interactions may be subjected to modulations by Ca2+
channel regulators, such as calmodulin (Mullins et al., 2009) or
CRACR2A, a cytosolic Ca2+ sensor that stabilizes CRAC channels
(Srikanth et al., 2010).

γ-TUBULIN IN ACTIVATED MAST CELLS
The formation of microtubules can be effectively regulated by
microtubule nucleation, a process where γ-tubulin plays a key
role. It was reported that Lyn kinase, a major Src-family kinase
in RBL-2H3 cells (Eiseman and Bolen, 1992), forms complexes
containing γ-tubulin and phosphotyrosine proteins in these cells
activated by FcεRI aggregation or by an exposure to pervana-
date (Dráberová et al., 1999). However, Lyn kinase is dispensable
for the formation of functional γ-tubulin complexes, as indi-
cated by normal topography of microtubules in Lyn−/− BMMCs.
Tyrosine-phosphorylated proteins were found to be associated
with immunoprecipitated γ-tubulin in resting Lyn−/− BMMCs,
and the level of tyrosine phosphorylation of these proteins sub-
stantially increased after activation. Immunoprecipitation experi-
ments and in vitro kinase assays combined with specific inhibitors
revealed that Fyn and Syk kinases in complexes containing γ-
tubulin are capable of phosphorylating various substrates (Suli-
menko et al., 2006). Interaction of γ-tubulin complexes with
Fyn was confirmed by pull-down experiments, where γ-tubulin
complex bound to SH2 domain of Fyn kinase in a phosphoty-
rosine dependent manner. Similar binding to SH2 domains of
Fyn or Src kinases has also been described in mouse embryonal
carcinoma cells (Kukharskyy et al., 2004). Although γ-tubulin pos-
sesses a potential binding site for SH2 domain, experiments with
several candidate synthetic peptide inhibitors failed to confirm
a direct binding of γ-tubulin to this domain. Thus, the asso-
ciation with SH2 domain is probably mediated via adaptor-like
tyrosine-phosphorylated protein(s) (Sulimenko et al., 2006). The
Fyn kinase, like other Src-family kinases, is commonly involved
in the formation of multi-protein complexes engaged in inter-
action with the SH2 and SH3 domains. It is therefore likely
that association of Src-family kinases with γ-tubulin is mediated
through other proteins that might be important for microtubule
nucleation. Significance of Src kinase for microtubule nucleation
from centrosomes was ascertained by microtubule regrowth exper-
iments on human fibroblasts adherent to fibronectin (Colello
et al., 2010). Src-family kinases could regulate the recruitment
of γ-tubulin to the centrosome by different mechanisms. They
can either phosphorylate γTuRC proteins to promote the assem-
bly of the complex, or may regulate the association or activity of
NEDD1/GCP-WD, a protein that is required for the centrosomal
recruitment of γTuRC (Lüders et al., 2006). Alternatively, kinases
may indirectly affect this process by regulating the assembly of the
pericentriolar matrix (PCM) surrounding centrioles. Identifica-
tion of Src-family kinase substrates that promote the recruitment
of γ-tubulin to the centrosome and microtubule nucleation will be
an important step forward in the elucidation of the mechanisms
involved.

The molecular mechanism of the association of Syk kinase with
γ-tubulin is not fully understood. In RBL-2H3 cells as well as in
BMMCs, Syk is one of the preferable substrates for Lyn kinase
(Jouvin et al., 1994). However, even in Lyn−/− BMMCs there is
still some phosphorylation of Syk on tyrosine, which is depen-
dent on FcεRI activation (Parravicini et al., 2002). Because the
Src-family selective tyrosine kinase inhibitor PP2 inhibited phos-
phorylation of Syk in pervanadate-activated Lyn−/− BMMCs, and
the Syk-selective tyrosine kinase inhibitor piceatannol reduced
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phosphorylation of proteins in γ-tubulin immunocomplexes, it
is likely that it is the crosstalk between Fyn and Syk which is
responsible for tyrosine phosphorylation of proteins associated
with γ-tubulin immunocomplexes in Lyn−/− BMMCs (Sulimenko
et al., 2006).

There are reports pointing to the localization of Fyn and Syk
kinases in centrosomal region. Fyn kinase was found in centro-
somes in myelocytic leukemia cell line HL-60 (Katagiri et al.,
1993) and in human T lymphocytes (Ley et al., 1994). Moreover,
in human Jurkat T lymphocytes tubulin phosphorylated on tyro-
sine interacted with SH2 domain of Fyn kinase (Marie-Cardine
et al., 1995). Syk was located at the centrosomes in B lymphocytes
(Navara et al., 1999). Thus, tyrosine phosphorylation of centroso-
mal proteins by Fyn and Syk kinases might be the process linking
microtubules to early activation events in mast cells.

Tubulin has been shown to serve as a substrate for Syk kinase
in vivo (Peters et al., 1996). Syk can phosphorylate both sol-
uble tubulin (Fernandez et al., 1999) and tubulin in micro-
tubules (Faruki et al., 2000). Syk phosphorylates α-tubulin on the
conserved tyrosine residue (Tyr432) and Syk-selective inhibitor
piceatannol blocks the receptor-stimulated tubulin phosphoryla-
tion in B lymphocytes (Peters et al., 1996) as well in BMMCs
(Sulimenko et al., 2006). However, phosphorylation of tubulin by
Syk did not have any profound effect on microtubule assembly
in pervanadate-treated cells (Faruki et al., 2000). Besides, phos-
phorylation of tubulin by Src kinase did not cause any significant
changes in microtubule polymer (Simon et al., 1998). It is there-
fore unlikely that phosphorylation of tubulin dimers plays a key
role in the increase of microtubule formation in activated mast
cells (Sulimenko et al., 2006).

It has been repeatedly reported that γ-tubulin is phosphory-
lated (Vogel et al., 2001; Stumpff et al., 2004; Alvarado-Kristensson
et al., 2009). Phosphorylation of the γ-tubulin residue Tyr 445,
which is invariably present in all γ-tubulins, was described and
a mutation of this residue changed the microtubule dynamics
(Vogel et al., 2001). Similarly phosphorylation of multiple ser-
ines on γ-tubulin can regulate microtubule organization (Lin
et al., 2011). There are other data that point to an association of
γ-tubulin with kinases. Phosphoinositide-3-kinase (PI3K) binds
to γ-tubulin (Kapeller et al., 1995), and the regulatory subunits
of PI3K interacts with γ-tubulin in various cell types (Inukai
et al., 2000; Macurek et al., 2008), including BMMCs (V. Suli-
menko, unpublished data). Collectively these data suggest that
kinases take part in the regulation of γ-tubulin function(s). This
could lead to changes in nucleation properties of centrosomes or
alternatively to an enhancement of non-centrosomal microtubule
nucleation.

SIGNALING PATHWAYS FOR STABILIZATION OF THE PLUS ENDS OF
MICROTUBULES
The formation of microtubules can also be regulated by stabiliz-
ing their plus ends. It has been shown that the Fyn/Gab2/RhoA
signaling pathway, though not the Lyn/SLP-76, plays a critical
role in microtubule-dependent degranulation of mast cells, and
that RhoA kinase could be involved in stabilization of the plus
ends of microtubules (Nishida et al., 2005). It is known that an
important role in stabilization of growing microtubules is to be

assigned to the +TIPs, whose interactions with microtubules are
regulated by phosphorylation (Akhmanova and Steinmetz, 2008;
Galjart, 2010). Ca2+-dependent kinases [e.g., conventional pro-
tein kinases C (cPKC); Ca2+/calmodulin-dependent kinases] or
phosphatases (e.g., PP2B) might participate in the regulation of
microtubule stability in activated BMMCs. It has been reported
that Ca2-dependent activation of Rac (from the Rho family of
small GTPases) depends on the activity of cPKC (Price et al.,
2003). It was demonstrated that FcεRI stimulation of BMMCs
activated RhoA (Nishida et al., 2005). Interestingly, this GTPase
participates in stabilization of microtubule plus ends through
its target mDia (Palazzo et al., 2001). Microtubule dynamics
may also be influenced by +TIPs that interact at cell periphery
with cytoskeletal scaffold IQ domain GTPase-activating protein1
(IQGAP1) which sequesters calmodulin and Rac. An increase in
Ca2+ liberates calmodulin and IQGAP1 interacts with the A-
kinase anchoring protein 220 (AKAP220). This leads to association
of IQGAP1 with factors that modulate microtubule dynamics, e.g.,
CLIP-associated protein-2 (CLASP2). Recruitment of CLASP2 to
AKAP220/IQGAP1 complex is regulated by glycogen synthase
kinase-3β (GSK3β) and cAMP-dependent protein kinase (PKA)
(Logue et al., 2011). It has been shown that FcεRI stimulation
of BMMCs triggered the formation of microtubules in a man-
ner independent of Ca2+ (Nishida et al., 2005). On the other
hand, other results demonstrated Ca2+-dependent formation of
protrusions containing microtubules (Hájková et al., 2011). This
discrepancy could be attributed to differences in cell activation
(absence or presence of integrin engagement) and various meth-
ods of preparation of samples for microscopic evaluation. How-
ever, it is also possible that the initial stages of microtubule for-
mation as well as the transport of granules along microtubules
are Ca2+-independent, but that later stages of activation and for-
mation of microtubule protrusions depend on sustained influx
of Ca2+.

Ras guanyl nucleotide-releasing proteins (RasGRPs) belong to
a family of proteins that are recruited to the plasma membrane by
binding to DAG for subsequent activation of Ras family proteins.
GTP-bound Ras has been shown to interact with the catalytic p110
subunit of PI3K, and to induce its activation (Kodaki et al., 1994).
PI3K then stimulates Rho GTPases (Kuehn et al., 2010). It was
demonstrated that FcεRI activated RasGRP1-depleted BMMCs
were defective in RhoA activation, microtubule formation and
granule translocation. RasGRP1 could thus play an important role
in the regulation of microtubule formation in activated mast cells
(Liu et al., 2007).

MICROFILAMENTS
MICROFILAMENTS AND ACTINS
Microfilaments (actin filaments) are essential for a number of
cell functions, such as maintenance of cell shape, cell division,
migration, junction formation, and intracellular vesicle traffick-
ing powered by motor proteins. Microfilaments are formed by
two-stranded helical polymers with a diameter of ∼7 nm. Actin fil-
aments are assembled into two types of structures – bundles and
networks. The basic component of microfilaments is a globular
protein actin (called G-actin), which forms filaments (called F-
actin). The molecule of actin is folded into two domains stabilized
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by an adenine nucleotide lying in between. The uniform orienta-
tion of asymmetrical subunits along the polymer causes polariza-
tion of actin filament with fast-growing plus-end (or barbed end)
and slow-growing minus end (or pointed-end). Microfilaments
are dynamic structures; subunits can be added or lost on both ends
of the polymer. The different rate constants for association and
dissociation depend on nucleotide bound to the monomer. Auto-
catalyzed hydrolysis of ATP to ADP in F-actin reduces the binding
strength and modifies the behavior of microfilaments, including
their affinity to regulatory proteins (Kreis and Vale, 1999).

Actin is one of the most highly conserved proteins in evolution.
It is encoded by multiple genes. Mammals have six genes, and
each encodes one protein isoform. Four of them, are expressed
primarily in muscles. The remaining two isoforms (βcyto-actin,
γcyto-actin) are expressed ubiquitously. All isoforms possess very
similar amino acid sequences, with no isoform sharing less than
93% identity with any other isoform (Perrin and Ervasti, 2010).
Although actin isoforms can copolymerize within the cells they
are usually sorted out in different structures and perform differ-
ent cellular functions due to interactions with specific subsets of
actin-binding proteins (dos Remedios et al., 2003).

In contrast to microtubules, microfilaments do not have one
prominent nucleation center. They can form tight bundles mak-
ing up the core of microvilli or can be arranged in a less-ordered
network as in the cell cortex. In dividing cells they form the con-
tractile ring that is important for cytokinesis. In migrating cells, a
branched network of actin filaments is found in the lamellipodia,
broad and flat protrusions at the leading edge of moving cells. The
thin cellular processes extending from lamellipodium and contain-
ing parallel bundles of actin filaments are called filopodia. Many
cells have contractile filaments called stress fibers that consist of
microfilaments, myosin II motor proteins and other interacting
proteins. The ends of stress fibers anchor to the cell membrane in
focal adhesions, cell-to-substrate adhesion structures accountable
for a strong attachment to substrate (Parsons et al., 2010). There
are three categories of stress fibers: ventral stress fibers that are
attached to focal adhesions at both ends, dorsal stress fibers that
are attached to focal adhesions typically at one end, and transverse
arcs that do not directly attach to focal adhesions (Naumanen
et al., 2008). Microfilaments are also important for the forma-
tion of transient membrane surface structures as podosomes and
invadopodia, which attach cells to the extracellular matrix, and
take part in the generation of circular dorsal ruffles (Buccione
et al., 2004). The stability and dynamics of actin structures is
regulated by a variety of ligands including drugs and toxins. Phal-
loidins bind along the sides of actin filaments, preventing their
depolymerization. Phalloidin labeled with a fluorophore is often
used for visualization of microfilaments. Jasplakinolides are other
actin-filament stabilizers. On the other hand, cytocholasins cap the
barbed end of microfilaments, and latrunculins sequester actin
monomers. These processes lead to inhibition of microfilament
formation (Kustermans et al., 2008).

ACTIN-BINDING PROTEINS REGULATE MICROFILAMENT
ORGANIZATION AND DYNAMICS
Actin binds a substantial number of associated proteins. They
can be divided into several functional groups. The first group

contains monomer-binding proteins that sequester G-actin and
prevent its polymerization (e.g., profilin). The second group covers
filament-depolymerizing proteins (e.g., ADF/cofilin). The third
group includes filament end-binding proteins that cap the ends
of actin filament and prevent the exchange of monomers at the
pointed-end (e.g., tropomodulin) and at the barbed end (e.g.,
CapZ). The fourth group contains filament severing proteins (e.g.,
gelsolin). The fifth group consists of cross-linking proteins that
contain at least two binding sites for F-actin, facilitating thus the
formation of filament bundles, branching filaments, and three-
dimensional networks (e.g., α-actinin, vilin, fimbrin, Arp2/3). In
the sixth group are stabilizing proteins that bind to the sides of
actin filaments and prevent depolymerization (e.g., tropomyosin).
Finally, the seventh group consists of motor proteins that use F-
actin as a track upon which to move (e.g., myosins) (dos Remedios
et al., 2003). Actin-binding proteins are functionally not limited to
one class; for example, gelsolin is capable of severing and capping
the barbed end of actin filaments.

Cortical F-actin is connected to the plasma membrane through
an array of closely related cytoplasmic proteins of the ERM (Ezrin,
Radixin, Moesin) family. In addition to their role in binding fil-
amentous actin, ERMs regulate the signaling pathways through
their ability to bind transmembrane receptors and link them to
downstream signaling components. ERMs thus serve as scaffolds
to facilitate efficient signal transduction on the cytoplasmic face
of the plasma membrane (Neisch and Fehon, 2011).

Inside the cells, the de novo nucleation of actin filaments
from monomers require the participation of actin-nucleating pro-
teins. These proteins fall into three main families: the Arp2/3
complex and its nucleation promoting factors (NPFs), formins,
and tandem-monomer-binding nucleators. They have important
roles in many essential cellular processes. The Arp2/3 complex
is composed of evolutionarily conserved subunits including the
actin-related proteins Arp2, Arp3, and five additional subunits
ARPC1–5. The Arp2/3 complex by itself is an inefficient nucleator,
and its activation requires binding to the sides of actin filaments
and to NPF (Goley and Welch, 2006). Among the well char-
acterized NPFs are Wiskott-Aldrich syndrome protein (WASP),
Wiskott-Aldrich syndrome protein-family verprolin homologous
protein (WAVE), WASP and Scar homolog (WASH), and the more
recently identified WASP homolog associated with actin, mem-
branes, and microtubules (WHAMM; Firat-Karalar and Welch,
2011). Once activated, the Arp2/3 complex nucleates the formation
of new filaments that extend from the sides of existing filaments
at a 70˚ to form a Y-branched network. In contrast, nucleation
by formins (e.g., mammalian Diaphanous formin, mDia) and
tandem-monomer-binding nucleators (e.g., adenomatous poly-
posis coli, APC) leads to unbranched filaments (Firat-Karalar and
Welch, 2011). Arp2/3 complex activity is inhibited by coronin 1b
that promotes debranching of actin filaments and recycling of the
Arp 2/3 complex (Cai et al., 2007). Similarly, cofilin also dissociates
Arp2/3 complex and branches from actin filaments (Chan et al.,
2009).

Rho GTPases AS KEY REGULATORS OF MICROFILAMENTS
Diverse cell-surface receptors trigger global structural rearrange-
ments of actin cytoskeleton in response to external signals. These
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signals converge inside the cell on a group of closely related
monomeric GTPases that belong to the Rho protein family. The
three prevailing subclasses are Rho, Rac, and Cdc42. Rho activates
the formation of stress fibers and focal adhesions (Ridley and Hall,
1992), Rac activates the formation of lamellipodia and membrane
ruffles (Ridley et al., 1992) and Cdc42 activates the formation of
filopodia (Nobes and Hall, 1995). In each case the active form
of protein binds GTP. Down regulation of Rho GTPases involves
GTPase-activating proteins (GAPs) that facilitate GTP hydroly-
sis. Activation of Rho proteins is promoted by guanine nucleotide
exchange factors (GEFs) that control the release of GDP from
the Rho protein and its replacement with GTP. GEFs are often
activated through signal cascades initiated via plasma membrane
receptors. Guanine nucleotide dissociation inhibitors (GDI) bind
to Rho and prevent GDP/GTP exchange (Bement et al., 2006).
GTPases also function as molecular switches in multiple signal-
ing processes including regulation of phospholipase D (PLD) and
PI3K (Bishop and Hall, 2000).

The downstream targets of Rho GTPases include kinases,
formins, families of WASP proteins, and other scaffolding mol-
ecules. Of these major subclasses, the Rho-associated coiled-coil
kinase (ROCK), the p21-activated kinase (PAK), the mDia, and
proteins of the WASP and WAVE families, have direct effects
on actin cytoskeleton rearrangements. In addition to activation
of formins promoting actin-filament growth, Rho GTPase also
promotes myosin actin interactions inducing development and
contraction of stress fibers through ROCK. ROCK has been shown
to directly phosphorylate a number of actin cytoskeleton regula-
tors including myosin II light chain (MLC), myosin light chain
phosphatase (MLCP), and LIM-motif containing kinase (LIMK).
Direct phosphorylation of MLC or MLCP has an immediate
impact on the level of phosphorylated myosin light chain, which

enhances the contractility. Activation of LIMK by ROCK is linked
to phosphorylation and inhibition of cofilin, thereby regulating the
actin-filament turnover (Spiering and Hodgson, 2011). Feeding
directly into this pathway, Rac and Cdc42 activate PAK and con-
secutively also LIMK. Rac activates the ARP2/3 complex through
the WAVE complex, and CDC42 induces actin polymerization by
binding to WASP (Heasman and Ridley, 2008). Localization of
WASP can be regulated by interaction with other binding partners
including Grb2, likely targeting the molecule to sites of recep-
tor stimulation and active actin cytoskeleton remodeling (Carlier
et al., 2000). Interestingly, mDia proteins through association
with +TIPs has been shown to stabilize microtubules, tying the
actin cytoskeleton rearrangements to the microtubule dynamics
(Bartolini et al., 2008). Downstream effector targets of the Rho
family of GTPases for generation of actin cytoskeletal structures
are schematically shown in Figure 7.

MICROFILAMENTS IN ACTIVATED MAST CELLS
CHANGES IN ACTIN-FILAMENT ORGANIZATION
Dramatic reorganization of actin cytoskeleton has been observed
in mast cells activated by FcεRI aggregation. The F-actin content of
the detergent-extracted cell matrices in RBL-2H3 cells decreased
during the first 10–30 s after antigen binding and then increased
within 1 min to almost double the control levels. The antigen-
stimulated increase in F-actin coincided with the transformation
of cell-surface from a finely microvillous to a highly folded topog-
raphy, and with increased cell spreading (Pfeiffer et al., 1985).
Enhanced formation of F-actin after cell triggering was reported in
several other studies using RBL-2H3 cells (Apgar, 1994; Frigeri and
Apgar, 1999; Holowka et al., 2000; Tolarová et al., 2004), RPMCs
(Pendleton and Koffer, 2001), and BMMCs (Tumová et al., 2010).

FIGURE 7 | Downstream effector targets of Rho family GTPases for

generation of actin cytoskeletal structures. The downstream targets of
active Rho GTPases, with bound GTP, include kinases (p21-activated
kinase, PAK; Rho-associated coiled-coil kinase; ROCK) and nucleation
promoting factors (mammalian Diaphanous formin, mDia; Wiskott-Aldrich
syndrome protein, WASP; Wiskott-Aldrich syndrome protein-family
verprolin homologous protein, WAVE). While nucleation by mDia produces
unbranched actin filaments, WASP and WAVE interact with Arp2/3
complex and generate branched microfilaments. PAK phosphorylates
LIM-motif containing kinase (LIMK), that in turn phosphorylates and

inhibits cofilin thereby regulating the actin-filament turnover. Besides
stimulating the actin-filament growth, Rho GTPase promotes myosin actin
interactions through ROCK. The ROCK phosphorylates a number of actin
cytoskeleton regulators including myosin II light chain (MLC), myosin light
chain phosphatase (MLCP), and LIMK. Direct phosphorylation of MLC or
MLCP has an immediate impact on the level of phosphorylated myosin
light chain, which contributes to contractility. Rho mainly activates the
formation of stress fibers and focal adhesions, Rac activates the formation
of lamellipodia and membrane ruffles, and Cdc42 activates the formation
of filopodia.

Frontiers in Immunology | Molecular Innate Immunity May 2012 | Volume 3 | Article 130 | 10

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Dráber et al. Mast cell cytoskeleton

Sensitization with IgE alone resulted in an enhancement of corti-
cal F-actin in RBL-2H3 cells (Oka et al., 2004) and BMMCs (Allen
et al., 2009).

Inhibitors that disrupt microfilaments, such as latrunculin and
cytochalasin D, did not by themselves cause any degranulation in
RBL-2H3 cells, but they enhanced the FcεRI-mediated degran-
ulation. However, latrunculin was ineffective if pervanadate was
used for activation. This suggests that microfilaments are indis-
pensible for the downstream signaling cascade (Frigeri and Apgar,
1999). Good correlation was found between inhibition of actin
polymerization and increased activity of tyrosine kinase and phos-
pholipase. Microfilaments appear to down-regulate the response
by affecting the level of receptor tyrosine phosphorylation (Frigeri
and Apgar, 1999; Holowka et al., 2000). Similarly, FcεRI-mediated
degranulation was enhanced in BMMCs treated with latrun-
culin B, while jasplakinolide slightly inhibited β-hexosaminidase
release (Nishida et al., 2005). It was proposed that actin con-
trols/modulates a multitude of signaling steps leading from the
FcεRI aggregation to the final degranulation (Pendleton and
Koffer, 2001; Oka et al., 2002; Andrews et al., 2008).

Microfilaments are crucial not only in early stages of mast cell
activation but also in later exocytosis steps. Mast cell exocytosis
is accompanied with extensive reorganization of the actomyosin
cortex, and FcεRI stimulation triggers F-actin ring disassembly in a
Ca2+-dependent manner (Nishida et al., 2005). Both positive and
negative roles have been suggested for actin in exocytosis. Acto-
myosin may facilitate the transport and/or extrusion of secretory
vesicles, while cortical F-actin may serve as a barrier preventing
the access of vesicles to the plasma membrane (Pendleton and
Koffer, 2001). Alternatively, cortical F-actin may act as a bar-
rier between the reserve and the release-ready secretory vesicle
pools. F-actin disassembly may cause disruption of this barrier
(Malacombe et al., 2006).

The combination of atomic force microscopy and laser scan-
ning confocal microscopy enabling simultaneous visualization
and correlation of membrane morphology with actin arrange-
ment revealed that reorganization of microfilaments in acti-
vated BMMCs depended on the type of stimuli used for cell
activation. In cells triggered by FcεRI aggregation, characteris-
tic membrane ridges formed in accordance with the rearrange-
ment of underlying F-actin networks. On the other hand, in
BMMCs stimulated just only by poly-L-lysine coated on glass
surface, lamellopodia and filopodia were observed in associa-
tion with the F-actin assemblies at and near the cell periph-
ery, whereas “craters” occurred on the central membrane lacking
F-actin (Deng et al., 2009). Actin reorganization in activated
cells is also strongly modulated by cell adherence to proteins
of extracellular matrix (e.g., fibronectin) followed by integrin
signaling (Hamawy et al., 1992, 1994). It was reported that
co-stimulation of FcεRI and chemokine receptor 1 resulted in
generation of long and thin tubes formed from plasma mem-
brane (cytonemes). Cytonemes containing F-actin may participate
in intercellular communication during allergic and inflamma-
tory response (Fifadara et al., 2010). Organization of F-actin
in non-activated and thapsigargin-activated BMMCs attached to
fibronectin is illustrated in Figure 5.

Rho GTPases IN REGULATION OF ACTIN FILAMENTS IN ACTIVATED
CELLS
In mast cells, small Rho-related GTPases are essential to the exo-
cytotic function (Price et al., 1995; Brown et al., 1998). Expression
of dominant negative mutant forms of the Cdc42 and Rac1 in
RBL-2H3 cells substantially affected the microfilament reorga-
nization. Inhibition of Cdc42 function decreased cell adhesion,
interfered with FcεRI-induced actin plaque assembly and reduced
the recruitment of vinculin at the cell-substratum interface. On
the other hand, the inhibitory Rac1 mutant abolished FcεRI-
mediated membrane ruffling. The expression of inhibitory forms
of either Cdc42 or Rac1 significantly inhibited the antigen-induced
degranulation. Cdc42 and Rac1 thus control distinct pathways
downstream of FcεRI engagement leading to microfilament orga-
nization. Both pathways are decisively engaged during the degran-
ulation response induced by FcεRI aggregation (Guillemot et al.,
1997). Mast cells derived from Rac 2-deficient mice showed
defects in actin-based functions, including adhesion, migration,
and degranulation (Yang et al., 2000).

Rho was found to be responsible for de novo actin polymeriza-
tion in RPMCs (Norman et al., 1994), and it also participated in the
control of cortical actin disassembly (Sullivan et al., 1999). Stim-
ulation of BMMCs by FcεRI aggregation resulted in an increased
activity of Rac (1,2,3) but decreased activity of RhoA followed by
slow recovery of the latter. It was suggested that active RhoA may
be necessary to initiate the secretory process (perhaps by activat-
ing a fusogen), and its immediate subsequent inactivation may be
required for cell attachment (Arthur et al., 2000) and/or F-actin
disassembly (Norman et al., 1996). The later increase in RhoA
activity would then be required for the formation of newly poly-
merized actin inhibiting exocytosis and promoting cell spreading
and migration (Struckhoff et al., 2010). In the pathway utilizing
RhoA and ROCK, the adaptor protein NTAL could serve as a posi-
tive regulator of actin polymerization and cell spreading (Tumová
et al., 2010).

Proteins that become activated during the c-Kit signaling
include PI3K and Rac; activation of this pathway triggers actin
reorganization. An important PI3K-dependent GEF interacting
with Rac is switch-associated protein 70 (SWAP-70), that affects
ruffle formation in activated cells. SWAP-70-deficient BMMCs
had impaired Rac function and defects in adhesion, migration,
and degranulation. Stimulated mutant cells displayed filopodia-
like protrusions possibly indicating a shift in balance between Rac
and Cdc42 (Sivalenka and Jessberger, 2004). Enhanced activity of
PI3K in c-Kit activated cells leads to activation of Bruton’s tyro-
sine kinase (Btk) and Rac. Btk-deficient BMMCs had defects in Rac
activation and F-actin rearrangement resulting in impaired migra-
tion and chemotaxis. The Btk is not just an important upstream
regulator of Ras GTPase but integrates in addition the signal-
ing pathways from activated c-Kit, GPCR, and aggregated FcεRI
(Kuehn et al., 2010).

Wiskott-Aldrich syndrome protein interacting protein (WIP) is
another important regulator of the actin cytoskeleton that inhibits
Cdc42-mediated activation of WASP. Most of WASP in lympho-
cytes appear to be sequestered with WIP, and binding to WIP
is essential for the stability of WASP (Ramesh and Geha, 2009).
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More efficient generation of actin filaments was detected in WIP-
deficient BMMCs activated by FcεRI aggregation (Kettner et al.,
2004). Impaired actin polymerization, cell spreading, formation
of ruffles and degranulation were observed in WASP-deficient
BMMCs stimulated by FcεRI signaling (Pivniouk et al., 2003). All
these data strongly indicate that Rho GTPases and their effectors
have a major role in organization of microfilaments in activated
mast cells.

REGULATION OF F-ACTIN IN ACTIVATED CELLS BY CHANGES IN Ca2+

CONCENTRATION
Rapid dissolution of cortical F-actin following FcεRI stimula-
tion of mast cells has been interpreted in many studies as a
crucial step in facilitating the granule-plasma membrane fusion
necessary for the release of granule contents to extracellular
environment (Nielsen et al., 1989; Narasimhan et al., 1990;
Frigeri and Apgar, 1999; Oka et al., 2004; Deng et al., 2009).
Cortical F-actin disassembly is, however, also required for the
motile responses. Numerous studies further also revealed that
the influx of Ca2+ from extracellular space is a prerequisite for
cortical F-actin depolymerization (Koffer et al., 1990; Nishida
et al., 2005; Shimizu et al., 2009; Suzuki et al., 2010). In con-
trast, other reports concluded that cortical F-actin disassembly
can be induced by both Ca2+-dependent and Ca2+-independent
pathways (Sullivan et al., 1999; Guzman et al., 2007). More
prominent F-actin depolymerization was observed in NTAL-
depleted BMMCs simultaneously activated by FcεRI aggregation
and SCF, when compared to activated BMMCs controls. How-
ever, the influx of Ca2+ was basically unchanged (Tumová et al.,
2010).

One of the possible mechanisms of Ca2+-dependent cortical F-
actin depolymerization is based on activation of severing protein
gelsolin (Borovikov et al., 1995). Another actin-severing protein
from the gelsolin family, strongly upregulated in mouse mast cells,
is adseverin (D5) (Robbens et al., 1998). Calmodulin also plays an
important role in Ca2+-dependent disassembly of microfilaments.
This multifunctional protein transduces Ca2+ signals by binding
the Ca2+ and interacting then with various target proteins. Ca2+-
calmodulin causes changes in the activity of target proteins. In
this connection, it should be mentioned that the disassembly of
the actin cortex in RPMC is preceded by acto-myosin-II-based
contraction, activated by Ca2+-calmodulin/myosin light chain
kinase (MLCK) that phosphorylates the regulatory light chain
of myosin II (MLC), activating the motor protein. Inhibition of
myosin II significantly inhibited the Ca2+-evoked cortical actin
disassembly. Thus, calmodulin plays an essential role in Ca2+-
induced cortical F-actin disassembly (Sullivan et al., 2000). In
activated RBL-2H3 cells calmodulin concentrated in actin-rich
cell cortex (Psatha et al., 2004) where it was recruited by an
interaction with the actin-binding scaffold protein IQGAP1 that
sequesters Rho GTPases Rac and Cdc42 in GTP-bound state. Rho
GTPases are released from IQGAP1 when IQGAP1-associated
calmodulin binds Ca2+. Calcium elevation therefore not only
initiates the disassembly of the existing cortical actin cytoskele-
ton but simultaneously releases the GTP-loaded Cdc42 and Rac1
to mediate actin-based cell spreading and ruffling (Psatha et al.,
2007).

ROLE OF KINASES AND PHOSPHATASES IN REGULATION OF
MICROFILAMENTS IN ACTIVATED CELLS
Activation of mast cells via both FcεRI and c-Kit receptors is
mediated and regulated by numerous protein tyrosine and ser-
ine/threonine kinases which transmit the downstream signals. It
has been proposed that Fyn kinase, which in BMMCs partici-
pates in signal transduction from activated FcεRI, phosphory-
lates the non-selective Ca2+ channel TRPC1 (transient receptor
potential cation channel subfamily C). This results in modula-
tion of Ca2+ influx and F-actin depolymerization (Suzuki et al.,
2010).

PI3K regulates microfilament organization in BMMCs by
activation of Btk that in turn induces Rac-dependent F-actin
rearrangement and enhancement of the Ca2+ signal. This in com-
bination leads to synergy in mast cell chemotaxis (Kuehn et al.,
2010). In BMMCs stimulated by PGE2, PI3K activates Ser-Thr
kinase, mammalian target of rapamycin (mTOR). mTOR binds to
specific regulator, named rictor, to form mTORC2 complexes in
association with other binding partners (Foster and Fingar, 2010).
Interestingly, mTORC2 stimulated both polymerization of actin
and chemotaxis, though by a mechanism independent of Ca2+
mobilization and Rac acctivation (Kuehn et al., 2011).

An important players are also members of p21-activated kinases
(PAKs) which receive independent signals from both PI3K and
Rho GTPases. PAKs induce the temporal and spatial formation
of cortical actin structures similar to those regulated by Rac and
Cdc42, including membrane ruffles, lamellipodia filopodia, and
focal complexes (Sells et al., 2000). PAK 1-defficient BMMCs
showed diminished Ca2+ mobilization, degranulation, and altered
depolymerization of cortical F-actin in response to FcεRI stimu-
lation. While cortical F-actin ring formed as expected in stim-
ulated cells, subsequent fragmentation of F-actin occurred to a
much smaller extent than in normal BMMCs (Allen et al., 2009).
PAK 1 can modulate F-actin turnover by the well established
LIMK/coffilin pathway, yet it can also phosphorylate Ser-Thr pro-
tein phosphatase 2A (PP2A) that is involved in vesicular fusion in
mast cells, and transiently associate with cortical myosin II (Blank
and Rivera, 2004).

New roles in regulation of microfilaments were recently
ascribed tor cPKCs that are activated by DAG and by Ca2+.
Some data showed that cPKCβ in FcεRI-stimulated RBL-2H3 cells
colocalized with F-actin in membrane-ruffled regions, and inhi-
bition of cPKCβ resulted in the blocking of actin ruffle formation
and adhesion (Yanase et al., 2011). Similar effects were observed
in activated BMMCs, where furthermore migration toward SCF
was suppressed (Yanase et al., 2011). In antigen-stimulated RBL-
2H3 cells the cPKCβII phosphorylated non-muscle myosin heavy
chain IIA, and the time course of phosphorylation correlated with
degranulation (Ludowyke et al., 2006).

Recent data also confirmed the significant role of protein
tyrosin phosphatases (PTPs) in regulation of microfilaments in
activated mast cells. When antibody specific for oxidized (inac-
tive) phosphatases was used and isolated membranes were exam-
ined by electron microscopy, clear colocalization of oxidized PTPs
with cytoskeleton-like structures was observed in non-activated
mast cells. Enhanced association of oxidized phosphatases with
these structures was observed in cells activated by antigen or

Frontiers in Immunology | Molecular Innate Immunity May 2012 | Volume 3 | Article 130 | 12

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Dráber et al. Mast cell cytoskeleton

by pervanadate. The same structures were labeled with phal-
loidin. This indicates that oxidized phosphatases are preferen-
tially associated with actin cytoskeleton (Heneberg et al., 2010).
These data suggest that actin cytoskeleton is involved in early
signaling events by regulating the topography of phosphatases.
Alternatively, actin could play a role in sequestering and/or scav-
enging irreversibly oxidized PTPs (Bugajev et al., 2010). In this
connection it should be mentioned that actin is probably effec-
tive in sequestering Lyn kinase to the periphery of large FcεRI
aggregates which are subsequently internalized (Wilson et al.,
2000).

One of the phosphatases associated with F-actin and actin-
binding protein filamin is the SH2 domain containing protein
tyrosine phosphatase-1 (SHP-1). This complex associated with
FcεRI coaggregated with FcγRIIB. Dissociation of actin and
filamin-1 from the FcR complex caused activation of FcR-bound
SHP-1 and inhibition of FcεRI-stimulated signal in RBL-2H3 cells
(Lesourne et al., 2005).

As expected, phosphorylation of actin associated proteins
affects microfilament dynamics in activated mast cells. An impor-
tant family of such proteins are coronins. Their regulatory effects
include the binding/bundling, disassembly, and inhibition of the
Arp2/3 complex. Recent data showed that FcεRI-mediated phos-
phorylation of coronin 1a in peritoneal mast cells resulted in its
relocation from the cell cortex to cytoplasm. This relocation was
accompanied with reduced cortical actin stability and enhanced
degranulation (Foger et al., 2011).

INTERMEDIATE FILAMENTS
Intermediate filaments provide crucial structural support in the
cytoplasm and nucleus; any disturbance of intermediate filaments
causes cell fragility. Intermediate filaments also play a role in
determining cellular architecture, cell migration, and signal mod-
ulation. More than 70 conserved genes encode intermediate fila-
ment proteins that can self-assemble into 10-nm wide filaments.
Each protein has N- and C-terminal end domains, termed “head”
and “tail,” respectively, surrounding the α-helical rod domain.
The basic building-block for intermediate filaments is a paral-
lel dimer formed by the winding of α-helical rods into coiled coil.
Dimers then associate along their lateral surfaces with anti-parallel
orientation and form apolar staggered tetramers. A tetramer rep-
resents the soluble subunit analogous to the αβ-tubulin dimer or
actin monomer. However, unlike actin or tubulin, the intermedi-
ate filament subunits do not contain binding sites for nucleoside
triphosphate (Coulombe and Wong, 2004). The final 10-nm fila-
ment is a helical array of tetramers. The anti-parallel orientation
of tetramers means that, contrary to microtubules and microfila-
ments, intermediate filaments do not bear polarized unidirectional
properties. Assembly and disassembly is regulated by cycles of
phosphorylation and dephosphorylation. Polymerization occurs
rapidly irrespective of nucleating or associated proteins. In con-
trast to microtubules and microfilaments, intermediate filaments
do not serve as tracks for molecular motors (Kim and Coulombe,
2007).

Intermediate filament proteins are subcategorized into six types
(I-VI), based on similarities in amino acid sequences and pro-
tein structure, and individual types have different cell and tissue

distribution. Vimentin (type III intermediate filament protein)
is the most widely distributed type that can be found in mes-
enchymal and connective tissue cells. Vimentin plays a significant
role in supporting and anchoring the position of organelles in
the cytosol. Vimentin filaments possess unique viscoelastic phys-
ical properties that render them more resistant to mechanical
stress in comparison to microtubules and microfilaments (Kreis
and Vale, 1999). The mechanical strength of vimentin filaments
network appears to be further enhanced after interactions with
microtubules (Dráberová and Dráber, 1993) and microfilaments
mediated by a family of multifunctional intermediate filament-
associated proteins (Green et al., 2005). Within the cells vimentin
exists in multiple structural forms including mature filaments,
short filaments called“squiggles,” and non-filamentous precursors
called “particles.” The forms are intercovertible and their relative
abundance is cell type- and cell cycle stage-dependent. These struc-
tures are often associated with microtubule motor proteins, and
are therefore capable of translocating along microtubules (Chou
et al., 2007).

INTERMEDIATE FILAMENTS IN ACTIVATED MAST CELLS
Data on the role of intermediate filaments during mast cell activa-
tion events are limited. The key building protein of intermediate
filaments in mast cells is vimentin (Horny et al., 1988). It was
reported that vimentin was phosporylated on serine after acti-
vation of RPMC with compound 48/80. Phosphorylation took
place within 5 s of stimulation and reached its maximum in 10 s.
When cells were treated with calphostin C, a specific inhibitor of
protein kinase C, phosphorylation was markedly reduced. Inter-
estingly, cells stained with anti-vimentin antibody showed fila-
ments surrounding granules in cytoplasm; after stimulation these
filaments promptly disappeared, indicating rapid depolymeriza-
tion (Izushi et al., 1992). It was assumed that the disruption of
intermediate filaments took place after stimulation with com-
pound 48/80 as a consequence of vimentin phosphorylation. The
absence of filaments surrounding granules facilitated then the
movement of granules toward the cell membrane and degran-
ulation (Tasaka, 1994). Mass spectrometric analysis of proteins
binding to the SH2 and SH3 domains of Fyn led to identification
of vimentin as the binding partner to Fyn in MC/9 mast cells.
After IgE-receptor mediated stimulation, binding of vimentin to
Fyn increased; this interaction occurred via binding to the SH2,
but not SH3, domain of Fyn. Mast cells from vimentin-deficient
mice showed an increase in mediator release and tyrosine phos-
phorylation of intracellular proteins including NTAL and LAT.
These results suggest that vimentin association with Fyn may have
a negative regulatory role in mast cell degranulation and tyrosine
phosphorylation of signaling molecules induced by FcεRI stimu-
lation (Nahm et al., 2003). Lymphocytes from vimentin-deficient
mice are subject to greater deformation than lymphocytes from
wild type mice, and vimentin was therefore suggested to be the
primary source of lymphocyte rigidity (Brown et al., 2001). It may
be that more deformable mast cells degranulate more easily fol-
lowing FcεRI aggregation. The observation that vimentin binds to
Fyn points to a critical role for Fyn in mast cell degranulation dur-
ing interaction with both cytosolic and structural proteins (Nahm
et al., 2003).
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CONCLUDING REMARKS
A broad range of experimental findings shows that cytoskele-
tal proteins in activated mast cells play an important role in
propagation of the signals from stimulated cell-surface receptors
FcεRI, c-Kit, or GPCR. Cytoskeletal proteins are also accountable
for observed prominent changes in cell morphology, adhesion
to substrates, degranulation, and migration. Some controver-
sial results mentioned in this review probably reflect variations
in the origin of mast cells, culture conditions, cell activation,
methods used for visualization of cytoskeletal structures, and
possibly others. The crosstalk between microtubules, microfil-
aments, and intermediate filaments in the course of mast cell
activation is still an open question. Various cytoskeletal scaf-
folding proteins with numerous protein interaction domains and
integrating signals from kinases/phosphatases, Rho GTPases and
changes in Ca2+concentration apparently affect the regulatory
mechanisms of interactions between microtubules and microfil-
aments. The roles of posttranslational modifications of tubulins

and MAPs in nucleation and modulation of microtubule dynam-
ics in activated cells are other fields with many unsolved problems.
Similarly, little is known about the role of motor proteins and
their regulation in granule transport, and cytoskeleton reorgani-
zation during activation events. New innovative techniques of live
cell imaging will undoubtedly play a growing role in studies on
cytoskeleton dynamics in activated mast cells under physiological
conditions.
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