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ABSTRACT: Brownian information engines can extract work from thermal fluctuations by
utilizing information. To date, the studies on Brownian information engines consider the system
in a thermal bath; however, many processes in nature occur in a nonequilibrium setting, such as
the suspensions of self-propelled microorganisms or cellular environments called an active bath.
Here, we introduce an archetypal model for a Maxwell-demon type cyclic Brownian information
engine operating in a Gaussian correlated active bath capable of extracting more work than its
thermal counterpart. We obtain a general integral fluctuation theorem for the active engine that
includes additional mutual information gained from the active bath with a unique effective
temperature. This effective description modifies the generalized second law and provides a new
upper bound for the extracted work. Unlike the passive information engine operating in a thermal
bath, the active information engine extracts colossal power that peaks at the finite cycle period.
Our study provides fundamental insights into the design and functioning of synthetic and
biological submicrometer motors in active baths under measurement and feedback control.

I nformation engines, a modern realization of thought
experiments such as Maxwell’s demon1 and the Szilard

engine,2 are stochastic devices capable of extracting mechanical
work from a single heat bath by exploiting the information
acquired from measurements. Recent progress in information
thermodynamics has provided the inevitable upper bound of
the work that can be extracted from an information engine by
generalizing the second law of thermodynamics:3−10

+W F k T IB (1)

where ⟨···⟩ denotes ensemble average. According to eq 1, the
average work extracted from an information engine ⟨−W⟩
operating in a thermal bath of temperature T is bounded by
the associated free energy difference −ΔF and the average
mutual information gain ⟨ΔI⟩ between the system and
feedback controller multiplied by kBT, where kB is the
Boltzmann constant.

Various models of information engines operating in thermal
baths have been theoretically proposed5,6,11−13 and exper-
imentally verified in classical14−24 and quantum25−27 systems.
Whether these models and, in particular, the laws of
information thermodynamics also apply to information engines
operating in athermal baths, such as swimming bacteria and
active colloidal particles28−39 or cellular environments,40−43

remains to be explored.
Brownian particles in such active baths are subject to violent

agitation due to the uncorrelated thermal fluctuations of the
solvent molecules and the correlated fluctuations generated by
the active components. Consequently, they are in a perpetual
nonequilibrium state. Recent studies on nonfeedback-driven
cyclic active heat engines operating between active baths of

different activity (temperature) reveal that the active heat
engines can extract work beyond the limit set by the Carnot
bound.44−48 However, because of the limitations in the existing
experimental techniques, which require a long time to change
the activity of the active bath, the active heat engines realized
in the experiment operate in the quasistatic limit with the cycle
period much longer than the thermal relaxation time.44

Moreover, many physiochemical processes in nature occur
far from equilibrium in the active bath and exchange energy
and information.40,49−51 For example, biological motors are
essentially modeled as information engines that use the
information on the fluctuations to extract energy from the
noisy environment by rectifying random fluctuations.50,52

Although the biological motors inside the living cells operate
in the active environment, prior studies on the information-
driven motors consider the system only in a thermal
environment. Thus, a more feasible physical model for such
processes would be an efficient finite cycle stochastic engine
operating in the active bath of constant activity. Herein, we
introduce an experimentally feasible cyclic information engine
operating in an active bath capable of extracting more work
than the acquired information.
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The active information engine examined herein consists of a
Brownian particle in a harmonic potential well that is subjected
to the periodic measurement and feedback control under the
influence of Gaussian colored noise, which is a typical model
used for active baths.28,35 We examine the performance of the
active information engine as a function of the cycle period,
measurement error, and strength and correlation time of the
active noise. We find that the thermodynamic quantities such
as work, heat, and mutual information of the active engines are
greater than those of the passive engines operating in the
thermal bath. The average extracted work per cycle in the
steady state where ΔF = 0 can exceed the bound in eq 1, but it
is always bounded by the modified generalized second law
⟨−W⟩ ≤ kBTeff ⟨ΔI⟩, where kBTeff is equivalent to the average
effective energy of the particle in the active bath. The modified
second law can also be derived from the generalized integral
fluctuation theorem that we obtain for the cyclic active
information engine as ⟨exp[−(W/kBTeff + ΔI)]⟩ = 1.

One of the key challenges in designing efficient stochastic
engines is maximizing the extracted work and power
simultaneously.50,53 We show that the extracted power of the
active information engine is a maximum for a finite cycle
period nearly equal to the thermal relaxation time of the
particle where the extracted work is also near the maximum.
Depending on the active noise parameters, this power can be
orders of magnitude larger than those of passive information
engines, which exhibit maximum power for ultrafast cycle
periods where the extracted work vanishes.16,19,22 For example,
we find that for a strongly correlated active bath of strength fact
≈ 2 pN and correlation time τc ≈ 25 ms, the peak power is
∼104 kBT/s, which is ∼50 times larger than its passive
counterparts, indicating that the active engines with a finite
cycle period can extract a colossal amount of power from the
active bath. We also confirm our analytical results using
numerical simulations.
Active Bath Model. We consider the one-dimensional motion

of a Brownian particle in a harmonic potential, V(x, λ) = (k/
2)(x − λ)2, where x is the particle position, k the stiffness, and
λ the center of the potential in an active bath of temperature T.
The motion of the particle is described by the overdamped
Langevin equation:

= + +x
t

k x t t
d
d

( ) ( ) ( )th act (2)

The thermal noise ξth(t) follows a Gaussian white noise with
zero mean ⟨ξth(t)⟩ = 0 and no correlation ⟨ξth(t)ξth(t′)⟩ =
2γkBTδ(t − t′), where γ is the dissipation coefficient. The
active noise ξact(t) is characterized by an exponentially
correlated Gaussian noise with a zero mean ⟨ξact(t)⟩ = 0 and
correlation of35

= | |t t f t t( ) ( ) exp( / )act act act
2

c (3)

Here, fact is the strength and τc is the correlation time of the
active noise. In the absence of active noise, the particle is in
thermal equilibrium with a Gaussian distribution of p(x) =
(2πS)−1/2 exp[−(x − λ)2/2S], where S = kBT/k is the
equilibrium variance in the thermal bath. The thermal
relaxation time of a particle in the harmonic potential is τr =
γ/k.

In the presence of active noise, the probability distribution
function (PDF) of the particle position at any time t still
follows a Gaussian distribution but with a variance Sact(t),

which can be calculated by solving eq 2 (see the Supporting
Information and refs 35 and 54):
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where S(0) is the initial variance of the particle position
distribution at t = 0. Considering the long time limit t ≫ τc ,
the active noise correlation decays fully, and the particle
reaches a nonequilibrium steady state. The generalized
equipartition theorem can then be defined in the active bath
as limt→∞(k/2)Sact = (kB/2)(T + Tact),

35 where

= [ + ]T f k/ (1/ 1/ )act act
2

B r c (5)

is the active temperature of the particle owing to the active
noise source in the medium.
Active Information Engine. Each engine cycle of period τ

includes three steps: particle position measurement, instanta-
neous shift of the potential center, and relaxation. Figure 1

shows schematics of the ith engine cycle operating in the active
bath. Here, the information engine measures the particle
position x with respect to the potential center λi−1 as y ≡ x + ε.
The error in the measurement ε ≡ y − x is assumed to follow
the Gaussian distribution p(y|x) = (2πN)−1/2 exp[−(y − x)2/
2N] of variance N. During the feedback step, the trap center is
shifted instantaneously to the measurement outcome λi−1 → λi
= y. In the relative frame of reference, the trap center is fixed at
the origin while the particle is transported instantaneously to
−y.55 In the last step, the particle relaxes in the shifted
potential for time τ before the next cycle begins. The particle
dynamics during the relaxation follows the overdamped
Langevin eq 2. Because the measurement and feedback control
are instantaneous, the cycle period τ is the relaxation period. In
the subsequent (i + 1)th cycle, the particle position is
measured with respect to the shifted potential center λi (the
origin is reset) and the same feedback protocol is repeated.
Because the origin is reset, the particle dynamics in the shifted
potential is independent of all previous measurement.11

Figure 1. Illustration of the ith engine cycle of a Brownian
information engine consisting of a colloidal particle in an optical
trap operating in an active bath of swimming bacteria. The particle is
initially located at x with respect to the optical trap center λi−1. During
the measurement step, the information engine perceives the particle
position x as y = x + ε. The error in the measurement ε follows a
Gaussian white noise of variance N. During the feedback step, the trap
center is shifted instantaneously to λi = y. During the relaxation step,
the particle relaxes in the active bath for a duration τ with the fixed
trap center λi until the next cycle begins.
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After many repetitions of the feedback cycles, the engine
approaches a nonequilibrium steady state. Therefore, in the
relative frame of reference, the PDF of the particle position in
the steady state at the beginning of the relaxation (immediately
after the feedback step) is the same as the error distribution
p(y|x) with variance N. The PDF of the particle position in the
steady state after time τ (at the beginning of the next cycle) is
given by p(x) = (2πS*(τ))−1/2 exp[−x2/2S*(τ)]. The steady-
state variance S*(τ) is obtained by substituting S(0) = N and t
= τ in eq 4.

In the absence of active noise ( fact = 0), S*(τ) reduces to the
steady-state variance of a passive information engine operating
in a thermal bath of temperature T as Sth*(τ) = S + (N −
S)e−2τ/τr.22 For ultrafast active and passive engines where τ →
0, the particle does not have time to relax immediately after
feedback control; hence, the steady-state variance is equivalent
to the variance of the measurement error, S*(τ → 0) ≈ N.
Conversely, the steady-state variance for slower cycle active
engines reduces to S*(τ → ∞) ≈ S + fact2 τr/[γ2(1/τr + 1/τc)],
which is greater than Sth*(τ → ∞) ≈ S of the passive engine.
For a given cycle period τ, the departure of S*(τ) from the
thermal equilibrium variance S can be interpreted in terms of
the effective temperature of the particle in the active bath
under measurement and feedback control:

= *k T kS( ) ( )B eff (6)

Equation 6 is the modified generalized equipartition theorem
for the information engine operating in the active bath. It can
be observed from eqs 4−6 that the effective temperature of the
slower cycle active engines is equal to the effective temperature
of the particle in the active bath, Teff(τ → ∞) ≈ (T + Tact).

Because p(x) and p(y|x) are Gaussian, the PDF of the
measurement outcome p(y) = ∫ p(x) p(y|x) dx is also Gaussian
with variance S*(τ) + N. We can also obtain the conditional
PDF immediately after the measurement p(x|y) using Bayes’
theorem, p(x|y)p(y) = p(y|x)p(x).22,56

Thermodynamics of the Engine. In the overdamped limit, the
kinetic energy of the particle can be ignored, so the change in
total energy of the particle during the shift of the potential
center is given by the change in potential energy ΔV(x).
Therefore, the work performed on the particle during each
shifting of the potential center is equal to the change in its
potential energy plus the heat dissipated into the bath,
following the thermodynamic first law.22,57 However, because
the potential is shifted instantaneously after the measurement,
the particle has no time to move and dissipate energy.
Therefore, the work done on the particle during the feedback
step is equal to the change in potential energy W ≡ ΔV = (1/
2)k[(x − y)2 − x2)]. Because the potential center remains fixed
during the relaxation step, no work is done on the particle, and
only heat is dissipated. Hence, the average extracted work by
the particle per cycle in the steady state is given by

= | [ ]
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Equation 7 shows the average extracted work ⟨−W⟩ is always
positive as long as S* > N. The average extracted work per
cycle for a passive engine operating in a thermal bath is given
by ⟨−W⟩th = (k/2)(Sth*(τ) − N).22 Because S*(τ) ≥ Sth*(τ), the
extracted work for the active engine with a finite cycle period

(τ > 0) is always greater than its thermal counterpart, ⟨−W⟩ >
⟨−W⟩th. The maximum amount of extractable work is ⟨−W⟩max
= (kB/2)(T + Tact), which is obtained for the error-free active
engine (N = 0) with a slower cycle period (τ → ∞).
Therefore, the error-free and quasistatic cycle active
information engines are capable of extracting work equal to
the total mean effective energy of the particle in the active
bath. The average heat supplied to the system in the steady
state during the relaxation step is equal to the average extracted
work during the feedback, ⟨Q⟩ = ⟨−W⟩.

We can also find the average mutual information gain for
each measurement between the particle position x and the
measurement outcome y as

= |
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Equation 8 shows that the average mutual information gain by
the active engine is greater than that of the passive engine
operating in a thermal bath, ⟨I⟩ ≥ ⟨I⟩th = (1/2) ln(1 + Sth*(τ)/
N).
Entropy Production. For the information engine operating in

a thermal bath, the total entropy production (normalized by
kB) per cycle in steady state is given by ⟨ΔStot⟩th = ⟨ΔSsys⟩ +
⟨ΔSm⟩ + ⟨ΔI⟩, where ΔSsys is the system entropy change, ΔSm
the entropy change of the medium, and ΔI the net information
gain per cycle.10,24 Equation 6, in a way, suggests the steady-
state dynamics of the active information engine is equivalent to
that of a passive engine operating in a medium with effective
temperature Teff, so the total entropy production ⟨ΔStot⟩ of the
active information engine should have a similar form as
⟨ΔStot⟩th. Because the PDF of the particle position in the
steady state at the beginning of the measurement p(x, 0) and at
the end of relaxation p(x, τ) are the same, there is no change in
the average system entropy during each cycle, ⟨ΔSsys⟩ ≡
⟨−ln p(x, τ) + ln p(x, 0)⟩ = 0. In addition, resetting the trap
center erases the mutual information between x and y, thus
⟨ΔI⟩ = ⟨I⟩. The entropy change of the medium can be
estimated as the average heat dissipation per cycle in the steady
state divided by the effective temperature, ⟨ΔSm⟩ ≡ − ⟨Q⟩/
kBTeff = ⟨W⟩/kBTeff. Therefore, using the thermodynamic
second law ⟨ΔStot⟩ = ⟨W⟩/kBTeff + ⟨I⟩ ≥ 0, we obtain the
bound for the average extracted work of the cyclic information
engine in the active bath:

W k T IB eff (9)

Integral Fluctuation Theorem. We can also modify the
generalized integral fluctuation theorem,6 ⟨e−(W−ΔF)/kBT − ΔI)⟩
= 1, for the cyclic information engine operating in an active
bath, where ΔF = 0, as (see the Supporting Information)

= | =+ +x y p y x p xe d d ( ) ( )e 1W k T I W k T I( / ) ( / )B eff B eff

(10)

Note that applying the Jansen inequality to eq 10 yields the
modified generalized second law in eq 9, which provides a
general bound for the extracted work.
Numerical results. We validate the analytical results in eqs

7−10 via numerical simulations. To achieve this, we numeri-
cally solve eq 2 for the cyclic information engine using the
Euler method with a time step of Δt = 50 μs and obtain the
distributions for the particle position x and the measurement
outcome y. The input parameters are T = 293 K, γ = 6πηa ≈
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18.8 nNm−1s, and S = (20 nm)2. The stiffness of the harmonic
potential is then k ≡ kBT/S ≈ 10 pN/μm, and the thermal
relaxation time of the particle is τr = γ/k ≈ 1.88 ms. We study
the performance of the information engine as a function of fact
and τc for a fixed distribution of the measurement error N/S =
0.1. In addition, we propose that an active information engine
with these parameters can be realized in an experiment using
the active optical feedback trap technique.22,58

Figure 2a shows a plot of the average extracted work ⟨−W/
kBT⟩ as a function of the rescaled cycle period τ/τr for a fixed

value of τc ≫ τr and various values of fact. Here, ⟨−W/kBT⟩ is
obtained by averaging −W/kBT = −(k/2kBT)[(x − y)2 − x2]
over more than 3.3 × 106 engine cycles. The numerical results
(solid circles) agree well with the theoretical predictions of eq
7 (solid curves). We find that, for a given value of fact, the
extracted work increases with the cycle period and saturates
when τ ≳ 5τr. For direct comparison, we also plot ⟨−W/kBT⟩
for the passive engine operating in a thermal bath of
temperature T (see the black data in Figure 2a). The extracted
work for the active engine is always greater than that for the
passive engine. The extracted work increases with fact, and
when fact ≫ f th, where f th = k TkB ≈ 0.2 pN is the thermal
strength of the particle in the harmonic potential, the active
engine can extract enormous work from the correlated active
bath by exploiting the information about the microstates of the
system.

Figure 2b shows a plot of the average extracted power P ≡
⟨−W/kBT⟩/τ. For the passive information engines, P is
maximum for ultrafast engines with a vanishing cycle period

τ → 0 (see the black data in Figure 2b), for which the extracted
work vanishes ⟨−W/kBT⟩ → 0. The extracted power P for
ultrafast active information engines is equal to that of ultrafast
passive engines. However, P for the finite cycle (τ > 0) active
information engine is always greater than its passive counter-
part. Interestingly, for fact > f th (see the olive green, burgundy,
and dark yellow data in Figure 2b), P for the active information
engine increases with τ and reaches a maximum when the cycle
period is almost equal to the thermal relaxation time τ ≈ τr.

The peak power observed at the finite cycle period (τ ≈ τr)
is mainly due to the correlation time of the active noise (see
Figures 2c and S4 and eqs S9−S14). For τc ≪ τr, the active
noise is equivalent to the Gaussian white noise. Here, P is a
maximum for ultrafast engines (τ → 0) irrespective of the
magnitude of fact (Figures 2c and S4a). Also, for fact ≲ f th,
thermal noise is dominant and P still exhibits maximum for
ultrafast engines regardless of τc (Figure S4b,c). We find that P
peaks at the finite cycle period only when fact ≳ f th and τc ≳ τr.
The peak position shifts toward the higher values of τ and
saturates to τ ≈ 1.26τr when fact ≫ f th and τc ≫ τr (Figure
S4c). Figure 2d shows the dependence of the extracted power
on the active noise parameters (τc and fact) when the cycle
period is equal to the thermal relaxation time of the particle τ =
τr. In the white Gaussian regime of the active noise, τc ≪ τr
(olive green curve), the extracted power of the active engine is
similar to its passive counterpart. The extracted power
increases with increase in τc and fact, and for a given fact > 0,
it increases with τc and saturates when τc ≳ 5τr. Therefore, the
finite-cycle active information engine can extract colossal
power from the strongly correlated active bath with τc ≳ 5τr
and fact ≫ f th.

Figure 3 shows the average mutual information ⟨I⟩ between
x and y as a function of τ/τr under similar conditions as in

Figure 2a (τc ≫ τr and varied fact). Here, ⟨I⟩ is obtained by
averaging ln[p(y|x)/p(y)]. The numerical results (solid circles)
agree well with the theoretical predictions of eq 8 (solid
curves). We find that ⟨I⟩ increases with τ and saturates for
slower engines τ ≫ τr. The saturated value of ⟨I⟩ is greater
than that of the passive engine. In addition, ⟨I⟩ increases with
the strength of the active noise.

Next, we study the performance of the active engine as a
function of τc for different values of fact. The extracted work ⟨−
W/kBT⟩ and mutual information ⟨I⟩ increase with τc and
saturate when τc ≫ τr. For passive engines, the extracted work
is always bounded by the mutual information, ⟨−W/kBT⟩ ≤
⟨I⟩, following the generalized second law in eq 1. For active

Figure 2. (a) Average extracted work per cycle ⟨−W/kBT⟩ and (b)
average extracted power P ≡ ⟨−W/kBT⟩/τ of the information engine
as a function of the rescaled cycle period τ/τr and under a fixed
measurement error of N/S = 0.1 in a thermal bath (black), as well as
in an active bath of fixed correlation time τc = 25 ms and noise
strength fact ≈ 0.2 pN (blue), 0.5 pN (olive green), 0.7 pN
(burgundy), and 0.9 pN (dark yellow). The solid curves represent the
theoretical plots of eq 7 in panel a and eq 7 divided by τ in panel b.
(c) Theoretical plot of P vs τ/τr for active noise of fixed strength fact ≈
1 pN and rescaled correlation time τc/τr = 0.001 (black dotted), 0.01
(burgundy solid), 0.1 (blue dashed), 1 (green dash−dotted), and 10
(orange dash−dot−dotted). (d) Theoretical plot of P vs fact evaluated
at τ/τr = 1 for τc/τr = 0.0005 (olive green dash−dot−dotted) 0.05
(purple dash−dotted), 0.5 (blue dashed), 5 (gray dotted), and 13
(orange solid).

Figure 3. Average mutual information ⟨I⟩ per cycle vs τ/τr under
conditions similar to those of Figure 2a. The solid curves are the
theoretical plots of eq 8.
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engines, this is true only for relatively smaller active noise
strengths, and when fact ≫ f th, the saturated value of ⟨−W/
kBT⟩ can exceed ⟨I⟩ (see the olive green data in Figures 4a and
S2). However, it is shown that ⟨−W⟩ is always bounded by
kBTeff⟨I⟩. To further examine this phenomenon, we measure
the total entropy production per cycle ⟨ΔStot⟩ = ⟨W⟩/kBTeff +
⟨I⟩ as a function of τc, as shown in Figure 4b. ⟨ΔStot⟩ increases
with τc and saturates when τc ≫ τr. Moreover, we find that
⟨ΔStot⟩ > 0, thereby validating the modified generalized second
law in eq 9 (Figures 4b and S3). Finally, we test the integral
fluctuation theorem in eq 10. To achieve this, we evaluate
⟨e−(W/kBTeff + I)⟩ as a function of fact for τc ≫ τr and find it to be
equal to unity irrespective of the cycle period (Figure 4c).

In conclusion, we introduced an exactly solvable model for a
Maxwell-demon type cyclic information engine operating in a
Gaussian correlated active bath. We found that the active
engine can extract maximum work and power simultaneously;
the extracted power peaks at the finite cycle period where the
extracted work becomes nearly saturated. In particular, we
showed that the finite cycle active engine is capable of
extracting colossal power from the strongly correlated active
bath by exploiting positional information concerning the state
of the system. We derived the total entropy production for the
cyclic active information engine and showed how the
generalized integral fluctuation theorem and the generalized
second law should be modified. This study provides
fundamental insights into manipulating energy and information
in nonequilibrium systems under fluctuating and correlated
environments.
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