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Analytical techniques 
for mapping multi‑hazard 
with geo‑environmental modeling 
approaches and UAV images
Narges Kariminejad1, Hamid Reza Pourghasemi1* & Mohsen Hosseinalizadeh2

The quantitative spatial analysis is a strong tool for the study of natural hazards and their interactions. 
Over the last decades, a range of techniques have been exceedingly used in spatial analysis, especially 
applying GIS and R software. In the present paper, the multi-hazard susceptibility maps compared 
in 2020 and 2021 using an array of data mining techniques, GIS tools, and Unmanned aerial vehicles. 
The produced maps imply the most effective morphometric parameters on collapsed pipes, gully 
heads, and landslides using the linear regression model. The multi-hazard maps prepared using seven 
classifiers of Boosted regression tree (BRT), Flexible discriminant analysis (FDA), Multivariate adaptive 
regression spline (MARS), Mixture discriminant analysis (MDA), Random forest (RF), Generalized 
linear model (GLM), and Support vector machine (SVM). The results of each model revealed that the 
greatest percentage of the study region was low susceptible to collapsed pipes, landslides, and gully 
heads, respectively. The results of the multi-hazard models represented that 52.22% and 48.18% 
of the study region were not susceptible to any hazards in 2020 and 2021, while 6.19% (2020) and 
7.39% (2021) of the region were at the risk of all compound events. The validation results indicate 
the area under the receiver operating characteristic curve of all applied models was more than 0.70 
for the landform susceptibility maps in 2020 and 2021. It was found where multiple events co-exist, 
what their potential interrelated effects are or how they interact jointly. It is the direction to take in 
the future to determine the combined effect of multi-hazards so that policymakers can have a better 
attitude toward sustainable management of environmental landscapes and support socio-economic 
development.

One natural event may trigger or increase the probability of the occurrence of one or more other natural 
hazards1–3. For example, VanDine and Bovis4 and Lucà et al.5 suggested that landslides occur in gullies due to 
the volumetric sediment concentration. The authors also explained that debris flows could influence gully heads 
on a steeper slope. Meanwhile, Kukemilks and Saks6 reported that landslides can occasionally form and develop 
on the gully bed, improving close relationships. Indeed, Landslides are defined by the down-slope movement of 
debris, rock, and soil mainly caused by land gravity. They are classified according to their movement type and 
composite materials7,8. Piping erosion divided into two groups, including closed depressions and sinkholes, is 
also defined as one hazard that has a complex interaction with gully heads9 and landslides. Closed depressions 
initiated when the soil surface steadily lowered above a surface with no break in the vegetation cover10; these can 
eventually change into sinkholes. Sinkholes developed when the surface soil material was plainly interrupted 
and collapsed11. Gully heads are also defined as a natural, mostly vertical fall of the gully channel wall12. They are 
often treated as independent or isolated. Further, there is a need for an alternative (a multi-hazard approach) to 
recognize all feasible natural events and their interrelationships.

The eventuality of happening collapsed pipes, gully heads, and landslides poses a substantial environmen-
tal and physical threat to the general public of arid and semi-arid regions13. Their measuring, modeling, and 
monitoring are not consistently economically or technically feasible; thus, quantitative susceptibility assessment 
considering “multi-hazard scenarios” and their probable outcomes is becoming a research question and develop-
ing a framework for future studies14,15. A multi-hazard chain is a series of events that happen in a successional 
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trend triggered by one natural event and temporary and spatial results in the expansion of desertification and 
land degradation16–19. There may also be an interaction between these component natural hazards and even 
anthropic processes. Further, the term multi-hazards as one of the leading global politics within the aims of 
disaster-management20–23, should be considered by complete multi-hazard research to gain environmental sus-
ceptibility in hazardous-prone regions22. To mitigate economic losses and decrease the loss of human being life, 
hotspot zones of multi-hazards should be managed and evaluated. The importance of integrated multi-hazard 
assessment disaster management, including prevention, preparation, and response was stated by United Nations 
in 2002. The studies on multi-hazard events have enhanced over the last decades1–3. While most previous research 
has concentrated on individual natural hazards, their relationship to each other has been ignored19.

The vast majority of reports regarding the application of data mining in collapsed pipes, gully heads, and 
landslides studies focused on static modeling and mapping24,25, such as “linear regression”26, “multiple adaptive 
regression splines”27,28, and “generalized additive models”29,30, which several scientists have used. Some other 
predicting models are also applied for various event susceptibility evaluations with lower restrictions, such as 
“support vector machines”31,32, “decision trees”27, “boosted regression tree”33,34, “random forest”9,35–37, “multi-
variate adaptive regression spline”38,39, and “generalized linear model”40–42. Regardless of the method, the recent 
improvement of satellite-based monitoring tools, “unmanned aerial vehicle UAV”, and advances in numerical 
spatial modeling19, these integrated concepts have provided an impressive tool for multi-hazards prediction and 
mitigating their impacts19. This accurate geometry-based technique overcomes the science–practice gap of lack 
of detailed analyses of datasets in the susceptibility mapping of soil landforms, and thus, provides noteworthy 
new knowledge for conservation strategies and targeted management actions in a region which is consistent with 
a global soil change in environmental exposure43. By applying ultrahigh-resolution UAV imagery in the present 
study, seven types of data mining techniques, i.e., “BRT, FDA, MARS, MDA, RF, GLM, and SVM” were studied 
for spatial mapping of collapsed pipes, gully heads, and landslides in 2020 and 2021. The multi-hazards maps were 
prepared and compared for these three hazards in two running years with torrential rainfall. Then, the evalua-
tion for the multi-hazard models was also provided using the receiver operating characteristic curve criterion.

Results
“Multicollinearity” analysis using the linear regression algorithm.  The linear regression’s primary 
purpose was to recognize the multicollinearity among the corresponding factors. The resulting multicollinearity 
analysis for three natural events of gully heads, collapsed pipes, and landslides in 2021 are presented in Tables 1, 
2 and 3. The results showed that the “TOL and VIF” of all corresponding factors were less than 0.1 and more 
than 10, respectively. For collapsed pipe events, land use (0.33), silt content (0.21), and slope degree (0.07) had 
the highest values of beta which represented the higher slope of the line between the important variables and 
the collapsed pipes (Table 1). The highest beta values related to the occurrence of gully heads were allocated to 
slope degree (0.33), land use (0.20), and also drainage density 0.03) (Table 2). It showed that the change of these 
standard deviations in the environmental variables results in standard deviations enhanced in the gully heads. 
Moreover, multilinearity analysis for the landslide occurrence assigned the greatest beta values to slope degree 
(0.69), followed by drainage density (0.07), and TWI (0.08), (Table 3).

Providing multi‑hazard maps in 2020 and 2021.  This section described the susceptibility maps cre-
ated for three studied hazards using MARS, BRT, FDA, MDA, GLM, RF, and SVM. Figures 2 and 3 showed the 
susceptibility maps of three natural hazards (i.e., gully heads, collapsed pipes, and landslides) produced using the 
FDA, MARS, and GLM models in 2020 and 2021. As it is shown in these two figures, the percentage of moderate 

Table 1.   Multicollinearity analysis for Collapsed pipes in 2021. CCE, calcium carbonate equivalent; OC, 
organic carbon; ESP, exchangeable sodium percentage. a Dependent variable: collapsed pipes 2021.

Coefficientsa

Model

Unstandardized 
coefficients Standardized coefficients

t Sig.

Collinearity 
statistics

B Std. error Beta Tolerance VIF

(Constant) 7.973 2.467 3.232 0.001

Silt content 0.043 0.009 0.210 4.799 0.000 0.814 1.229

OC − 0.595 0.320 − 0.104 − 1.858 0.064 0.499 2.005

Land use 0.388 0.054 0.333 7.244 0.000 0.736 1.358

ESP − 0.839 0.268 − 0.185 − 3.132 0.002 0.446 2.243

Distance to streams − 0.023 0.002 − 0.430 − 10.301 0.000 0.890 1.124

DEM/altitude 0.000 0.000 − 0.098 − 1.865 0.063 0.557 1.795

Drainage density − 0.019 0.015 − 0.055 − 1.269 0.205 0.828 1.208

CCE − 0.007 0.021 − 0.015 − 0.325 0.745 0.725 1.379

Soil stability − 0.301 0.304 − 0.053 − 0.990 0.323 0.543 1.842

Bulk density − 2.541 1.368 − 0.091 − 1.857 0.064 0.643 1.554

Slope degree 0.142 0.085 0.074 1.668 0.096 0.787 1.271
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and high susceptibility classes for all models increased in 2021 compared to 2020. In contrast, the percentage of 
low and very high susceptibility classes decreased from 2020 to 2021. For example, according to the gully heads 
susceptibility maps analyzed by MARS in 2020, 70.52%, 6.12%, 5.51%, and 17.85% of the total area were clas-
sified into “low, moderate, high, and very high classes”, respectively (Fig. 1). Although, susceptibility classes of 
gully heads created by the MARS classifier in 2021 were 65.76% (low), 13.30% (moderate), 9.61% (high), and 
11.33% (very high) (Fig. 2). Regarding the landslide susceptibility map using GLM in 2020, the greatest per-
centage of the region (69.92%) had low susceptibility compared with moderate (8.86%), high (8.61%), and very 
high (12.54%) (Fig. 2). In 2021, the percentage of low (67.21%) and very high (11.98%) landslide susceptibility 
classes decreased, although an increase was observed in moderate (10.63%) and high (10.11%) susceptibility 
classes. Based on the collapsed pipes susceptibility map results in 2020, 36.12%, 20.23%, 22.74%, and 20.90% 
of the region were classified into “low, moderate, high, and very high classes”, respectively (Fig. 1). In 2021, low 
(38.27%) and very high (22.80%) classes were enhanced, while moderate (18.44%) and high (20.49%) classes 
were reduced (Fig. 2).

To prepare a multi-hazard map in 2020 and 2021, three higher accuracy susceptibility maps (one for each 
hazard) in 2020 and three higher accuracy susceptibility maps ((one for each hazard)) in 2021 were considered 
together (Fig. 3). The joint map in the form of a multi-event in 2020 and 2021 disclosed that most of the regions 
under study are not susceptible to any natural hazards, although a few percentages of regions are at hazardous 
risk of three natural events when analyzed jointly. Indeed, the results of the compound events analysis in 2020 
and 2021 (Fig. 3) showed that 52.22% (in 2020) and 48.18% (in 2021) of the study area are not clearly susceptible 
to compound events, whereas 6.13% (in 2020) and 7.39% (in 2021) of the study area are susceptible to combined 
hazard of collapsed pipes, gully heads, and landslides (Fig. 4). The susceptibility classes of the compound events 

Table 2.   Multicollinearity analysis for gully heads in 2021. CCE,calcium carbonate equivalent; OC, organic 
carbon; ESP, exchangeable sodium percentage. a Dependent variable: Gully heads 2021.

Coefficientsa

Model

Unstandardized 
coefficients Standardized coefficients

t Sig.

Collinearity 
statistics

B Std. error Beta Tolerance VIF

(Constant) 8.266 5.093 1.623 0.107

Soil stability − 0.573 0.787 − 0.087 − 0.729 0.467 0.309 3.233

Slope degree 0.661 0.153 0.329 4.306 0.000 0.747 1.338

Silt content − 0.045 0.020 − 0.174 − 2.267 0.025 0.741 1.350

OC − 0.858 0.561 − 0.125 − 1.529 0.129 0.652 1.535

Land use 0.237 0.089 0.197 2.667 0.009 0.805 1.242

ESP − 0.381 0.330 − 0.105 − 1.155 0.250 0.528 1.895

DEM/altitude 0.000 0.001 − 0.067 − 0.719 0.473 0.504 1.983

CCE − 0.022 0.033 − 0.053 − 0.660 0.511 0.687 1.456

Distance to streams − 0.020 0.004 − 0.361 − 5.164 0.000 0.896 1.116

Bulk density − 2.566 3.126 − 0.085 − 0.821 0.413 0.412 2.427

Drainage density 0.010 0.026 0.028 0.400 0.690 0.885 1.130

Table 3.   Multicollinearity analysis for Landslides in 2021. TWI, topographic wetness index. a Dependent 
variable: Landslides 2021.

Coefficientsa

Model

Unstandardized 
coefficients Standardized coefficients

t Sig.

Collinearity 
statistics

B Std. Error Beta Tolerance VIF

(Constant) − 0.042 0.347 − 0.122 0.903

Distance to stream 0.001 0.003 0.013 0.229 0.819 0.758 1.320

Drainage density 0.030 0.024 0.069 1.207 0.229 0.753 1.328

Slope degree 1.276 0.149 0.687 8.576 0.000 0.379 2.637

Road distance 0.000 0.000 0.095 1.718 0.087 0.791 1.264

Profile curveture 0.000 0.005 − 0.011 − 0.169 0.866 0.565 1.769

Plan curveture − 0.008 0.005 − 0.112 − 1.706 0.089 0.566 1.766

Land use − 0.044 0.087 − 0.030 − 0.510 0.610 0.714 1.400

DEM/altitude − 0.001 0.000 − 0.137 − 2.431 0.016 0.773 1.294

TWI 0.021 0.019 0.084 1.086 0.279 0.410 2.440
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map in 2020 confirmed that collapsed pipes (15.12%) were the most frequent events in the study region, while 
collapsed pipes-gully heads (12.92) were the highest occurrences in 2021. Meanwhile, the percentage of the 
occurrence of three natural hazards (combined risk of studied events) in 2021 increased compared with 2020. 
However, the regions with no hazards decreased in 2021 compared with last year.

Figure 1.   The susceptibility maps of three natural hazards produced using ArcGIS 10.3.1 software (https://​
www.​esri.​com) in 2020.

https://www.esri.com
https://www.esri.com
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Validation of natural hazard susceptibility maps.  The accuracy of all maps provided by the BRT, 
FDA, MDA, SVM, RF, GLM, and MARS classifiers was verified by applying “ROC curves” (Fig. 5). The highest 
AUC values for each hazard map were different from one another. The data validation of the seven used models 
confirmed an excellent accuracy of the SVM, RF and GLM classifiers for gully heads, collapsed pipes, and land-

Figure 2.   The susceptibility maps of three natural hazards produced using ArcGIS 10.3.1 software (https://​
www.​esri.​com) in 2021.

https://www.esri.com
https://www.esri.com
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slides susceptibility maps in 2020, respectively. While, the MARS, RF, and BRT had the highest accuracy (excel-
lent with more than 0.9%) for gully heads, collapsed pipes, and landslides susceptibility maps of 2021, respec-
tively (Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9). For instance, the AUC of SVM (0.948), GLM (0.969), and RF (0.855) in 
2020 were the greatest for gully heads, landslides, and collapsed pipes, respectively (Tables 4, 5 and 6). Regarding 
2021, MARS (0.914), BRT (0.955), and RF (0.881) had the highest value in the evaluation of gully heads, land-
slides, and collapsed pipes, respectively (Tables 7, 8, and 9). In the other words, the SVM and MARS models had 
excellent accuracy, especially regarding mapping gully heads, due to the strength of the model in data-driven 
aspects and non-linearity. Besides the low cost of the algorithm construction, it makes them exceedingly usable 
for predicting and assessing dynamic factors (i.e., anthropogenic or hydrological information). Other classifiers 
such as GLM and BRT, were more capable for prediction of landslides in 2020 and 2021, selected in this study 
because they consider nonlinear correlations among independent and dependent factors. The spatial accuracy of 
all models was more than 90% (excellent) for gully heads and landslides in 2020 and 2021, while it was very good 
(more than 80%) for collapsed pipes in the two studied years. Furthermore, all applied classifiers had excellent 
accuracy for predicting gully heads, collapsed pipes, and landslides in 2020 and 2021.

Figure 3.   The susceptibility classes of multi-hazard prepared using ArcGIS 10.3.1 software (https://www.esri.
com ) in 2020 and 2021.

Figure 4.   Percentage of each hazard in 2020 and 2021.
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Discussion
Multicollinearity analysis.  This study investigated the corresponding factors of environmental variables 
prone to combinations of collapsed pipes, gully heads, and landslides using a linear regression model that allows 
comparing different events in one site. According to multicollinearity analysis, the first or second statistically 
standardized beta value among environmental covariables was recognized between collapsed pipes/gully heads 
and land use. Hosseinalizadeh et al.11 described that land use affects hydrological processes, which is erosional 
landform. These processes also affect subsurface water accumulation and make the material dissolve on the 
hardpan layer and eventually create sinkholes. Hydrological processes can also lead to the connection of a single 
sinkhole, which can lead to the formation of blind gullies that will eventually connect to the drainage network 
and form gully heads and gully network. In particular, an overland flow that is more than the substrate or soil 
infiltration capacity can be very adequate for initiating erosional processes (i.e., surface and inter-rill erosion) 

Figure 5.   ROC curves for the seven models in the training step.

Table 4.   Predictive performance of the seven applied models in the validation process of gully heads 2020. The 
test result variable(s): MARS has at least one tie between the positive actual state group and the negative actual 
state group. Statistics may be biased. a Under the nonparametric assumption. b Null hypothesis: true area = 0.5.

Area under the curve

Test result variable(s) Area Std. errora Asymptotic sig.b

Asymptotic 95% confidence 
interval

Lower bound Upper bound

BRT 0.926 0.038 0.000 0.852 1.000

FDA 0.923 0.037 0.000 0.851 0.996

GLM 0.934 0.037 0.000 0.849 1.000

MARS 0.879 0.049 0.000 0.782 0.975

MDA 0.927 0.038 0.000 0.850 1.000

RF 0.926 0.039 0.000 0.846 1.000

SVM 0.948 0.026 0.000 0.896 0.999
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and slopes developing in regions with sparse land cover. It is exceedingly represented that the water and soil 
managers and landowners are forcefully linked. Moreover, the highest standardized beta value in analyzing gully 
heads/landslides was slope degree. Our fieldwork experiences showed that steeper slopes may increase a region’s 
vulnerability to massive movements, including landslide forms. The steepness of slopes predominantly stimu-
lates runoff velocity to increase through time, resulting in a vertical collapse in a gully channel bed or sudden 
displacement of sediments down the slope. Regarding slope, gully heads and landslides happen in the steep 
slopes of the central parts of the study area as stream density plays a significant role downstream of these slopes. 
The significant positive effects of slope and stream density on the occurrence of landslides have been reported 
by Hua et al.44.

Multi‑hazard maps produced using seven classifiers in 2020 and 2021.  The main benefit of 
machine learning classifiers compared to other statistical-based methods is that they can easily solve the prob-

Table 5.   Predictive performance of the seven applied models in the validation process of Landslides 2020. 
a Under the nonparametric assumption. b Null hypothesis: true area = 0.5.

Area under the curve

Test result variable(s) Area Std. errora Asymptotic sig.b

Asymptotic 95% confidence 
interval

Lower bound Upper bound

BRT 0.952 0.026 0.000 0.895 1.000

FDA 0.964 0.020 0.000 0.922 1.000

GLM 0.969 0.018 0.000 0.922 1.000

MARS 0.949 0.025 0.000 0.900 0.998

MDA 0.953 0.021 0.000 0.911 0.994

RF 0.952 0.025 0.000 0.903 1.000

SVM 0.941 0.026 0.000 0.890 0.991

Table 6.   Predictive performance of the seven applied models in the validation process of collapsed pipes 2020. 
a Under the nonparametric assumption. b Null hypothesis: true area = 0.5.

Area under the curve

Test result variable(s) Area Std. errora Asymptotic sig.b

Asymptotic 95% confidence 
interval

Lower bound Upper bound

BRT 0.804 0.033 0.000 0.739 0.869

FDA 0.767 0.037 0.000 0.695 0.839

GLM 0.762 0.037 0.000 0.689 0.835

MARS 0.806 0.034 0.000 0.739 0.873

MDA 0.785 0.035 0.000 0.716 0.854

RF 0.855 0.029 0.000 0.798 0.912

SVM 0.839 0.031 0.000 0.778 0.899

Table 7.   Predictive performance of the seven applied models in the validation process of gully heads 2021. 
a Under the nonparametric assumption. b Null hypothesis: true area = 0.5.

Area under the curve

Test result variable(s) Area Std. errora Asymptotic sig.b

Asymptotic 95% confidence 
interval

Lower bound Upper bound

BRT 0.901 0.041 0.000 0.820 0.982

FDA 0.912 0.038 0.000 0.837 0.987

GLM 0.906 0.039 0.000 0.829 0.983

MARS 0.914 0.036 0.000 0.844 0.985

MDA 0.870 0.050 0.000 0.772 0.969

RF 0.910 0.040 0.000 0.831 0.989

SVM 0.892 0.043 0.000 0.808 0.976
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lem of noises in the dataset and are highly accurate in the confined measurement errors or the existence of 
uncertain data. However, seven classifiers and high accuracy imagery techniques were used to solve this prob-
lem. Well-documented advantages make the data mining classifiers, especially RF, which had the highest accu-
racy for predicting collapsed pipes in 2020, appropriate for monitoring the changes in combination with natural 
hazards. First, the applied classifiers are fast and straightforward, defined by great prediction performance45. For 
example, the RF algorithm provides an internally even-handed assessment of generalizability with a precise clas-
sifier in forest building and thus, prepares higher quality forecasts robustness27.

One of the best achievements of the present study regarding the studied combined hazards is the preparation 
of multi-hazard susceptibility maps in 2020 and 2021, which could very accurately predict the region suscep-
tible to compound events, and thus, help us to focus our future researches here. Skilodimou et al.46 combined 
the statistical-based map of earthquakes, floods, and landslides and provide a single multi-hazard probability 
map. Yanar et al.47 provided a multi-hazard map of landslides and floods using the Mamdani fuzzy algorithm. 
Pourghasemi et al.48 studied the spatial behavior of compound events of flood, forest fire and landslide in Shiraz 
City, Iran and provided a multi-hazard map of interested hazards using the RF model. The multi-hazard suscep-
tibility maps modeled in 2020 revealed that the places where all three hazards occurred together were less, but 
in 2021, this amount has increased. Thus, what is essential is the identification of factors or processes causing 
increasing these hazard occurrences at specific locations within the study area. Otherwise, a year should not 
impact increasing the occurrences of three combined hazards together.

Besides, collapsed pipes are the most dangerous hazard, followed by landslides and gully heads (see Fig. 4). 
Perhaps, the transformation of each of these hazards into one another leads to these results over one year. It 
means that the number of natural events that may occur cumulatively or simultaneously increases over time. 
The consequences of such event relationships occurring mean that an effect is generated which is a little bit dif-
ferent from that of the individual events occurring in isolation. This can lead to remarkable challenges, particu-
larly for operators of national networks and/or asset managers. In other words, hazards are mostly behaved as 
independent or isolated. A multi-hazard alternative approach seeks to recognize all feasible natural events and 
their interrelationships. One natural event increase or triggers the possibility of one or more other events. For 
instance, a collapsed pipe may trigger gully heads, whereas a gully head may enhance the possibility of landslides 
being created soon.

Considering compound hazards and using the systematic collection of input maps, statistical classifiers, 
and high-resolution imagery tools can support adaptive management. From this perspective, multi-hazards 

Table 8.   Predictive performance of the seven applied models in the validation process of landslides 2021. The 
test result variable(s): MARS has at least one tie between the positive actual state group and the negative actual 
state group. Statistics may be biased. a Under the nonparametric assumption. b Null hypothesis: true area = 0.5.

Area under the curve

Test result variable(s) Area Std. errora Asymptotic sig.b

Asymptotic 95% confidence 
interval

Lower bound Upper bound

BRT 0.955 0.018 0.000 0.919 0.990

FDA 0.903 0.034 0.000 0.836 0.970

GLM 0.922 0.029 0.000 0.865 0.979

MARS 0.886 0.037 0.000 0.814 0.958

MDA 0.910 0.035 0.000 0.841 0.978

RF 0.938 0.023 0.000 0.892 0.983

SVM 0.943 0.023 0.000 0.897 0.989

Table 9.   Predictive performance of the seven applied models in the validation process of collapsed pipes 2021. 
a Under the nonparametric assumption. b Null hypothesis: true area = 0.5.

Area under the curve

Test result variable(s) Area Std. errora Asymptotic sig.b

Asymptotic 95% confidence 
interval

Lower bound Upper bound

BRT 0.861 0.027 0.000 0.808 0.914

FDA 0.851 0.028 0.000 0.795 0.906

GLM 0.858 0.027 0.000 0.805 0.912

MARS 0.811 0.032 0.000 0.748 0.874

MDA 0.830 0.030 0.000 0.771 0.889

RF 0.881 0.025 0.000 0.831 0.930

SVM 0.827 0.032 0.000 0.766 0.889
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assessment can increase our knowledge of Earth’s internal and external processes, monitoring and forecasting of 
natural events and possible consequences when they occur coincidentally. They can clearly define the triggering 
hazardous landforms and their impacts on another due to various Earth surface and sub-surface processes that 
operated over short or long geological times. Further, finding how one event can increase or trigger the prob-
ability of a secondary event is essential to mitigating and investigating multi-hazard phenomena. It may force us 
to apply hazard interaction classifiers or matrices to realize links between natural events and describe potential 
cascading hazards based on scientific knowledge.

Conclusion
Quantitative geomorphology is modeling and measuring the landform processes that shape the Earth’s surface. 
Adopting the best controlling and managing plan for water and soil conservation will be possible whenever 
landforms and processes are also considered and recognized carefully. For example, collapsed pipes, gully heads, 
and landslides are responsible for considerable soil losses in arid and semi-arid regions and may not always be 
sufficient to monitor the effects of multi-hazards phenomena separately. In this study, the compound events sus-
ceptibility maps indicated damage resulting from compound events are enhanced in 2021 in comparison with the 
previous year, both in terms of occurrence and magnitude. Whereas the percentage of the region with no-hazards 
is decreasing as well. According to the AUC values, the best accuracy was specified for the GLM model for the 
prediction of landslide susceptibility map in 2020. Further, we attempt to examine multiple hazards instead of 
single approaches to achieve information on multi-hazard regions. Further, to be able to maintain and improve 
the sustainability of the environment and predict and reduce the effect of contemporary land surface and sub-
surface processes that lead to hazardous natural events (such as collapsed pipes, gully heads, and landslides), it is 
needed to answer the question of when and how big natural processes can be and where these compound events 
could occur. Besides, the effectiveness of the applied methods has been verified by the use of several statistical 
parameters and it resulted in quite good performances. Thus, the application of these methods is also suggestable 
for conservation purposes at national scales in another contexts, including in earthquake-and flood-prone areas.

Methodology
The data mining classifiers were used to analyze and to evaluate the spatial prediction of multi-hazards. The meth-
odology, approach, and its components are shown in Fig. 6. The flowchart contains four main steps, including 
(1) data preparation in 2020 and 2021, i.e., obtaining the location of 281 collapsed pipes, 152 landslides, and 90 
gully heads in 2020 and also 410 collapsed pipes, 328 landslides, and 198 gully heads in 2021 gathering in the field 
and unmanned aerial vehicles (UAV); (2) identification of the most hazardous environmental covariables come 
up with the occurrence of collapsed pipes, gully heads, and landslides using the linear regression algorithm; (3) 
spatial modeling of the collapsed pipes, gully heads, and landslides susceptibility along with validation processes 
applying seven data mining models; and, eventually, (4) preparing and comparing multi-hazards maps in 2020 
and 2021. All statistical classifiers are exhaustively described in the researches cited below, hence, only a concise 
explanation is given here.

Study area.  The study area is located in the “Golestan Province” (NE Iran) between 37″ 36′ 30° to 37″ 38′ 
30° N latitudes and 55° 39′ 30° to 55° 41′ 30° E longitudes, with 520 ha of mainly arid and semi-arid regions. 
The study area was selected from the tributaries of Gorganrood with the loess-driven soils located in the east 
part of “Golestan province”. The maximum and minimum altitudes are approximately 548 and 208 m above sea 
level. The climate of semi-arid using the Domarten method, and the average annual rainfall is 260 mm reported 
by the Iran Meteorological Agency in 2021. The “silt loam” is the texture of the topsoil. The location map of the 
study region in Iran (a), Golestan province (b), and the study region (c) is shown in Fig. 7, and some examples 
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Figure 6.   Methodology, approach and its components.
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of three landforms (collapsed pipes, gully heads, and landslides) showed in Fig. 8. Both overgrazing and intense 
farming contribute to developing the different types of soil erosion in this region. Besides, between the two 
calendar years, 2020 and 2021, intensive rainfall occurred for 7 days and nights in 03.17.2020 and ended on 
03.24.2020. According to the “State Meteorological Agency”, the mean total rainfall was about 220 mm across 
the “Gorganrood watershed”, but four or five stations recorded up to 380 mm. That’s why, the numbers of each 
event increased, suddenly.

Gathering data related to collapsed pipes, gully heads, and landslides hazards.  The compre-
hensive mapping was done to recognize collapsed pipes, gully heads, and landslides. The spatial location of 
these three natural hazards was recorded applying UAVs (Sensefly eBee x) in 2020 and 2021. Unmanned aerial 
vehicles were applied with a camera model named Sensefly Aeria X and focal length of 18.5 mm. The average 
Ground Sampling Distance (GSD) was 5 cm. The orthomosaic resolution obtained was 5 cm/pixel. The trained 
UAV operator and the predefined flight paths were autonomously obtained by senseFly eMotion flight plan-
ning software. The flight paths were designed to have a front overlap of 85% and side overlap of 70%. The craft 
maintained a flight path 220 m above the surface. Aerial images acquired from the survey were processed with 
the Pix4Dmapper photogrammetry software. The gathered data were applied to re-check the exact positions of 
these natural events mapped during intensive fieldwork. The susceptibility mapping and monitoring tools used 
in 2020 and 2021 obtained the samples of non-hazards and three compound events to construct susceptibil-
ity maps and their evaluation. Of the total recorded compound events in the study area, 70% were applied in 
the basic phases of the model-building process, and the remaining were carried out in the validation phases in 
2020 and 2021. Natural Breaks classification as an excellent method in ArcMap was used to classify the hazard/
susceptibility maps49.

Figure 7.   The location of study area in Iran (A), Golestan province (B), study area in 2020 (C1) and 2021 (C2), 
and the 3D map of the study area (D) prepared using ArcGIS 10.3.1 software (https://​www.​esri.​com).

https://www.esri.com
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Driving factors of collapsed pipes, gully heads, and landslides.  Based on the literature review, the 
main covariables that trigger the occurrence of collapsed pipes and gully heads are broken up into four groups, 
including human factors (land use), topologic (altitude, slope degree), soil properties (calcium carbonate equiva-
lent (CCE), organic carbon (OC), exchangeable sodium percentage (ESP), silt content, bulk density, soil stabil-
ity), and hydrology (stream distance, stream density)5,10,45–50. Landslides are affected by a collection of anthro-
pological (land use and road distance) and geo-environmental “(plan curvature, distance to streams, altitude, 
drainage density, profile curvature, topographic wetness index, and slope degree)” variables44,45. In other words, 
to assess the multicollinearity analysis between morphometric parameters and these three compound events, 
9 (landslides), 11 (collapsed pipes), and 11 (gully heads) were chosen to add as independent variables. Topo-
graphical variables were extracted applying a “UAV-digital elevation model” (orthophoto images driven from 
the UAV) with a resolution of 1 m. Data layers were created applying ArcGIS 10.3.1 (https://​www.​esri.​com). The 
distance to stream and distance to road maps were obtained from the roads and river maps. The land use map 
was also created from the orthophoto images. Finally, the number of 60 soil samples (the same sample size for 
each study landform and also for locations with no hazard; 15) was gathered in the field and transferred to the 
soil laboratory (detailed in Table 10).

Multicollinearity analysis.  The linear regression algorithm was used to detect the multicollinearity of 
environmental covariables affecting three compound events. This fitting algorithm analyzes the interaction 
between the response variable (the absence or presence of gully heads, collapsed pipes or landslides) and inde-
pendent variables26–51. The model’s output represents the significantly (Sig) and coefficient calculated by SAS 
16.0 software. By doing linear regression, “Variance Inflation Factor (VIF) and Tolerance (TOL)” were obtained 
to detect the multicollinearity among the corresponding factors and to define a noise which reduces the accuracy 
of the final model. Particularly, if TOL < 0.1 and VIF > 10, the predictor variable is multicollinear and should be 
omitted from the further modelling processes52.

Figure 8.   Some examples of three soil landforms (collapsed pipes, gully heads, and landslides) in the study area.

Table 10.   The physical–chemical soil properties of the location of collapsed pipes, gully heads, and landslides 
in the study area.

Soil properties Minimum Maximum Average

Silt content 46 72 60.72

Organic carbon 0.7 1.7 1.10

ESP 0.66 2.68 1.05

Calcium carbonate equivalent 7.5 22 16.63

Soil stability 0.32 1.33 0.81

Bulk density 1.34 1.54 1.43

https://www.esri.com
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Support vector machine (SVM).  It divides different classes with an optimal hyperplane and thus, maxi-
mizes the spatial border between them. The points nearest to the hyperplane are named “support vectors” (the 
main components of the training dataset). These decision rules are performed by solving a quadratic optimiza-
tion quandary solely. Further, the use of the classification concept separates classes and maximizes their spatial 
border53. This hyperplane with a higher spatial border has better generalization and is stable to noise. The SVMs, 
as a multi-layer perceptron54 remark a set of linear detachable training vectors and find an n-dimensional hyper-
plane and become different in the process of “two classes by their maximum gap”55. The function of the SVM 
response is described in Table 11.

Mixture discriminant analysis (MDA).  It combines more assembled neural network classifiers due to the 
“nonlinear nature of its classification rules”. Due to its modest structure, the MDA also makes straightforward 
interpretations in conjunction with linear mixture classifiers. The MDA proposes a new alternative for making 
three-dimensional models question or addressing ensemble modeling in remote sensing, typically from aircraft 
satellites56,57. As an advantage of MDA, we can add that it performs a mixture of classifiers with estimation using 
the Maximum Likelihood and expectation–maximization algorithm58.

Flexible discriminant analysis (FDA).  It is a statistical analysis applying a discriminant function to 
assign data to one or more groups or to a non-parametric version differing in certain respects from an earlier 
one. It uses an optimal scoring method to post-processed a multi-response regression. In other words, the FDA 
procedure is one of the best classifiers for optimal data-scoring to illustrate the classes and canonically spatial 
correlation analysis. The FDA is equal to administering a linear discriminant analysis. Semi-parametric or non-
parametric regression is replaced instead of the linear regression steps. Furthermore, the algorithm uses different 
regression tools and produces various class boundaries and distinction rules59,60.

Random forest (RF).  It is a supervised classifier61 with relatively low error compared to previous clas-
sification classifiers and various decision trees. To split each node in this algorithm, the dummy codes use the 
minimum node dimension, and features62, although the predictor is the top splitter in all trees if one of the vari-
ables has more impact on the predicting function. Further, averaging predictions from correlated trees does not 
significantly reduce assumed variance, and all trees are constructed in a similarly correlated pattern61.

Boosted regression tree (BRT).  It is an ensembled statistical-based algorithm that modifies an individual 
model by fitting and incorporating classifiers for the best prediction33. It is also combined boosting builds join 
with regression classifiers to reduce the amount of variance in a prediction and improve model accuracy. It 
makes the best or most effective use of the number of trees which set by inner bag fraction, cross-validation, 
and learning rate with no direct human control34. Eventually, the highest weakness of single tree classifiers (poor 
predictive implementation) may easily be solved by fitting multiple trees and rules of thumb63.

Multivariate adaptive regression spline (MARS).  It is a statistical-based algorithm for fitting nonlin-
ear complex communications between independent and dependent variables while providing an interpretable 
spatial model38. It works by splitting up the ranges of the expository parameters into areas by producing a linear 
regression function. The Breaks numbers between areas are named “knots”, although the term "basis function" 
implies each separate linear interval of the predictors. The basic equations as the response functions and the 
overall expression of MARS are described in Table 1164.

Generalized linear model (GLM).  It linearly estimates the association between an event probability (col-
lapsed pipes, landslides, or gully heads here) and predictors. It is also providing the possibility of an undemand-
ing interpretation of coefficients. While considering a linear relationship between a predictor and its response is 
relatively unreal in some spatial modeling and may restrict predictive performance. The GLM can also assume 
nonlinear statistics by fitting nearly exact alteration functions to the predictors42. It has been illustrated as 
exceedingly beneficial in natural hazards, especially landslide modeling41–65.

Evaluation of susceptibility maps.  The “area under the receiver operating characteristic curve, or ROC 
curve”, illustrates the capability of classifiers (BRT, GLM, FDA, MDA, MARS, RF, and SVM in this study) to 
predict the susceptibility of the study area to collapsed pipes, gully heads, and landslides. The ROC curve indi-
cates the tradeoff between the two rates. The values of this function reflect the accuracies in a range from poor 
to excellent66.

Table 11.   The function of models and their description.

Models Function Description

Support vector machine (SVM)
½ W2

Yi ((W* Xi) + b) ≥ 1
L = 1/2 W2−

n∑

i=1

�i(Yi(W ∗ Xi)+ b)− 1

W: the normal of the hyperplane; b: scalar base; λi: the adjunction of Lagrange 
multipliers

Multivariate adaptive regression spline (MARS) max(0, x − k)ormax(0, k − x)
y = f (x) = α+

n∑

n=1

Bnhn(x)
X: an independent variable; k: a constant corresponding to a knot; y: the dependent 
variable; βn and hn(x): an individual basis function
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due [This work is 
ongoing in other parts] but are available from the corresponding author on reasonable request.
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