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Abstract

Age-related macular degeneration (AMD) is a neurodegenerative disease characterized by retinal 

cell atrophy, and/or choroidal neovascularization in the macula and constitutes the most common 

cause of blindness among the elderly in industrialized countries. The management of AMD is 

constrained by our insufficient knowledge of its underlying mechanisms. Recent studies point 

towards an emerging involvement of interferon-gamma (IFN-γ), a soluble cytokine associated 

with innate and adaptive immunity. IFN-γ promotes proinflammatory responses by activating 

proinflammatory cytokines and chemokines, thereby recruiting immune cells such as macrophages 

and T cells. On the other hand, IFN-γ modulates inflammatory response by upregulating anti-

inflammatory factors or inhibiting development of immune cells related to autoimmune response. 

The complex role of IFN-γ in AMD pathogenesis is intriguing and worth further investigation in 

terms of therapeutic development.
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Introduction

Age-related macular degeneration (AMD) is the most common cause of blindness among the 

elderly in industrialized countries [1]. AMD is characterized by retinal pigment epithelium 

(RPE) dysfunction and sub-RPE drusen formation in the early stage. With time, it may 

progress to retinal cell atrophy, and/or choroidal neovascularization in the macula. Recent 

studies incorporating genetic and epidemiological data have made a credible argument for 

chronic inflammatory events playing a central role in the pathogenesis and development of 

AMD. Interferon-gamma (IFN-γ), a soluble cytokine associated with innate and adaptive 
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immunity, is considered to be a pro-inflammatory factor. Recent studies point towards an 

emerging relationship between IFN-γ and mechanisms underlying the pathogenesis of 

AMD. Along with other pro-inflammatory factors such as IL-1 and TNF-α, IFN-γ functions 

synergistically to activate inflammatory components, including the complement cascade and 

recruit immune cells such as macrophages, microglia, NK and T cells [2–5]. In AMD eyes, 

these immune cells are present in areas surrounding the outer retina and drusen deposits [6–

8], they can induce direct damage to photoreceptors [8,9], potentially leading to vision loss. 

Yet, the interaction of pathways activated by IFN-γ is complex and not fully understood. 

Also, the role of IFN-γ as a possible therapy target is still unclear. Herein, we will review 

the literature on IFN-γ in the outer retina with focus on its role as a potential target for 

therapy for chronic inflammatory diseases of the eye.

Is IFN-γ a Possible Target for Treatment of AMD?

In our previous studies, we found that constituents of drusen such as amyloid beta and 

advanced glycation endproducts (AGE) are capable of activating the IFN-γ pathway [10,11]. 

AGE not only upregulated IFN-γ but also several of its downstream effectors including 

RSAD2, STAT1, CXCL10, and CXCL11 (Figures 1, 2 and3). Indeed, in postmortem human 

eyes, we found increased accumulation of RSAD2, CXCL10, and CXCL11 to be associated 

with the presence of drusen deposit [12]. Others have shown that in vitro stimulation of 

cultured RPE cells with IFN-γ led to polarized complement factor H (CFH) secretion 

predominantly localized to the apical surface [13–15]. This localization has been proposed 

to form a CFH gradient that could maintain retinal homeostasis and suppress a 

proinflammatory environment surrounding the photoreceptors. CFH is also a 

chemoattractant for monocytes [16]. In addition, when co-cultured with activated T cells, 

RPE cells produce an apical gradient of increased CCL7, CXCL9, CXCL10, and CXCL11 

through T cell derived IFN-γ [5].

IFN-γ may be involved in AMD pathogenesis through macrophage polarization. Depending 

on the different microenvironment, macrophages can polarize into specific phenotypes, such 

as M1 or M2 macrophages [17]. The M2 subtype is predominantly pro-angiogenic, 

facilitating tissue repair and tends to increase during the normal aging process [18]. In 

contrast, the M1 subtype is predominantly proinflammatory and there is a pathological shift 

towards M1 subtype with the development of AMD. INF-γ can selectively promote 

polarization into M1 subtype [19]. M1 macrophages promote pathological inflammation 

through the secretion of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α 
[20,21]. IL-1β is a strong proinflammatory factor. Along with IFN-γ, it synergistically 

increases the expression and secretion of IL-6, a potent inflammatory factor involved in the 

autoimmune and inflammatory disorders, in RPE cells [2]. Stimulation of human cells with 

IFN-γ potentiates IL-1β release and production [22].

Antibodies designed to block IFN-γ activity have been effective in the treatment of chronic 

inflammatory disorders such as rheumatoid arthritis and Crohn’s disease [23,24]. 

Antagonizing the IFN-γ pathway has been investigated in the context of AMD. Interferons 

are separated into three subtypes (type 1, 2, and 3) and differentiation between subtypes is 

based on the receptor through which they signal [25]. Type 1 interferon comprises of large 

Jiang et al. Page 2

J Clin Exp Ophthalmol. Author manuscript; available in PMC 2014 June 25.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



sub-categories in humans including IFN-α, β, ε, κ and ω [26]. INF-γ is the only member of 

the type 2 subclass [25]. More recently, IFN-λ has been discovered and it is currently the 

sole member of the type 3 subclass [27]. Type 1 interferon including IFN-α and β have anti-

proliferative and anti-angiogenic effects and has an antagonistic role to IFN-γ [28–32]. In 

the 1990s, IFN-α and β were used in the treatment of AMD [33–35]. It was found that IFN-

α has minimal long-term therapeutic benefit and this was postulated to be due to the 

generation of anti-IFN-α antibodies as a result of treatment [36,37]. The utility of IFN-β 
was found to be more promising as it promotes proliferation and repair of damaged RPE and 

regression of CNV in monkey AMD models. More studies on the effectiveness of IFN-β 
have been published in literature [38–41]. Taken together, these studies indicate the 

importance of IFNs in AMD pathogenesis.

However, the use of IFN-γ as a therapeutic target can be complicated since in lower 

concentrations, IFN-γ shifts from being a proinflammatory factor to a more anti-

inflammatory one [42,43]. At low levels, IFN-γ impedes homing of naïve T cells and Th2 

cells to target organ [44]. Th2 cells induce fibrosis thereby counterbalancing the destructive 

effects of Th1 cells, which promote apoptosis [45,46]. Thus in the pathology of AMD, 

blocking IFN-γ may reduce the protective effects of Th2 and consequently aggravating the 

destructive function of Th1 cells [20,47].

Is there any Beneficial Role of IFN-γ in Terms of Protective/Anti-

inflammatory Effect?

The role of IFN-γ is complex, since IFN-γ is associated with both protective and destructive 

inflammatory processes. IFN-γ is classically considered as a pro-inflammatory factor, yet in 

recent years, multiple studies have found IFN-γ to mediate an immune-modulatory and 

protective function. For example, in human endothelial cells IFN-γ inhibits the angiogenic 

activity of VEGF through activation of STAT1 pathway [48], down-regulating VEGF mRNA 

in a dosage-dependent manner [49]. This may help to inhibit excess angiogenesis process in 

wet AMD. Interestingly, another study suggests that IFN-γ is able to mediate VEGF 

upregulation in RPE cells through the PI-3K/Akt/mTOR/p70 S6 kinase pathway, and is 

independent of STAT1 [50]. Therefore, IFN-γ associated STAT1 activation may be 

beneficial. Another piece of evidence comes from the study of IFN-γ up-regulating CFH 

expression in RPE cells [15]. CFH can keep the complement cascade in check and prevent 

tissue injury from excessive complement activation [51]. CFH is transcriptionally 

upregulated by STAT1, but oxidative stress, one of the most important risk factors for AMD, 

can disrupt this process by acetylating FOXO3, which competes with STAT1 for binding to 

the CFH promoter [15,52]. It is also known that STAT1-deficient mouse are highly 

susceptible to autoimmune disorders [53] and given that AMD may be considered an 

autoimmune disease [54,55], preserving STAT1 activation by IFN-γ may be important in 

mitigating AMD progression. Furthermore, IFN-γ can tilt the balance toward STAT1 by 

deactivating STAT3. STAT1 and STAT3 are negative regulators of each other and activate 

distinctly different downstream pathways [56]. STAT1 plays a key role in inhibiting 

angiogenesis, while STAT3 induces the production of VEGF directly or indirectly through 

hypoxia-inducible factor 1α in tumor cells [57-61]. INF-γ deactivates STAT3 by promoting 
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STAT3 dephosphorylation [62]. Topical IFN-γ is being investigated for as a means of 

treatment for macular edema in uveitis (http://clinicaltrials.gov/show/NCT00943982).

IFN-γ further down-regulates the VEGF pathway through the up-regulation IL-1RA [42]. 

IL-1RA inhibits IL-1 receptor bindings to IL-1, and thus performs an anti-inflammatory 

function [42]. IL-1β is strongly implicated in the pathogenesis of chronic inflammatory 

diseases [63]. Indeed, human RPE cells treated with amyloid beta strongly upregulated 

IL-1β [10]. Aberrant auto-upregulation of IL- 1β leads to excessive inflammation and 

promotes angiogenesis through upregulation of VEGF [64]. IL-1β is capable of inducing 

reactive oxygen species (ROS) in RPE cells [65] and ROS triggers the release of IL-8, which 

recruits pro-inflammatory cells such as macrophages [10,65,66]. With macrophages present 

in drusen deposits of AMD eyes, it plays a key role in promoting neovascular proliferation 

[67,68]. In AMD models IL-1RA have been shown to be effective in reducing the degree of 

CNV formation, likely through the inhibition of IL-1 pathways [69].

IFN-γ may also play a beneficial role by regulating Th17 cells. Th17 cells have been 

characterized as a subclass of T cells and implicated in numerous autoimmune disorders 

including diabetes, autoimmune encephalomyelitis, autoimmune uveitis, and thyroiditis 

[43]. Recently Th17 cell specific cytokines, IL-17 and IL-22 are found to be elevated in 

serum of AMD patients, further implicating Th17 cells in the pathogenesis of AMD [70]. 

The upregulation of IL-17 is believed to be mediated by complement activation product C5a 

[70]. In AMD patients, C5a is elevated in serum and may be associated with AMD at risk 

gene variant, which regulates complement activation [51,71]. IFN-γ inhibits T cell 

differentiation into Th17 and in murine models of Th1 related autoimmune disorders, 

knocking out IFN-γ results in a more severe disease process. This worsening is believed to 

be mediated through Th17 cell [72–74].

Conclusion

In conclusion, IFN-γ plays an intriguing role in the pathogenesis of AMD. Certainly, several 

lines of evidence suggest that inhibition of IFN-γ may prevent inflammation-mediated 

responses that contribute to the progression of AMD. However, given the evidence 

suggesting its involvement in anti-inflammatory and neuroprotective mechanisms in a 

number of murine autoimmune disease models [31], it is still debatable whether therapeutic 

inhibition of IFN-γ pathways would help counteract the progression of AMD. Further 

characterization of the IFN-γ mediated immunomodulatory pathways that are involved in 

the pathogenesis of AMD is necessary.
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Figure 1. 
Summary diagram of differentially expressed gene results obtained from a microarray study 

of human RPE cell response to in vitro stimulation with amyloid beta (0.3 μM, left oval) or 

advanced glycation endproducts (AGE, 10 μg/mL, right oval). Amyloid beta and AGE are 

two known components of drusen, and results suggest that both induce proinflammatory 

responses, including IFN-γ signaling.
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Figure 2. 
Molecular network generated by Ingenuity Pathway Analysis (IPA) of highly significant 

gene changes in human RPE cells after in vitro stimulation with AGE (10 μg/mL). Colored 

symbols represent genes that were significantly highly upregulated (red) with decreasing 

relative levels indicated by lighter shades (pink and light pink) or downregulated (green) in 

our data set [11]. The white entries are molecules from the Ingenuity database, inserted to 

connect all relevant molecules in a single network. Solid lines indicate known direct physical 

relationships between molecules, while dashed lines indicate known indirect functional 

relationships. Note the chemokine, CXCL11, and RSAD2 (viperin) are shown to be highly 

upregulated in this network, and were also associated with drusen in postmortem donor eyes 

[12]. The top two functionalities identified by Ingenuity for this molecular network are 
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“Interferon Signaling,” “Role of Pattern Recognition Receptors in Recognition of Bacteria 

and Viruses”.
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Figure 3. 
The Interferon Signaling Pathway identified by Ingenuity software. This is one of the 

canonical pathways that contain statistically significantly more genes than expected by 

chance in the group of 41-up and 18-down regulated RPE genes in response to AGE 

stimulation in vitro. Red symbols represent the genes from our stimulation study, while the 

white symbols represent genes inserted by Ingenuity to connect relevant molecules into a 

single pathway.
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