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Abstract: Diffuse reflectance spectroscopy (DRS) and imaging are increasingly being used in surgical
guidance for tumor margin detection during endoscopic operations. However, the accuracy of
the boundary detection with optical techniques may depend on the acquisition parameters, and
its evaluation is in high demand. In this work, using optical phantoms with homogeneous and
heterogeneous distribution of chromophores mimicking normal and pathological bladder tissues, the
accuracy of tumor margin detection using single-fiber diffuse reflectance spectroscopy and spatial
frequency domain imaging was evaluated. We also showed how the diffuse reflectance response
obtained at different spatial frequencies with the spatial frequency domain imaging technique could
be used not only to quantitatively map absorption and scattering coefficients of normal tissues and
tumor-like heterogeneities but also to estimate the tumor depth localization. The demonstrated
results could be helpful for proper analysis of the DRS data measured in vivo and for translation of
optical techniques for tumor margin detection to clinics.

Keywords: surgery guidance; diffuse reflectance spectroscopy; tumor detection; spatial frequency
domain imaging (SFDI); optical phantoms

1. Introduction

Optical techniques are increasingly being used for intraoperative diagnostics to im-
prove the sensitivity and specificity of tumor margin detection. Various optical methods,
including diffuse reflectance spectroscopy, Raman and fluorescence spectroscopy with
multiwavelength excitation of exogenous and endogenous tissue fluorophores [1–5], fluo-
rescence lifetime imaging [6,7], optical coherence tomography [8,9], photoacoustics [10],
terahertz spectroscopy [11,12], and other methods and their combinations are used to
diagnose normal and abnormal tissue sites both ex vivo and in vivo.

The method used for real-time in vivo diagnostics should be robust and based on an
easy-interpretable marker that allows separating healthy and pathological tissues while
being fast and technically compatible with medical devices used during the surgery. DRS
could be used to classify bladder cancer tumors using the significant difference in the
vascularization of normal and tumor sites (i.e., based on the differences in the hemoglobin
concentration) [13,14]. The diffusely reflected light could be captured using various imag-
ing schemes; some of them, like narrow-band imaging, are already used in clinically
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approved cystoscopes [15,16]. Another possibility is using a single optical fiber inserted
in the endoscope, which allows measuring the signal from a specific point of the tissue.
The second modality, which is highly attractive for clinicians, are imaging techniques
that allow for real-time visualization of tissue content. One of the prospective imaging
techniques based on diffuse reflectance of light is the spatial frequency domain imaging
(SFDI) method [17–19]. SFDI is a modern technique that allows one to quantitatively
restore the absorption and scattering coefficients of the tissues [18], which is possible using
narrow-band imaging or white light cystoscopy, where only semiquantitative or qualitative
differences between colors of the tissues can be assessed. SFDI also allows performing
the depth tomography, as the penetration depth of the structured light is dependent on
the spatial frequency [20]. Moreover, SFDI can also be implemented as an endoscopic
system [21,22].

A crucial step in understanding the possible pitfalls of the implemented technique is
the analysis of its capabilities using simple objects with a priori known optical properties.
For this purpose, materials that mimic the optical properties of real tissues can be used.
One of the frequently used options is the use of silicones with built-in scatterers such as
TiO2 and dyes as absorbers [23,24].

In this work, using PDMS-based optical phantoms with homogeneous and hetero-
geneous distributions of the chromophores mimicking optical properties of normal and
pathological bladder cancer, we evaluated how the diffuse reflectance parameters and
DRS-based tumor margin assessment obtained using the single-fiber scheme and SFDI
depend on the detection parameters, e.g., on the position of the fiber relative to the tissue
surface, and the properties of the chromophoric inhomogeneities. Comparative analysis
of point measurements in a single-fiber scheme and of the SFDI-based imaging scheme
allowed demonstration of the advantages and drawbacks of these methods in guided
surgery. The obtained results are essential for a proper analysis of the DRS data measured
in vivo and for the translation of optical techniques for tumor margin detection to clinics.

2. Materials and Methods
2.1. Fabrication Protocol of Homogeneous PDMS Optical Phantoms

To evaluate the applicability of diffuse reflectance spectroscopy and imaging for
intraoperative diagnostics of tumor margins implemented as a single-fiber scheme and
SFDI-scheme, the optical phantoms that simulate the properties of tissues were prepared.
Polydimethylsiloxane (PDMS) (Sylagerm-2106, Lyubertsy, Russia) was used as a matrix
containing the scattering particles of TiO2 (RusChem, Saint-Petersburg, Russia) and the
acrylic and alcohol dyes with characteristic absorption peaks in the 500–600 nm range,
which determined the absorption coefficient of the phantoms. The reduced scattering
coefficient of the TiO2 particles was characterized using the SFDI method. The fabrication
method utilized in this work is based on the protocol previously described in [25].

The final concentration of TiO2 particles and the dye in the homogeneous optical
phantoms, studied in Section 3.1 of the Results, corresponds to reduced scattering coefficient
of µs’ = 120 mm−1 and absorption coefficient µa = 0.03 mm−1 at 550 nm wavelength, in
agreement with scattering and absorption coefficients of normal bladder tissue reported
in [24]. The tumor phantom had the same scattering coefficient and the increased absorption
coefficient µa = 0.06 mm−1, in agreement with the properties of vascularized tumor regions
of the bladder [26]. The phantoms had a cylindrical shape with a diameter of 35 mm and a
thickness of 5 mm.

2.2. Fabrication of a Non-Uniform Phantom to Determine the Lateral Accuracy of a
Single-Fiber Scheme

The optical phantom used to assess the accuracy of tumor localization using a single-
fiber scheme was manufactured in two stages. First, a base phantom, simulating the optical
properties of healthy tissue containing special protrusions, was prepared. After the base
phantom had cured, a mixture simulating the properties of a tumor was poured into the
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protrusions and then cured. The diameter and the depth of inhomogeneity were 9 mm and
1.5 mm, respectively.

2.3. Production of an Inhomogeneous Optical Phantom with a Varying Thickness of Inhomogeneity

This phantom was also produced in two steps. The first part of the phantom mimicked
the tumor tissue of the bladder and had the form of a truncated cylinder. It was placed
on the bottom of the mold, which was then filled with the PDMS-mixture, mimicking the
optical properties of the normal tissue, which was then cured.

The final concentration of titanium dioxide in both parts of the phantom corresponded
to µs’ (550 nm)~1.3 mm−1; the concentration of the alcohol ink in phantoms of healthy
and tumor tissue corresponded to absorption coefficients µa = 0.1 mm−1 and 0.2 mm−1 at
550 nm, respectively.

2.4. Single-Fiber Measurement of Diffuse Reflectance Spectra

To test the single-fiber scheme, imitating the conditions of an optical scheme imple-
mented in an endoscope during surgery, a special experimental setup was created where
the diffuse reflection spectra were recorded using an optical fiber under homogeneous
illumination with an external source (Figure 1a).
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all the spectra measured for different angles α.

A 5 W halogen lamp with a continuous spectrum in the range of 400–2500 nm was used
as a light source. A multimode optical fiber with a core diameter of 550 µm and a numerical
aperture of 0.27, connected to an Ocean Optics Maya 2000 Pro spectrometer(Orlando, FL,
USA) records reflection spectra in the range of 200–1100 nm, was used as a detector. The
optical fiber was connected to the holder moving up or down, while the optical phantom
was placed on a platform (Figure 1a), allowing it to rotate the phantom and move the
phantom perpendicular to the fiber.
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The diffuse reflectance spectra were calculated from the spectra of the recorded in-
tensity, I, as follows. For a switched-off lamp in the absence of external illumination,
the spectrum of the background noise of the detector Ibg was measured, followed by the
intensity of the signal reflected off the phantom.

For each recorded intensity spectrum, I, the reflectance spectrum, R, was calculated as:

R =
I − Ibg

Ire f − Ibg
, (1)

where Ibg is the background noise of the detector and Iref is the reference spectra obtained
for the Spectralon sample located at 2 mm from the fiber end.

The effective optical density of the sample was calculated as:

OD = − ln (R). (2)

2.5. Spatial Frequency Domain Imaging: Experimental Setup and Analysis Algorithm

A separate custom-build setup was used to implement the spatial frequency domain-
imaging method. A commercially available digital micromirror device (DMD)-based
projector (TouYinger S7, Everycom Technology, Shenzhen, China) was used to project
patterns. The LED light sources of the projector were replaced with a 35 W incandescent
halogen lamp.

To detect the signal, a monochrome CMOS camera (CS135MUN, Thorlabs Inc., New-
ton, NJ, USA) was used. The images with 1024 × 1280 pixels were captured using a
varifocal objective (20R0001604, Navitar, Rochester, NY, USA). Dichroic bandpass filter,
passing the light in the 550 ± 20 nm spectral range, was used for the spectral selection.

The projector illuminated the surface of the optical phantoms with intensity patterns
modulated with a sine function with given spatial frequencies fx, varied in the range from
0 mm−1 (constant illumination) up to 0.2 mm−1 with the step of ~0.013 mm−1, according
to Equation (3):

I(x) = I0 (1 + M sin (2π fxx + α)) (3)

with a modulation depth M ~0.95. The obtained raw maps of the intensity patterns
projected onto the phantom’s surface were processed to obtain diffuse reflectance maps at
different spatial frequencies and absorption and scattering coefficients using the algorithm
presented in [18]. We briefly point out that the response from the tissues for each pixel, x, of
an image, MAC(x, fx), for the specific spatial frequency was calculated using the intensity
maps obtained for three phase shifts of the projected pattern: α1 = 0, α2 = 2/3π, and
α3 = 4/3π, according to Equation (4):

MAC(x, fx ) =
2

1
2

3
{[I1(x)− I2(x)]2 + [I1(x)− I3(x)]2 + {[I2(x)− I3(x)]2}

1
2 , (4)

where I1, I2, I3 represent intensity, I(x), values projected with different phase shifts (α1, α2,
and α3, respectively). The diffuse reflection at zero frequency, fx = 0 mm−1, was calculated
according to Equation (5):

MAC(x, fx = 0 mm−1) =
1
3
[I1(x) + I2(x) + I3(x)]− IDC background(x), (5)

where IDC background(x) is the noise of the detector obtained when the light source was
turned off. Using the detector response function, estimated by measuring liquid optical
phantom with known optical properties, the diffuse reflectance coefficients (Rd) of the
heterogeneous optical phantoms at different spatial frequencies were restored and fitted to
quantify absorption (µa) and reduced scattering (µs’) coefficients.

To calibrate the system, the liquid homogeneous phantom was used as a reference,
in which a 20% lipofundin solution (Lipofundin MCT/LCT 20%, BBraun Melsungen
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AG, Melsungen, Germany) in water was used as a scatterer, and water-soluble nigrosine
(Vektone, Saint Petersburg, Russia) was used as an absorber, so that the reduced scattering
and absorption coefficients of reference phantom at 550 nm were 1.65 and 0.18 mm−1,
respectively.

All spectra and image analysis was performed using custom-written scripts using
Python3 (v 3.10, 2021, Python Software Foundation, Beaverton, OR, USA) and Scipy
(v 1.7.1), Scikit-Image (v 0.18.3), Numpy (v 1.21.1), and LmFit (v 1.0.2) libraries.

3. Results
3.1. Diffuse Reflectance Spectra Are Weakly Dependent on Angle and Distance to Tissues

In endoscopic surgery, DRS can be implemented using a single detection fiber and
wide-angle illumination from an endoscope. In general, a surgeon cannot precisely deter-
mine the position and angle of the fiber relative to the tissues. Hence, two major questions
when using the single-fiber DRS scheme are: (1) Does the spectral band shape significantly
depend on the angle of inclination of the fiber and the distance from the fiber end to the
tissue surface? (2) How does the precision of tumor margin determination depend on the
distance between the fiber and the surface? To answer these questions, we measured the
diffuse reflectance spectra from the optical phantoms of various configurations using an
experimental setup simulating the measurement conditions with an endoscope (Figure 1a,
see Section 2.4 for details). The fiber was fixed above the optical phantom, located on a
special platform allowing rotating and translating the phantom and changing the distance
between the edge of the fiber and the phantom surface.

It should be noted that, in the case of a homogeneous sample and homogeneous
incoherent illumination, there should be no dependence on the angle or distance to the
object. However, this can be violated in the case of sample inhomogeneities, and this
can be the case for in vivo measurements. Thus, to estimate the setup performance in the
homogeneous case, the dependence of the diffuse reflectance spectra of optical phantoms on
the angle and distance to the surface of homogeneous optical phantoms was investigated. A
detailed description of the phantom preparation is presented in Section 2.1. Two phantoms
imitating healthy tissue and tumor with increased vascularization were prepared, with
absorption and scattering coefficients similar to the absorption and scattering coefficients
of the bladder tissues in the spectral range of 500–650 nm. Their observed inhomogeneity
of optical density, estimated as relative error for measurements at different points, was
0.5–0.6%.

We investigated how the diffuse reflectance spectra change as a function of the distance
between the fiber and the surface of the optical phantoms when the fiber is located normally
to the sample surface (α = 0◦). For each configuration, the optical density (OD) spectrum
was calculated as OD = −ln(R), where R is the diffuse reflectance spectrum calculated
according to the procedure described in Section 2.3. The spectral region, 450–550 nm, of
these spectra corresponds to the dye absorption region and can be used for its concentration
estimation, while the 600–800 nm range can be used for baseline estimation. For both types
of phantoms, the shape of the OD spectra does not depend on the distance to the fiber
(Figure 1b). The variation in the OD values at a wavelength of 500 nm with a change
in the distance, z, from the fiber to the phantom when varying from 0.1 to 0.8 mm was
0.3–0.7%, which corresponds to the phantom inhomogeneity level and is 2.8 times lower
than the difference in effective optical density for the phantoms of normal and tumor tissue
(Figure 1c).

Secondly, the dependence of the diffuse reflectance spectra on the orientation of the
fiber relative to the surface was investigated. For this, the fiber was fixed at a distance of
z = 2.0 mm from the phantom, and then the angle of inclination of the phantom, α, was
varied from −40◦ to +40◦ with a step of 20◦. Figure 1d shows the diffuse reflectance spectra
for a phantom that mimics normal and tumor tissues for different fiber orientations. It can
be seen that the spectra have a small variation at the 0.3–0.7% level, which corresponds
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to the inhomogeneity level, and is approximately three times lower than the differences
observed for the phantoms of healthy and tumor tissues (Figure 1e).

The obtained results indicate that, in realistic conditions, in the case of increased
tumor vascularization, the single-fiber scheme is suitable for detecting tumor tissue areas,
while the detection can be carried out at different angles of fiber inclination. This fact is
of practical value because rigid cystoscopy is often in use, and there is no possibility for
the surgical fiber to bend. At the same time, the insignificant dependence of the reflection
coefficients on the orientation of the fiber suggests that, using a single-fiber scheme, it is
possible to detect hemoglobin variations three times lower than those observed in a real
tumor, making it possible to detect earlier stages of increased vascularization and tumor
development.

However, it is obvious that, because the optical fiber has a nonzero numerical aperture,
with an increase in the distance between the fiber and the tissue under study, the accuracy
of determining the tumor margin will gradually decrease. Below, we investigated how the
spatial resolution of a tumor margin for the single-fiber scheme depends on the distance
between the fiber and a non-uniform optical phantom.

3.2. The Accuracy of Tumor Margin Assessment Depends on the Fiber-Tissue Distance

To assess how the accuracy of assessment of the tumor margin depends on the distance
between the scanning fiber and the tissue surface, the following experiment was performed
with a heterogeneous phantom containing two areas with optical properties of healthy
and tumor tissue (Figure 2a). The optical parameters of the regions of this phantom
correspond to the phantoms of healthy and tumor tissues described in the previous section
and Section 2.2.
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The diffuse reflection spectra were measured as the fiber moved along the phantom
surface, while the fiber was oriented perpendicular to the sample surface. A series of
longitudinal scans (along the x coordinate) were measured for three distances between
the fiber and the phantom, z, of 2, 5, and 10 mm. Optical density spectra for scanning
at a distance of z = 2 mm, depending on the lateral position of the fiber, x, are shown
in Figure 2b. During the change of the fiber position from normal tissue to pathological,
an increase in absorption in the range of 500–600 nm was observed due to an increased
absorption coefficient of tumor tissues.

Thus, the OD at the wavelength 500 nm was chosen as an indicator that determines
the transition between normal tissue and tumor. The dependencies of the ∆OD(x) =
OD(500 nm) − OD(600 nm) on the position of the fiber, x, for various distances from the
fiber tip to the phantom surface, z, obtained upon scanning, are shown in Figure 2c. As
can be seen, as the distance from the fiber to the phantom decreases, the ∆OD(x) curves
become steeper, while the amplitude of the ∆OD increases with decreasing distance. The
error in determining the margin was estimated by fitting the ∆OD(x) dependencies to a
sigmoid (Equation (6)).

∆OD(x) ∼ A
1 + exp(− x−x0

∆x )
(6)

It was found that the parameter that determines the smoothness of the transition and,
accordingly, the error, ∆x, of determining the transition boundary increases linearly with
an increase in the distance between the fiber and the phantom surface (Figure 2d). This
dependence can be explained by the fact that, with an increase in the distance between
the fiber and the phantom, the effective light collection area increases and reflection both
from the tumor and healthy tissue is captured. It can be concluded that, for a given
fiber configuration, a scanning height of up to 10 mm makes it possible to determine the
tumor border with an accuracy of up to 2 mm. The accuracy for the minimum height
can be estimated as 0.36 mm (Figure 2d), which is close to the radius of the optical fiber
of 0.275 mm.

3.3. Single-Fiber DRS Is Sensitive to Depth-Location of Tumor-like Chromophoric Inhomogeneities

When determining the boundaries of various types of inhomogeneities, in particular,
of a tumor, it can not only be non-uniformly distributed over the surface but also non-
uniformly distributed with depth. To evaluate how the DRS signal varies in the case of
chromophores that are inhomogeneously distributed with depth, we prepared an optical
phantom of a special configuration. A detailed description of the preparation of this phan-
tom is presented in Section 2.3. The phantom had the shape of a cylinder with a built-in
inhomogeneity, which had the shape of a truncated cylinder with an increased value of
the absorption coefficient (Figure 3a). This configuration of the phantom was necessary to
create a smooth gradient of the inhomogeneity depth. The absorption coefficient of the sur-
rounding “normal” tissue was 0.1 mm−1, and the absorption coefficient of inhomogeneity
was 0.2 mm−1, while the scattering coefficients were similar and equal to 1.3 mm−1.

To assess the dependence of the measured parameters on the depth of the second
layer with a single-fiber scheme, a coordinate grid was marked on the phantom surface
and three scans were made along the direction of thickness change (scans “14”, “25”,
“36”) and three transverse scans, along which the depth of the inhomogeneity remained
approximately the same (scans “AD”, “BE”, “CF”). Figure 3b,c show the profiles of the
value of ∆OD estimated as the difference between OD values at 550 and 600 nm, i.e., ∆OD =
OD(550 nm) − OD(600 nm), obtained when scanning with a single-fiber scheme along the
direction of change in the depth of heterogeneity location (Figure 3b) and along the lines of
constant depth (Figure 3c). As can be seen, for scan 52, for which the thickness variation
is the largest, ∆OD changes the most. In this case, in the region of 5–16 mm, and ∆OD
increases linearly, corresponding to a linear decrease in the thickness of the phantom. In
this case, the ∆OD profiles measured along the levels of constant depth of inhomogeneity
demonstrate a “stepwise” dependence on the scanning coordinate X.
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Figure 3. (a) Inhomogeneous phantom: cross-sectional view, scanning grid (top view), and phantom photo. (b) Dependences
of the observed absorption coefficients along the scanning directions 41 (blue dots), 52 (yellow), 63 (green). The scans
correspond to the direction along the varying thickness of the inhomogeneity, which corresponds to the changing values of
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points), BE (yellow), CF (green). The scans correspond to the direction along the constant thickness of the inhomogeneity,
which corresponds to the plateaus in the central region of the scan. (d) Dependence of the absorption coefficient on the
thickness of the inhomogeneity along the scan 52.

It should be noted that the steepness of the boundaries does not significantly depend
on the depth of inhomogeneity. Thus, the accuracy of the inhomogeneity boundary deter-
mination is affected by the distance between the fiber and the surface of the tissue but not
by the inhomogeneity depth.

As it can be seen from Figure 3c, the ∆OD value depends on the thickness of the
phantom inhomogeneity. To correlate ∆OD with the true depth of the inhomogeneity,
the phantom was later cut along the scan lines, the images were taken, and the depth of
the inhomogeneity (distance to the measurement surface) was measured using ImageJ
(v1.53m, 2021, Public domain). The correlation of the relative optical density with the
thickness is presented in Figure 3d; ∆OD decreases linearly with increasing depth. From the
deviation of the points from the linear relationship, it is possible to estimate the minimum
inhomogeneity thickness that is possible to detect. The linear fit had a correlation coefficient
of r = −0.971; the standard deviation of the values from the fitting curve was 0.0172. The
slope coefficient of the straight line was −0.085 mm−1; thus, the minimum detectable
thickness of inhomogeneity located on the surface can be estimated as ~0.2 mm.

3.4. Structured-Light Imaging Provides the Absorption and Scattering Coefficients and Depth
Localization of Tumor-Like Inhomogeneities

As shown above, the single-fiber scheme allows localizing the position of the tumor
laterally with reasonable accuracy. However, this detection scheme has several drawbacks.
First, it is necessary to scan along the sample to localize the border in a larger field of view,
while for accurate localization, it is necessary to perform scanning holding the fiber close
to the tissue surface. Secondly, scanning with a single fiber, when the distance between the
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source and the detector is fixed, does not allow assessing the depth of the tumor without
a priori knowledge of the optical density of the tumor and adjacent healthy tissue—the
contrast of the absorption coefficient is directly correlated with the heterogeneity depth
(Figure 3d).

To eliminate these disadvantages, imaging methods should be used. One of the most
recent diffuse imaging techniques is the spatial frequency domain imaging (SFDI) technique.
The essence of the method is rigorously described in [18,19]. Several patterns with intensity
varying along one of the spatial coordinates are projected onto the investigated area of
the object and detected with a camera (Figure 4a). Detection of reflected light from a
spatially modulated source and subsequent processing of the obtained images allows one
to quantify the absorption and scattering coefficients in the case of homogeneous media,
as well as to estimate the depth of inhomogeneities [18,20]. This assessment is possible
because projecting and imaging patterns with different spatial frequencies of bright and
dark stripes of light is analogous to measuring the signal for different distances between
the source (“bright stripes”) and the detector (“dark stripes”), thus achieving detecting
of light traveling at different trajectories and mean propagation depths by using different
spatial frequencies of the projected pattern [19]. At the same time, the SFDI method can
also be implemented as an endoscopic scheme [21], thus being suitable for intraoperative
diagnostics during surgery on internal organs.
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coefficient obtained after imaging (f = 0 mm−1). (d,e) Maps of reduced scattering (d) and absorption (e) coefficients obtained
for inhomogeneous optical phantom using fitting of diffuse reflectance coefficients on frequency, as described in Section 2.5.

In our work, the ability to localize inhomogeneities and their localization depth, as
well as the dependence of the accuracy of determining tumor localization for the SFDI
method, were assessed. A detailed description of the experimental setup is presented in
the Materials and Methods section (Section 2.5). Briefly, the setup included a DMD-based
projector with a broadband (400–2500 nm) lamp capable of projecting patterns with spatial
frequency down to 2.5 mm−1. Detection was carried out using a charge-coupled device
(CCD) camera with a short-focus objective and a 550 ± 20 nm dichroic bandpass filter
located in front of it. The setup is shown in Figure 4a.
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Diffuse reflection maps were measured for spatial frequencies varying from f = 0 mm−1

up to f = 0.2 mm−1, with a step of f = 0.013 mm−1 for an optical phantom with inhomogene-
ity located at different depths, previously measured using a single-fiber setup (Section 2.4,
Figure 3). Examples of the projection of spatially modulated light onto a phantom and
the resulting diffuse reflection map are shown in Figure 4b,c. Using the diffusion approxi-
mation of light transfer in tissues and data for reference homogeneous liquid phantoms,
the absorption and reduced scattering coefficients were estimated for the phantoms under
the assumption of a homogeneous medium and diffuse approximation. The maps of the
absorption and scattering coefficients are shown in Figure 4d,e. As can be seen, the absolute
values of the absorption coefficients do not completely coincide with the real values of the
absorption and scattering coefficients of the heterogeneity and the phantom that simulates
the surrounding tissues. Such differences can be explained by the fact that the model used
for processing does not take into account heterogeneously distributed tissues; therefore,
the chromophore distribution is “averaged” over depth, and the estimated absorption
coefficient depends on the depth distribution of the chromophore.

When processing the SFDI data under the assumption of homogeneously distributed
chromophores, we found that the observed absorption coefficient is correlated with the
depth of the heterogeneity in the phantom. This is due to the fact that the reflection
coefficients for different spatial frequencies effectively collect the signal from different
depths of the object under investigation [18–20].

It was also observed that the margins of inhomogeneities deeply located in the phan-
tom show more contrast when measuring the diffuse reflection signal at low spatial fre-
quencies, while the contrast at larger depths gradually decreases when increasing the
modulation frequency (Figure 5b,c). This phenomenon can be explained by the fact that
higher spatial frequencies correspond to a small distance between the source and the
detector, thus at higher frequencies, only the photons from lower depths are detected.
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at different spatial frequencies (f = 0 mm−1, (a)) and (f = 0.18 mm−1, (b)). The rapid decrease of the
OD values at the higher spatial frequency, where an increase of inhomogeneity localization depth
in panel (b) is observed. (c) Optical density, calculated along the y coordinate, corresponds to the
change of the localization depth of the inhomogeneity normalized to the minimum and maximum
values of the OD along the profile. (d) Correlation between the ratio of normalized optical depths at
spatial frequencies of projected patterns f = 0.05 mm−1 and f = 0.0 mm−1 with the true localization
depth of inhomogeneity.

Indeed, the profile of the normalized optical density, calculated as −ln(R), obtained
at different spatial frequencies along the “25” profile has a maximum in the region of
y = 15 mm, corresponding to the region where the inhomogeneity protruded onto the
phantom surface (Figure 5c). It can be seen that the relative contrast in OD decreases
in the left shoulder in Figure 5c, in the areas corresponding to a tumor located deep in
the tissue. It can be seen that the OD at y = 6 mm normalized to the maximum value
of OD (at y = 15 mm), gradually decreases from 0.4 for the f = 0 mm−1 down to 0.21 for
frequencies above 0.15 mm−1. The lateral coordinate y = 6 mm corresponds to the depth of
the chromophoric heterogeneity of 2 mm.

This fact was taken into account to create a semi-quantitative model to estimate
the depth of the heterogeneity. The ratio of the optical density coefficients for different
spatial frequencies was calculated, and it was correlated with the actual depth of the
inhomogeneity, determined from the phantom cut along trajectory “25”. It was found that
the ratio of the reflection coefficients positively correlates with the depth of occurrence of the
inhomogeneity in the phantom (Figure 5d). This estimation demonstrates the applicability
of the SFDI method in the assessment of depth distribution of chromophores in tissues.

4. Discussion

The obtained results show that the diffuse reflectance spectra obtained via the single-
fiber scheme (Figure 1) vary insignificantly upon changing the fiber position relative to
the tissue surface, and the changes of the optical density index are sufficiently lower upon
changing the position of the fiber in comparison with the variation of the optical density,
associated with the difference in concentration of the hemoglobin in the healthy and
pathological tissues. However, the error of the tumor margin evaluation with a single-fiber
scheme heavily depends on the distance between the fiber and the surface of the object
due to the averaging of the diffusely reflected light from the area seen by fiber’s aperture
during measurement. Yet, even for the DRS-response detected at a distance of 10 mm from
the surface, the error of the evaluation of the tumor margin location is not greater than
2 mm (Figure 2) and could be even lower under measurement conditions in water or saline
(cystoscopy-assisted bladder surgeries are performed with a bladder filled with saline),
where the numerical aperture of the fiber is lower as the refractive index of the solution is
closer to the value of the refractive index of the fiber materials.

In the case of the assessment of the inhomogeneous optical phantom where the depth
of the tumor-modeling heterogeneity changed (Figure 3), for typical differences between
the absorption coefficients observed for healthy and tumor tissues, differences in the tumor
depth (or thickness of tumor) down to 0.2 mm could be determined. This fact can be helpful
for the objective assessment of the boundaries of a thin tumor, for example, in the case of a
“creeping tumor”. However, in the case of unknown absorption coefficients of healthy and
tumor tissues, as well as in the case of imaging of a large tissue area, a single-fiber scheme
is inferior to imaging techniques, namely, SFDI.

Although the model used to estimate the absorption and scattering coefficients in
the single-layer homogeneously absorbing and scattering media did not perform well in
the case of the phantom with heterogeneous distribution of the chromophores presented
in Figure 4a, qualitatively, µa and µs’ maps (Figure 4c,d) match the distribution of the
chromophores in the investigated sample.
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The results obtained for diffuse reflectance coefficients and apparent optical densities
(estimated as OD = −ln(R)) at different spatial frequencies allowed us to experimentally
verify the dependency of the light penetration depth on the value of the spatial frequency
(Figure 5c). We observed that the lower the frequency, the higher the penetration depth and
the greater is the optical density contrast between normal and tumor tissue sites for the
tumor located on some depth in optical phantom. The ratio of optical densities at 0.0 and
0.05 mm−1 frequencies allowed us to build an estimator of the tumor depth based solely on
optical descriptors (Figure 5d). Thus, with the help of structured light, it is possible to carry
out tomography of tissues, which gives additional information regarding chromophore
distribution in comparison with the information provided with other imaging techniques,
such as white light cystoscopy or narrow-band imaging; however, the exact solution for
inhomogeneously distributed chromophores with arbitrary distribution geometry and
unknown absorption coefficients has yet to be obtained.

It should also be noted that the use of structured light is technically complicated
because, in order to illuminate the surface non-uniformly through an endoscope, a costly
imaging fiber bundle composed of a large number of fibers is required, and for its practical
applicability, it is necessary for the advantages of the SFDI method to “outweigh” the
disadvantages associated with implementation difficulties.
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