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Abstract

Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney
disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with
chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the
development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically
defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial
fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and
quantitate ‘‘real time’’ gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe
signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal
model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil
infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3
expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-
hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously
unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible
negative feedback loop for TGF-b in the disease state, whilst tight junction protein-1 is up-regulated in many kidney
diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined
techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within
single cell populations derived from clinically sourced tissue.

Citation: Wilkinson R, Wang X, Kassianos AJ, Zuryn S, Roper KE, et al. (2014) Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal
Tubular Epithelial Cell Signaling in Human Kidney Disease. PLoS ONE 9(1): e87345. doi:10.1371/journal.pone.0087345

Editor: Aristidis S. Charonis, Biomedical Research Foundation of the Academy of Athens, Greece

Received October 16, 2013; Accepted December 19, 2013; Published January 27, 2014

Copyright: � 2014 Wilkinson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding provided by Chemical Pathology, Queensland Health; SERTF Trust Fund, Queensland Health; Private Practice Trust Fund, RBWH, Queensland.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ray.wilkinson@qimr.edu.au

Introduction

It is widely acknowledged that the epithelial cells of the

proximal tubule (PTEC) play a central role in interstitial fibrosis,

following cellular insults such as excessive protein exposure and

oxidative stress [1–5]. These insults lead to perturbation of the

complex interactions of growth factors, cytokines and chemokines

which maintain the homeostasis of these cells, leading to the over-

expression of genes involved in inflammatory responses [6–8] and

epithelial to mesenchymal transition (EMT) [9–12], both patho-

biological processes resulting in a fibrotic phenotype. However,

research implicating PTEC involvement in interstitial fibrosis

comes predominantly from animal models or in-vitro studies using

transformed cell lines or primary PTEC cultures. The relevance of

translating PTEC knowledge derived from these models to human

disease has not been established. Attempts to elucidate transcrip-

tion profiles in human kidney disease tissue have generally taken a

global approach, analyzing gene expression from whole kidney

biopsies [13,14] or tissue sections with mixed cellular populations

[15].

In this work we exploit the recent developments in microscopic

dissection using Laser Capture Microdissection (LCM) to target

the single cell PTEC population ex-vivo. The technology allows

the visualisation of proximal tubules within renal biopsies from

patients with kidney disease and the subsequent capture/isolation

of PTEC from these tubules using laser catapult energy [16]. This

technology has been recently used in human kidney research of

gene expression in the glomerulus [17–19], to study one or two

genes across different compartments of the kidney [20,21] or to

analyse PTEC collected from proteinuric disease biopsies using

gene microarray technology [22,23]. Gene microarray analysis

studies provide vast amounts of transcriptional data but have a

number of inherent difficulties including: (i) difficult and expensive

to undertake, (ii) require duplicate samples to eliminate artifactual

data, (iii) take weeks or months to analyse the large volumes of data

and (iv) require large amounts of input RNA or, when not
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available as occurs in the clinical setting, non-specific pre-

amplification of high quality RNA.

To remove bias, commonly encountered when non-specifically

pre-amplifying the picogram quantities of RNA typically obtained

from human biopsies using LCM, we utilised targeted gene

transcription analysis using primer-specific nested amplification.

This methodology, known as multiplex tandem-PCR (MT-PCR),

has been reported to amplify cDNA from as little as 10 picograms

of RNA and was designed to amplify degraded RNA recovered

from formalin-fixed paraffin embedded tissue [24]. Here we use

MT-PCR analysis of LCM-isolated PTEC from clinical human

kidney biopsies to provide transcriptional data on the four major

pathobiological pathways associated with kidney fibrosis: (i)

inflammation, (ii) collagen deposition, (iii) EMT and (iv) apoptosis.

We relate changes in the transcriptional profiles of the pathways to

the clinical phenotype of the patients. These technologies are

readily translatable to human diagnostics of the future where the

prognostic power of PTEC may direct therapies to specific targets.

Methods

Patient and Tissue sample details
Control tissues were obtained from the healthy portions of

malignant nephrectomies (n = 8) and were validated as normal at

the macroscopic and microscopic level by the consulting renal

pathologist. Diseased samples (n = 96) were collected from native

kidney biopsy material that were surplus to diagnostic require-

ments. Biopsies were frozen in OCT within 20 minutes of

collection and stored at 280uC prior to processing. When

biopsies/patients were grouped according to the clinical diagnosis

of acute or chronic disease, defined clinically prior to histopath-

ological diagnosis, we had a total of 26 acute, 16 chronic, 51 acute-

on-chronic and 3 undefined. Final disease diagnoses, of which

there were three or more patients per disease group (n = 87),

included IgA nephropathy (IgAN; n = 14), focal segmental

glomerulosclerosis (FSGS; n = 11), pauci-immune glomerulone-

phritis (PI; n = 11), membranous nephropathy (MN; n = 9),

interstitial nephritis (IN; n = 7), protein deposition disease (PDD;

Table 1. MT-PCR genes examined and the associated disease pathway.

Gene Symbol Official Name

House Keeping GAPDH glyceraldehyde-3-phosphate dehydrogenase

BTF3 basic transcription factor 3

Fibrosis TGFB1 transforming growth factor, beta 1

SERPINE1 serpin peptidase inhibitor, clade E, member 1

SMAD3 SMAD family member 3

COL3A1 collagen, type III, alpha 1

COL1A2 collagen, type I, alpha 2

P4HA2 proline 4-hydroxylase, alpha polypeptide II

SERPINH serpin peptidase inhibitor, clade H (heat shock protein 47), member 1

THBS1 thrombospondin 1

Inflammation TNF tumor necrosis factor (TNF superfamily, member 2)

IL6 interleukin 6 (interferon, beta 2)

IL8 interleukin 8

NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

CCL2 chemokine (C-C motif) ligand 2/monocyte chemotactic protein 1

C3 complement component 3

BMP7 bone morphogenetic protein 7 (osteogenic protein 1)

BMP6 morphogenetic protein 6

Kim-1 kidney injury molecule-1/hepatitis A virus cellular receptor 1

SPP1 secreted phosphoprotein 1 (osteopontin, early T-lymphocyte activation 1)

EMT VIM vimentin

ACTA2 actin, alpha 2, smooth muscle, aorta

TJP1 tight junction protein 1 (zona occludens 1)

S100A4 S100 calcium binding protein A4

TWIST1 twist homolog 1

SNAI1 snail homolog 1

Apoptosis BCL2 B-cell CLL/lymphoma 2

BAD BCL2-antagonist of cell death

BAX BCL2-associated X protein

CASP3 caspase 3, apoptosis-related cysteine peptidase

CASP8 caspase 8, apoptosis-related cysteine peptidase

FAS Fas (TNF receptor superfamily, member 6)

doi:10.1371/journal.pone.0087345.t001
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n = 7), minimal change disease (MCD; n = 6), diabetic nephrop-

athy (DN; n = 6), lupus nephritis (LN; n = 5), membranoprolifera-

tive glomerulonephritis (MPGN; n = 4), thrombotic microangiop-

athy (TMA; n = 4) and acute tubular necrosis (ATN; n = 3). The

renal pathologist also scored the histological grading of the

interstitium of all disease biopsies using a scale modified from the

Banff system [25]. Briefly, overall cortical inflammation (OCI),

unscarred cortical inflammation (UCI) and interstitial fibrosis/

tubular atrophy (IF/TA) were each graded on a scale of 0–4 (0 =

not present, 1 = up to 5%, 2 = 6–25%, 3 = 26–50% and 4 =

greater than 50%) and yes/no for the presence of acute tubular

injury (ATI), neutrophils and eosinophils. This grading was based

upon the analysis of twenty individual 4 mm sections from each

biopsy, which had been stained with haematoxylin and eosin or

Masson’s trichrome. Kidney function (estimated glomerular

filtration rate (eGFR)) was calculated using the MDRD method

by AUSLAB (Queensland Health) and proteinuria was described

by urine protein to creatinine ratio (uPCR).

Ethics statement
All disease biopsy samples were used following written informed

patient consent under human ethics approval from the Royal

Brisbane and Women’s Hospital (RBWH) (2002/011) and the

Queensland Institute of Medical Research (QIMR) (P293).

LCM
10 mm thick cryosections were cut under RNase-free conditions

and mounted on MembraneSlide 1.0 PEN slides (Carl Zeiss,

Munich, Germany) treated with 20 min of UV exposure prior to

use. Cryosections were stored at 280uC for a maximum of

48 hours or processed immediately for staining of endogenous

alkaline phosphatase, exclusively expressed by PTEC in kidney

cortex, by a one minute fixation in 70% ethanol followed by

staining with SigmaFast BCIP/NBT (Sigma-Aldrich, St Louis,

MO, USA) for 5 min. Cryosections were then dehydrated for

1 min each in 70%, 90% and 100% ethanol and PTEC were

collected from these sections for a maximum time of 30 min, after

which the process was repeated with additional sections until a

total of one million mm2 of tissue was collected. The PALM

Microlaser System (PALM Microlaser Technologies, Zeiss, Jena,

Germany) equipped with the PALM RoboSoftware controlled

microscope stage and micromanipulator was used for LCM.

PTEC were outlined at the basement membrane using the

software and isolated from surrounding tissue by laser ablation

prior to being catapulted into a Zeiss AdhesiveCap 500 Opaque

collection cap (Zeiss) for subsequent RNA isolation. One cap per

‘‘section collection’’ was used and caps were replaced on their tube

and stored on dry ice prior to RNA extraction using the Absolutely

RNA Nanoprep kit (Stratagene, Santa Clara, CA, USA) with on-

column DNase digestion. Confirming PTEC purity, initial

quantitative RT-PCR optimization experiments failed to amplify

non-PTEC expressed genes (aquaporin-2 and tamm-horsfall

protein) from three million mm2 LCM isolated PTEC (data not

shown).

Multiplex Tandem-PCR
This methodology uses two-step MT-PCR gene-disc technology

developed in commercial collaboration with AusDiagnostics Pty

Ltd (Sydney, Australia). In the first step the RNA from a single one

million mm2 PTEC extraction was converted to cDNA and

amplified in a multiplex single tube reaction for 25 cycles using

AusDiagnostics gene-specific primers and master mix reagents.

The product was then diluted 1/200 and dispensed into duplicate

individual tubes containing specific nested primers for each gene of

interest and amplified using real-time PCR for a further 45 cycles

with a SYBR Green master mix in a Rotor-Gene Q thermal cycler

(QIAGEN, Hilden, Germany). Genes were ‘‘called’’ by AusDiag-

nostics Software protocols that analyze products based upon melt

temperature, purity and quantity values. All ‘‘called’’ results were

manually verified during data analysis. Expression levels were

normalised to the internal house-keeping genes GAPDH and

BTF3 which were assigned an arbitrary value of 1000. Primer and

product sequences are not reported due to commercial in-

confidence agreements with AusDiagnostics Pty Ltd. We analyzed

a total of 30 genes in duplicate for every sample. Genes are listed

in Table 1.

Quantitative RT-PCR
Real-time PCR (RT-PCR) primers were designed and supplied

by AusDiagnostics Pty Ltd. Three million mm2 of PTEC were

extracted by LCM from biopsies and total RNA was isolated from

cells with the Absolutely RNA Nanoprep Kit (Stratagene)

according to the manufacturer’s instructions. Reverse transcription

was performed using random hexamers (Invitrogen, Grand Island,

NY, USA) and Superscript III Reverse Transcriptase (Invitrogen).

RT-PCR reactions were performed using RT2 SYBR Green

qPCR master mix (QIAGEN). GAPDH was used for normaliza-

tion of cDNA input, and RT-PCR reactions were performed using

a Rotor-Gene Q thermal cycler (QIAGEN) according to the

manufacturer’s instructions: initial denaturation at 95uC for

10 min, followed by 45–50 cycles at 95uC for 15 sec and at

60uC for 60 sec. Data analysis was performed using Rotorgene

software (QIAGEN) and the delta delta Ct (DDCt) method.

Immunohistochemistry
6 mm cryosections were prepared and dried overnight prior to

fixation in acetone/ethanol. Sections were blocked for 30 min in

4% milk and 15 min in 10% goat serum and incubated with

primary Ab diluted in Tris-buffered saline (TBS) for 1 hour at

room temperature. Primary Abs were mouse anti-human Kim-1

(Clone 219211; R&D Systems, Minneapolis, MN, USA), mouse

anti-human Collagen III (Clone FH-7A; Abcam, Hong Kong) and

mouse anti-human Vimentin (Clone V9; Dako, Glostrup, Den-

mark). Following three 5 min washes in TBS, sections were treated

Table 2. The mean log relative gene expression (normalised
to GAPDH) of nine genes able to differentiate disease from
healthy control biopsies.

Mean Control Mean Disease Disease-Control p-value

Kim-1 0.24 2.17 1.93 ,0.001

P4HA2 6.24 4.33 21.91 0.002

C3 0.55 2.15 1.6 0.024

THBS1 8.37 6.45 21.93 0.038

COL3A1 0.43 4.20 3.76 ,0.001

ACTA2 5.88 3.83 22.05 0.012

TJP1 2.40 3.86 1.46 0.033

VIM 0.22 4.34 4.12 ,0.001

FAS 4.17 6.32 2.16 0.005

Kim-1, P4HA2 and C3 also demonstrated significant differences within disease
groups based on histology (OCI, UCI, IF/TA, ATI and presence of neutrophils/
eosinophils), kidney function (eGFR) or proteinuria (uPCR), compared to
controls.
doi:10.1371/journal.pone.0087345.t002
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Figure 1. Kim-1 log relative gene expression (normalised to GAPDH) from normal biopsies (Control) and biopsies with (A) overall
cortical inflammation (OCI, 0 = absent, 1–2 = 5–25%, 3–4 = 26–.50%), (B) unscarred cortical inflammation (UCI, 0 = absent, 1 = ,5%,
2 = 6–25%, 3 = 26–50%), (C) the presence of acute tubular injury, (D) the presence of neutrophils and (E) proteinuria, defined using
a urine protein to creatinine ratio (uPCR) (A = , 100 mg/mmol, B = 100–299 mg/mmol, C = $300 mg/mmol). Values are means 6 SEM.
*P,0.05, **P,0.01, ***P,0.001, one-way ANOVA with Dunnett’s post-test.
doi:10.1371/journal.pone.0087345.g001

Figure 2. C3 log relative gene expression (normalised to GAPDH) from normal biopsies (Control) and biopsies with (A) overall
cortical inflammation (OCI, 0 = absent, 1–2 = 5–25%, 3–4 = 26–.50%), (B) the presence of acute tubular injury and (C) proteinuria,
defined using a urine protein to creatinine ratio (uPCR) (A = ,100 mg/mmol, B = 100–299 mg/mmol, C = $300 mg/mmol). Values are
means 6 SEM. *P,0.05, **P,0.01, one-way ANOVA with Dunnett’s post-test.
doi:10.1371/journal.pone.0087345.g002
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with 1% H2O2 in TBS for 10 min to block endogenous peroxidase

prior to 30 min incubation in goat anti-mouse horseradish

peroxidase. Sections were then washed 3 times in TBS and

developed with DAB for 5 min prior to light counterstaining with

haematoxylin and eosin.

Statistical Analysis
Due to the skewed and wide distribution of the data, gene

expression values were log transformed, which enabled the

application of parametric statistics. As the log of zero is undefined,

one was added to all measurements in order to preserve the zeros

in the derived data set. Multiple comparisons of gene expression

values for disease biopsies (stratified on histopathology, renal

function, proteinuria and clinical diagnosis) against healthy

controls were performed using a one-way ANOVA with Dunnett’s

post-test. Statistical tests were performed using Prism 5.0 analysis

software (GraphPad Software, La Jolla, CA, USA). P values #0.05

were considered statistically significant.

Results

Multiplex Tandem-PCR – PTEC gene expression levels
correlate with histology, renal function and proteinuria

We initially compared the means of the disease group to the

control group for all 30 genes in the panel. A total of 9 genes

discriminated disease samples from controls: Kim-1, C3, P4HA2,

THBS1, COL3A1, ACTA2, TJP1, VIM and FAS (Table 2). For

example, the expression of Kim-1 was, on average, 1.93 units

higher in the disease group as compared to the control group and

P4HA2 was, on average, 1.91 units lower in the disease group as

compared to the control group.

We then stratified MT-PCR derived gene transcript data from

diseased samples based on: (i) histological criteria (OCI, UCI, IF/

TA, ATI and the presence of neutrophils or eosinophils), (ii) kidney

function (eGFR) and (iii) degree of proteinuria (uPCR levels).

Within these groupings, three genes, Kim-1, C3 and P4HA2

demonstrated significant differences compared to controls.

Levels of Kim-1 significantly correlated with increasing OCI

(Fig 1a), and Kim-1 expression was significantly elevated in all

disease groupings with UCI (Fig 1b). In line with the literature,

Kim-1 expression was significantly higher in biopsies with ATI

(Fig 1c) and infiltrating neutrophils (Fig 1d), histological markers of

acute kidney disease. Biopsies from patients with the heaviest

proteinuria, a marker for progression of uncontrolled kidney

disease, also demonstrated significantly elevated levels of Kim-1

expression (Fig 1e). C3 expression levels correlated positively with

OCI when compared to no inflammation and controls (Fig 2a).

Furthermore, a significant increase in C3 expression was

demonstrated in biopsies from patients with acute tubular injury

(Fig 2b) and those with the heaviest proteinuria (Fig 2c). In

contrast, P4HA2 expression was significantly lower in diseased

biopsies with eosinophils (Fig 3a), whilst a trend for decreasing

expression of P4HA2 with increasing levels of IF/TA (Fig 3b) and

decreasing kidney function (eGFR) (Fig 3c) was observed.

Multiplex Tandem-PCR – PTEC gene expression levels
correlate with clinical diagnosis

When we stratified gene results against clinical acute, chronic

and acute-on-chronic groups, we found increased expression

compared to controls of Kim-1, C3, COL3A1, VIM, SMAD3 and

TJP1 across all clinical groupings and decreased expression of

P4HA2 compared to controls across all clinical groupings (Fig 4).

However there were no significant differences of gene expression

patterns between groups for each individual gene.

When we compared gene results against biopsies grouped into

disease diagnoses, Kim-1, P4HA2, COL3A1, VIM, SMAD3 and

TJP1 were consistently expressed at different levels to control

biopsies across a number of primary diagnoses (Fig 5). The mean

expression of Kim-1 was higher than controls in biopsies from all

disease groups except TMA, and significantly higher than controls

in patients with IgAN, DN and PI (Fig 5a). The mean expression

of P4HA2 was lower than controls in biopsies from all disease

groups except MCD and significantly lower in patients with TMA

and PDD (Fig 5b). The mean expression of COL3A1 was higher

than controls in biopsies from all disease groups, and significantly

higher than controls in patients with IgAN, MN, IN, DN, PI,

ATN, PDD and FSGS (Fig 5c). The mean expression of VIM was

higher than controls in biopsies from all disease groups and

significantly higher than controls in all groups except MN (Fig 5d).

The mean expression of SMAD3 was lower than controls in

biopsies from all disease groups and significantly lower in biopsies

from PDD patients (Fig 5e). The mean expression of TJP1 was

higher than controls in biopsies from all disease groups except

TMA and significantly higher than controls in patients with DN,

LN and PI (Fig 5f).

Figure 3. P4HA2 log relative gene expression (normalised to GAPDH) from normal biopsies (Control) and biopsies with (A) the
presence of eosinophils, (B) interstitial fibrosis/tubular atrophy (IF/TA, 0 = absent, 1 = ,5%, 2 = 6–25%, 3 = 26–50%, 4 = .50%) and
(C) chronic kidney disease (CKD) defined by estimated glomerular filtration rate (eGFR, 1 = $90 ml/min/1.73 m2, 2 = 60–89 ml/min/
1.73 m2, 3 = 30–59 ml/min/1.73 m2, 4 = 15–29 ml/min/1.73 m2, 5 = ,15 ml/min/1.73 m2). Values are means 6 SEM. *P,0.05, one-way
ANOVA with Dunnett’s post-test.
doi:10.1371/journal.pone.0087345.g003
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Confirmation of MT-PCR results at the molecular and
protein level

To confirm our MT-PCR results at the molecular level, we

undertook standard quantitative RT-PCR analysis of three

candidate genes from our MT-PCR screening panel. We analyzed

three different patient biopsies that had high expression of the

relevant gene by MT-PCR and three different patient biopsies

which had low/negative expression of the relevant gene by MT-

PCR. We consistently detected greater levels of Kim-1, COL3A1

and VIM from biopsies with high expression of the respective

genes compared to biopsies with no/low gene expression (Fig 6).

We performed immununohistochemical analysis of these three

gene products to correlate gene transcription levels to protein

expression in tissue. We confirmed strong staining for Kim-1,

COL3A1 and VIM in PTEC of biopsies that expressed high

transcript levels by MT-PCR, with low or negative staining

patterns in biopsies that had negative or very low transcript

expression levels by MT-PCR (Fig 7). Extracellular staining of

Kim-1 in the proteinacious material of the proximal tubule and of

COL3A1 in the interstitium, adjacent to the basement membrane,

was also noted.

Figure 4. The log relative gene expression (normalised to GAPDH) of COL3A1, Kim-1, P4HA2, VIM, TJP1, C3 and SMAD3 across
clinical acute, chronic and acute-on-chronic diagnoses. Values are means 6 SEM. *P,0.05, ***P,0.001, ****P,0.0001, one-way ANOVA with
Dunnett’s post-test.
doi:10.1371/journal.pone.0087345.g004

PTEC Gene Transcription in the Pathological State
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Discussion

PTEC are believed to play a central role in the progression of

many different types of kidney disease, irrespective of whether the

initiating aetiology occurs in the glomerulus or the interstitium.

Various insults including increased protein, elevated glucose,

AGE-modified proteins, oxidative stress, toxins, drugs and

cytokines from infiltrating inflammatory cells can all impact on

PTEC and perturb their normal physiology. The functional

consequences of this perturbed function including aberrant

chemokine secretion, EMT and cell death have primarily been

studied in cell culture and animal model systems. Using the novel

techniques of LCM and MT-PCR we have been able to

demonstrate for the first time that PTEC purified from diseased

human kidney demonstrate altered gene transcription profiles

representing multiple pathobiological pathways that associate with

markers of the clinical phenotypes of both acute and chronic

kidney disease.

Kim-1 is a phosphatidylserine receptor that recognises stress

and danger signals, like oxidized lipoproteins and apoptotic cells,

and directs them to lysosomes [26]. Kim-1 gene expression

appears quiescent under normal physiological conditions in the

kidney but is rapidly up-regulated and transcribed into protein

following injury. Kim-1 then localizes at very high levels on the

apical membrane of PTEC where its extracellular domain is

susceptible to metalloproteinase-mediated Kim-1 cleavage [26].

This soluble Kim-1, excreted in the urine, is a recognized acute

kidney injury biomarker. Our findings that PTEC expression of

Kim-1 is up-regulated in biopsies with acute tubular injury

compared to both control and disease biopsies with no acute

tubular injury is in line with the established literature. Not

unexpectedly, high Kim-1 levels in PTEC are also associated with

the presence of neutrophils, a cell of acute inflammation, in the

interstitium.

Our findings also describe a relationship between Kim-1

expression in PTEC and the histological severity of kidney

inflammation, renal function and amount of proteinuria. In

addition, we report significantly elevated levels of Kim-1 in

biopsies from patients diagnosed with IgA, DN and PI compared

to controls. A review of the literature reveals elevated levels of

Kim-1 in a number of kidney diseases. Kwon et al recently

Figure 5. The log relative gene expression (normalised to GAPDH) of Kim-1, P4HA2, COL3A1, VIM, SMAD3 and TJP1 across disease
diagnoses. Values are means 6 SEM. *P,0.05, **P,0.01, ***P,0.001, ****P,0.0001, one-way ANOVA with Dunnett’s post-test.
doi:10.1371/journal.pone.0087345.g005
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demonstrated that Kim-1 expression predicts renal outcomes in

IgA nephropathy [27], whilst elevated Kim-1 levels have also been

reported in DN [28] and decreasing levels associated with

regression of microalbuminuria in type 1 diabetes, suggesting that

tubular dysfunction is a critical component of the early course of

DN [29]. This corroboration of our findings with the established

literature is proof of concept of the validity of our LCM/MT-PCR

approach to identifying PTEC specific genes involved in the

pathobiology of kidney disease.

C3 is pivotal in the activation of the complement system and its

processing by C3 convertase to C3a and C3b is the central

reaction in both the classical and alternative complement

pathways. C3 is a known inflammatory mediator, with C3a

increasing vascular permeability and C3b promoting inflammato-

ry cell interactions. PTEC production of C3 gene transcripts and

protein has been reported in both in-vitro and in-vivo models

[30,31] and Zoja et al [31] reported the co-localisation of

interstitial inflammatory infiltrates with C3 expressing proximal

tubules. Welsh et al also reported focal PTEC expression of C3 was

always associated with localised interstitial infiltrate or focal

tubular atrophy [32]. This is supported in our findings where there

is a strong trend for increased C3 expression in disease biopsies

with OCI and a significant positive relationship between

expression of C3 and acute tubular injury. Our results support a

therapeutic strategy akin to antibiotics; that is, time dependent

therapeutic inhibitory targeting of C3 whilst the inflammatory

process is active in the pathogenesis, possibly with proteinuria as a

surrogate, and not during other pathological processes.

P4HA2 catalyses the post-translational formation of 4-hydroxy-

proline in -Xaa-Pro-Gly- sequences in collagens and other proteins

and is essential to the proper three-dimensional folding of newly

synthesized procollagen chains. To our knowledge, no other

groups have studied P4HA2 transcription in human PTEC and

only Rastaldi et al [33] have reported on the apparent up-

regulation of its protein in diseased biopsies. The significance of

decreased expressions levels of this gene in PTEC from biopsies

with moderate to severe CKD and IF/TA is therefore counter-

intuitive. However, prolyl hydroxylation via P4HA2 is part of the

pathway by which hypoxia inducible factor-1 (HIF-1) is degraded.

HIF-1 is known to regulate many important genes involved in

angiogenesis, glucose utilization, proliferation and survival includ-

ing erythropoietin, vascular endothelial growth factor and

hemeoxygenase-1 [34]. It could be hypothesized that a decrease

in PTEC expression of P4HA2 would promote the expression and

activity of HIF-1, resulting in the expression of many genes

required for survival within the compromised kidney environment

of CKD. Therefore, our findings that decreased levels of P4HA2

correlate with reduced kidney function provide a new finding that

warrants further investigation.

COL3A1 participates in the fibrotic process in the renal tubulo-

interstitium, where the abnormal extracellular matrix (ECM) in

fibrosis consists of an excess of normal components, such as

collagen type IV, and an accumulation of proteins that are absent

in the normal ECM, such as collagen type I and type III [35].

Although most collagen type III is reported to be produced by

myofibroblasts in the kidney, it has also been demonstrated to be

produced by PTEC cell lines in vitro [36] and by PTEC in diseased

kidney biopsies [33]. The finding here that PTEC also produce

COL3A1 in vivo, across a range of disease aetiologies, adds novel

findings to the PTEC literature.

VIM is the characteristic cytoskeletal protein of mesenchymal

cells and its expression in epithelial cells is a de-differentiation

marker representing an early step in EMT. In their immunohis-

tochemical studies on EMT in human biopsies, Rastaldi et al were

unable to detect any vimentin positive tubules in healthy biopsies

but reported vimentin positive PTEC from most disease biopsies

Figure 6. The log relative gene expression (normalised to GAPDH) of Kim-1, COL3A1 and VIM defined by real-time PCR from 3
biopsies with low/no MT-PCR expression (2) and 3 biopsies with medium/high MT-PCR expression (+) for that gene. Values are means
6 SEM.
doi:10.1371/journal.pone.0087345.g006
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studied [33]. We hypothesize that the increased PTEC expression of

VIM transcripts in our disease biopsies reflects an early pathological

response because we rarely detected increased ACTA2, a second,

and later, marker of EMT, within PTEC. Galichon and Hertig

came to a similar conclusion, reporting that vimentin is an early and

reversible marker of EMT in kidney disease [37]. Thus, transcrip-

tion of vimentin may have potential as a kidney disease biomarker at

early and potentially reversible stages. Our observations that

ACTA2 itself did not correlate with fibrosis scores or other markers

of pathology was somewhat surprising to us as the product of this

gene has been implicated in the fibrotic process, particularly in

animal models [38]. However, others such as Rastaldi et al [33] have

also reported minimal increases of smooth muscle actin in PTEC

from human fibrotic biopsies.

SMAD3 is a member of the receptor-activated Smads (R-

Smads) which are central mediators of TGF-b signaling. Induction

and activation of the profibrotic cytokine TGF-b in the kidney,

either alone or in combination with other cytokines such as

epidermal growth factor, fibroblast growth factor-2 or angiotensin

II, induces kidney damage through a range of pathobiological

processes, including EMT, apoptosis and fibrosis (reviewed [39]).

SMAD3 is also involved in other non-redundant signaling

pathways and biological functions (reviewed [40]). We were quite

surprised to note that all of our disease biopsies had lower SMAD3

levels than our control biopsies. However the literature reports

that TGF-b can down-modulate SMAD3 gene expression in

human glomerular mesangial cells over the short term (24 hours)

and in renal tubular epithelial cells over the longer term (5–7 days)

[41]. Therefore, our group hypothesize, for the first time, that the

transcriptional inhibition of SMAD3 may form part of a biological

control loop for TGF-b within human PTEC.

TJP1 or ZO-1 is a scaffolding protein that interacts with

multiple other proteins to form and maintain tight junctions

between cells. Levels of TJP1 are relatively low in proximal tubules

compared to distal tubules (reviewed by [42]) reflecting their

greater paracellular transport functions. As proximal tubule cells

become fully differentiated they express more TJP1 [43]. This

raises the intriguing possibility that our observed increases in TJP1

transcription in most disease states is a counter-regulatory response

to the vimentin up-regulation induced early stages of PTEC

EMT– counter acting forces in the de-differentiation:differentia-

tion of PTEC homeostasis.

Collectively our study demonstrates that the technologies of

LCM coupled with MT-PCR are feasible in the clinical setting

where levels of PTEC RNA are available only in picogram

amounts. Despite the incredible complexity of PTEC transcrip-

tional profiles, their products and interactions, these technologies

provide simultaneous experimental observations of multiple

molecules of interest, informing better targeting of therapies and

potential new renal biomarkers. However, our findings do not, at

this stage, define a PTEC consensus chronic kidney disease

transcript signature, aligning with the concept that chronic disease

represents the cumulative dynamics of transient, repetitive or

persistent acute insults varying over time.

Although we have used MT-PCR to examine genes involved in

kidney pathobiology, the technique can be modified to examine any

genes or gene pathways of interest. For instance, we have recently

reported that human PTEC are able to modulate autologous

immune responses [44,45] and we are currently modifying our

protocols to examine the expression of immune mediator genes in

PTEC derived from inflammatory disease biopsies.

In conclusion, using novel methods that give unprecedented

access to real time human kidney tissue, we report alterations in

PTEC gene and protein expression, representing multiple patho-

biological pathways that associate with markers of the clinical

phenotypes of both acute and chronic kidney disease. Where the

amount of starting RNA is small, MT-PCR has the power to

simultaneously observe multiple molecules representing several

signaling pathways at the level of a single cell population. We found

the diversity of pathways implicated in kidney disease include

inflammatory, complement, collagen folding, fibrosis, cytoskeletal

and cell scaffolding pathways, ascribing PTEC a pivotal role in

regulatory networks of kidney homeostasis in health and disease.
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