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Vestibular signals play an essential role in oculomotor and static and dynamic posturomotor
functions. Increasing attention is now focusing on their impact on spatial and non-spatial
cognitive functions. Movements of the head in space evoke vestibular signals that make
important contributions during the development of brain representations of body parts
relative to one another as well as representations of body orientation and position within
the environment. A central nervous system pathway relays signals from the vestibular
nuclei to the hippocampal system where this input is indispensable for neuronal responses
selective for the position and orientation of the head in space. One aspect of the
hippocampal systems’ processing to create episodic and contextual memories is its role in
spatial orientation and navigation behaviors that require processing of relations between
background cues.These are also impaired in adult patients with vestibular deficits. However
little is known about the impact of vestibular loss on cognitive development in children.
This is investigated here with a particular emphasis upon the hypothetical mechanisms and
potential impact of vestibular loss at critical ages on the development of respective spatial
and non-spatial cognitive processes and their brain substrates.
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INTRODUCTION
How does loss of vestibular function at various ages of child-
hood impact on the development of complex spatial behaviors
and cognition? To respond to this, it is necessary to chart the
ontogeny of these behaviors and of the brain structures impli-
cated in their expression. Bilateral loss of vestibular function at
or close to birth results in motor developmental delays (Rine
et al., 2000; Whitney et al., 2009; Wiener-Vacher et al., 2012b).
Although vestibular loss can be compensated with a return to
normal postural and oculomotor functions, observations of such
children throughout childhood reveal that many of those with
complete vestibular loss exhibit learning disabilities and poorly
adapted strategies for overcoming their sensory deficit (Franco
and Panhoca, 2008). For example, the gaze and fixation prob-
lems associated with vestibular dysfunction can lead to reading
problems requiring specific therapy (Braswell and Rine, 2006).
Development of diverse cognitive functions could be impaired
in vestibular-deficient children through several possible mech-
anisms. For example, vestibular deficits can impair detecting
and distinguishing one’s own movements from other movements
in the environment through both the visual and proprioceptive
systems.

It has also been hypothesized, similar to the “critical
periods” observed for visual system development, that other
cognitive functions also have limited developmental windows
when their underlying brain structures establish long-lasting
connectivity with repercussions for life. During movements,

sensorimotor loops transmit conflicting or inaccurate information
in vestibular-impaired patients and this could lead to faulty wiring
and deficits in cognitive function. This chain of events can be con-
ceptualized in a framework where high level brain representations
are built up from sensorimotor loop activity by intermediate rep-
resentations of emulated or imagined actions in the real world and
their anticipated outcomes.

Vestibular patients have difficulties in constructing and using
several types of brain representations of space. Adults with bilateral
vestibular lesions have hippocampal atrophy and suffer spatial and
non-spatial cognitive impairments (Schautzer et al., 2003; Brandt
et al., 2005). Do critical periods exist during development where
vestibular signals are required to establish normal hippocampal
circuitry permitting spatial navigation and other functions? To
address this issue, theoretical background will first be provided on
the forms of spatial navigation, noting how they are supported by
the diverse types of vestibular information. Next we will discuss the
hippocampal system, its spatial representations, its relations with
the vestibular system and its development, followed by a review of
developmental studies of performance in specially designed spatial
orientation tasks. The final section will tie this all together, leading
to specific predictions of the impact of vestibular damage on spatial
cognition at respective ages corresponding to milestones in brain
and cognitive development. This will be considered in terms of
early identification of the potential cognitive deficits deriving from
vestibular disorders, thus permitting better adapted therapy and
training programs.
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Vestibular inputs provide several types of information which
are respectively engaged for diverse corresponding sensorimotor
and cognitive processes (Potegal, 1982; Wiener and Berthoz, 1993;
Borel et al., 2008). The three pairs of semicircular canals and the
otolith organs provide complementary information about several
types of rotational and translational head movements involving
accelerations and, importantly, signal the direction of gravitational
force. The latter is fundamental to terrestrial life from birth since
postural adjustments and active movements invariably must take
gravity into account. The brain builds representations of verticality
based upon vestibular, somatosensory proprioceptive, and visual
information, constructing a “geocentric” reference frame (Borel
et al., 2008). Vestibular patients are thus handicapped in acquir-
ing information during active displacements in the environment
since sensory frames of reference (e.g., visual or proprioceptive;
Lacour et al., 1997; Isableu et al., 2010) must be established with-
out vestibular information. Furthermore, gravitational and other
vestibular information can be instrumental in timely acquisition
of fundamental spatial relationships of up vs. down, left vs. right,
front vs. back, etc. (Wiener-Vacher et al., 2012a). Infants first learn
these spatial relations with reference to their own body. Under-
standing spatial relations between the body parts is difficult for
vestibularly impaired infants, perhaps in part because propriocep-
tive information about gravity is not reinforced by otolithic gravity
sensation. This would then have a negative impact on understand-
ing other spatial relationships such as over/under, inside/outside,
within/without, interposition, etc. These patients would then
have difficulty applying these concepts for establishing coordinate
systems for representing the relative positions and orientations
between environmental features and their own relative position
and orientation to all of this. Furthermore, if concepts like “close,
distant, superior, inferior, etc.” are poorly understood, the child
could also have difficulty extending them to arithmetic and geom-
etry as well as to other non-spatial domains where sets and groups
are compared (e.g., syntax, biology, history).

The vestibular system also makes a vital contribution in helping
to distinguish visually perceived self-movements from movements
of objects in the environment. Vestibular inputs help to reconcile
diverse and conflicting signals including vision, proprioception
(and other somatic sensation) and internally generated motor
commands. For example, optic flow signals are generated when
the head moves slowly at a constant velocity, but they also occur
when the head is immobile by viewing clouds drifting across the
sky, movement of the environment as seen from a stroller or a car
window, by points of light projected by a rotating disco mirror
ball, by movements of crowds, while seated on an immobile train
when the train on the next track pulls away, etc. Difficulties in
reconciling self-movements from non-self-movements as well as
in selecting appropriate vertical and horizontal references can thus
lead to problems in postural and motor coordination, fine motor
control, and visual processing. Vestibular patients depend more
on vision and proprioception for determining the earth vertical
orientation and if an object taken to be a stable reference point
moves, this can lead to postural instability and disorientation.

Signals related to rotational and linear accelerations including
gravity can help stabilize and inform several types of movements.
Each of these is associated with cognitive processes that can lead to

distinctive types of problems in cases of vestibular impairments.
These movement types include:

(a) gaze stabilization during passive and active head and body
movements,

(b) maintaining equilibrium: stable head on neck and body pos-
ture during immobility and movements, both passive and
active,

(c) relative movements among body parts (head on neck, point-
ing, touching parts of head and body),

(d) locomotion,
(e) interaction with the environment (pushing, reaching, catch-

ing, ducking/avoidance, etc.).

Impairment or late development of these functions would
also deprive the patient of the sensorimotor feedback informa-
tion generated by these movements. For example, infants without
otolith function learn to walk later than controls (Wiener-Vacher
et al., 2012b) and fall more frequently. This developmental deficit
means that they do not receive timely and coordinated visual and
proprioceptive feedback associated with stable walking – informa-
tion that would be vital for building spatial representations. An
infant with a vestibular deficit, who typically walks very cautiously
and attentively, seeking mechanical support and maintaining a
rigid neck, is not able to learn as much about spatial relation-
ships in the environment, and thus will have less opportunity to
build internal representations of space. For example, distances are
often calibrated in numbers of paces, but this is not feasible for
these patients. One theoretical framework of how cognitive rep-
resentations emerge in the brain contends that sensorimotor loop
activity is internally simulated and re-represented in the absence
of the relevant sensory inputs and movement. This would lead to
anticipatory processes and the construction of yet higher level rep-
resentations. Since vestibular dysfunction would impair the many
sensorimotor processes described in the previous paragraphs, seri-
ous consequences can be expected in building representations and
cognitive processing in the corresponding functional domains.

Before reviewing the literature relevant to the question of the
developmental consequences of vestibular impairments, it is nec-
essary to re-emphasize that the semicircular canals and otolith
organs respectively provide fundamentally different information.
In particular, only the otoliths are specialized for detecting the
direction of gravity force crucial for establishing vertical ori-
entation and thus defining spatial reference frames in concert
with the axes of the rotational selectivity of the semicircu-
lar canals. In the vast majority of the literature, the patients
groups described as “vestibular impaired” were tested for semi-
circular canal function only. Thus it is possible that residual
otolith organ function remained in some reportedly vestibular-
deficient patients – and that some reportedly normal controls
had functional canals but no otolithic responses. Even for exper-
imental subjects who have had surgical labyrinthectomies or
neurectomies, it is advisable to perform comprehensive vestibu-
lar testing to verify that there is no residual function. A
second issue is that patients show a great deal of variabil-
ity in their degree of compensation due to unequal access to
adapted training or therapeutic life experiences. It is possible
that individuals may differ in central compensation processes
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– evidence has been found for increases in volume in bilateral
connections between the vestibular nuclei, in proprioceptive
processing area of right gracile nucleus and the visual motion
processing area MT/V5 (zu Eulenburg et al., 2010). Further-
more some may simply learn more effectively to substitute other
cues such as visual field flow, various types of proprioceptive
cues, visceral enteroception, visual landmark cues, and vari-
ous vertical/horizontal cues. These caveats should be recalled
in interpreting results from the literature and in planning new
experiments.

TYPES OF NAVIGATION PROCESSING
Orienting cues can be considered in two categories by virtue of
whether they transmit information about self-motion or about
environmental characteristics. Self-motion cues come from the
vestibular system, enteroceptors (located in the abdomen), motor
efferent collaterals related to locomotion and orienting move-
ments, proprioception countering gravitational forces and also
transmitting traction or slippage of paws or feet against the
substrate during locomotion. Although the vestibular system is
only sensitive to rotational or linear acceleration of the head,
the brain mathematically integrates these inputs over time first
to provide velocity signals, and then again to detect the angle
rotated and the linear distance covered. These integrations are
subject to drift errors and are generally not reliable for dis-
placements lasting longer than about 10 s, requiring regular
corrective updates, for example, by consulting with visual cues.
Studies of animals passively displaced then required to return
to their nest show that rotations are taken in account more
than translations (Etienne et al., 1988). Another important self-
motion signal comes from optic field flow. This is the coherent
movement of the image of the entire visual field relative to the
eyes during head movements and it indicates the velocity of
the head in space. While optic flow derives from visual detec-
tion of environmental cues, it cannot be accurately described
as “allocentric.” In vestibular rehabilitation therapy, patients
learn to substitute the various visual and proprioceptive cues
described above. Finally, information about the environmental
layout comes chiefly from visual perceptions of objects, audition,
and in certain species, magnetic sense, echolocation, and other
exotic senses.

Diverse types of navigation strategies engage distinct cognitive
processes (Trullier et al., 1997). Firstly, in dead reckoning, or path
integration, the initial starting point is noted. Then while travel-
ing, the velocity is integrated over time to compute the distances
covered. Angular heading during these displacements is taken into
account by vectorial addition yielding the total displacement as a
result (and reversing this gives the return vector). Principal sources
of information are the self-motion cues described above, including
the vestibular sense. Correct estimation of the duration of time is
clearly crucial for this integration (Israël et al., 2004).

The body alignment and target approaching navigation strategy,
also referred to as beacon homing, piloting, or approach/avoidance,
involves moving toward (or away from) a cue or object in the
environment. In the guidance strategy (as defined by O’Keefe
and Nadel, 1978), the animal maintains a certain egocentric
relationship with respect to a particular landmark or object. A

vestibular patient with oscillopsia (continual oscillation of the
visual field) might be expected to have difficulty with this.

The next categories of navigation strategy are more advanced
since they can be used to reach a known but not currently visible
goal and involve identification of and orienting relative to places.
A place is defined within a large-scale environment as a set of con-
tiguous locations that are equivalent with regard to action selection
(Trullier et al., 1997). A place can also be defined as the set of loca-
tions from which a set of landmarks or a landmark configuration
is perceived as identical or very similar. Thus implicit to this is a
capacity to make generalizations. The term place navigation refers
here to navigation toward a specific location based on its spatial
relationship to a constellation of exteroceptive cues, particularly
distant background visual cues. Other strategies such as piloting or
vector-based navigation (Pearce et al., 1998) can be distinguished
from place navigation in that no single cue is sufficient for place
navigation.

Returning to the types of navigation processes, in place
recognition-triggered responses, the origin and intermediate places
along the route each have an associated angle of departure and
distance to go to the next place. Topological navigation involves
three steps: (a) recognizing the place where one is currently sit-
uated; (b) orienting within this place; and (c) selecting in which
direction to move so as to reach its current goal. It is not necessary
to plan a sequence of subsequent movements, but only to select
the very next action. Metric navigation implies a veridical internal
map that is consulted for making the most efficient changes in
position.

VESTIBULAR DYSFUNCTION AND DEFICITS IN COGNITIVE
FUNCTIONS INCLUDING NAVIGATION
Vision is a primary sensory modality in humans for detecting
size, shape, distance, and layout information. Static and dynamic
visual acuities are impaired by vestibular deficits. The ability to
maintain a stable visual image while the head is moving, such as
during walking, is dependent upon visual and vestibular inputs
triggering eye movements opposing and compensating for head
movements. When vestibular function is normal, visual acuity is
similar whether the head is moving or stationary. The difference in
static and dynamic visual acuity (DVA) can be quantified using the
DVA test (Schubert et al., 2006). Adults and children with vestibu-
lar deficits have impaired DVA (Rine and Braswell, 2003; Herdman
et al., 2007). Vestibular deficits are characterized by an absence of
the vestibulo-ocular response which maintains gaze fixed on a tar-
get when the head is passively moved suddenly in the direction of
sensitivity of a vestibular receptor end organ. This is the basis of
the commonly used clinical head impulse test (HIT) for detecting
vestibular deficits (Halmagyi et al., 1994). Subjects with complete
vestibular loss complain of oscillopsia during movements – this
makes them dizzy and disoriented when they walk, run, drive,
and read. Indeed, Braswell and Rine (2006) reported that children
with vestibular deficits have poor DVA results and this is associ-
ated with significant reduction in reading acuity. Smooth pursuit
oculomotor activity can compensate for head rotations up to a
velocity of 100◦/s. However, above this speed only the vestibular
system can detect and compensate for movements, and this range
of sensitivity is needed for many activities of daily life. Indeed,
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walking induces much low amplitude but high acceleration and
velocity vibration and shaking of the head (as apparent in a movie
taken from a camera carried on one’s shoulder) and the vestibular
system permits this to be transformed to a smooth continuum.

In addition to problems related to vision, vestibular deficits can
lead directly to difficulties in estimating angular and distance dis-
placement, presumably through path integration. Beritoff (1965)
observed navigation deficits in children and in experimental ani-
mals with no detectable semicircular canal function. In cases where
the animals were familiar with a trajectory to a reward site, in
the absence of vision, they no longer were able to go directly to
the learned reward site. When vision was restored, they resumed
taking the direct path. Children aged 10–12 years old were blind-
folded, led or carried along a trajectory then along the return
path. They were able to retrace the steps, while blindfolded chil-
dren with non-functioning labyrinths could not, even after several
trials. This is one of the rare studies examining cognitive deficits
in vestibular-impaired children; the following text examines the
literature concerning adults. These studies show that vestibular
patients have difficulties in detecting and estimating body dis-
placements in the dark. During goal-directed locomotion, these
patients make errors in trajectory (e.g., Borel et al., 2004; Cohen
and Sangi-Haghpeykar, 2011). Another test where they have diffi-
culty is reversing the trajectory along a triangular path or finding
a shortcut (Péruch et al., 1999, 2005; Glasauer et al., 2002; Guidetti
et al., 2007; for review, see Israël and Warren, 2005).

In experiments evaluating dead reckoning, rats were required
to make return trips to a hidden start location under dark
conditions (Wallace and Whishaw, 2003). The peak velocity
was observed at the point midway of this return trajectory
and the direction of this trajectory was highly accurate, sug-
gesting the computation of both the distance and direction
to return to a target point of origin, consistent with dead
reckoning. In similar experiments this team also demonstrated
that dead reckoning is impaired after chemical labyrinthectomy
(Wallace et al., 2002).

A great deal of contemporary understanding of place naviga-
tion and its neurobiological bases has come from research using
the Morris water maze task (Morris, 1981, 1984; Sutherland and
Dyck, 1984). In this task, rodents (typically rats) learn to navigate
to an escape platform submerged in a circular pool of cool, opaque
water. Because the circular pool provides only information about
radial distance from the border, animals learn to navigate to the
escape platform by way of reference to a constellation of visual
cues outside the pool.

Over the past 15 years, several laboratories have utilized com-
puterized, virtual, navigation tasks based on the Morris water
task to measure place navigation in humans (Astur et al., 1998;
Jacobs et al., 1998; Hamilton and Sutherland, 1999; Doeller
and Burgess, 2008; Doeller et al., 2008; Mueller et al., 2008;
Hamilton et al., 2009). The participants view an environment
from a first-person perspective and “swim” in the virtual space
using a keyboard or joystick. As in the Morris water maze, the
environment contains distal visual cues and the subject must nav-
igate to a hidden goal. These tasks have been shown to both engage
(Cornwell et al., 2008; Doeller and Burgess, 2008) and require
an intact hippocampus (Astur et al., 2002; Driscoll et al., 2003;

Hanlon et al., 2006). The computerized virtual Morris water task
(VMWT) has been used to characterize spatial memory deficits
in patients with developmental disturbances (e.g., fetal alcohol
syndrome, Hamilton et al., 2003) and psychiatric disorders (e.g.,
schizophrenia, Hanlon et al., 2006). Hartley et al. (2003) found
fMRI activation in the hippocampus of human subjects during
a virtual wayfinding task. Human subjects performing a virtual
task requiring them to point to the origin of a trajectory along
two sides of a triangular path also show increased activation of
the hippocampus (Wolbers et al., 2007). Caloric vestibular stim-
ulation activates the hippocampus in humans (Vitte et al., 1996).
Although the head is fixed and thus there are no vestibular sig-
nals that are generated or required for this task, the relationship
between vestibular function and performance has been exam-
ined in several studies (Schautzer et al., 2003; Brandt et al., 2005;
Hufner et al., 2007). Patients with bilateral vestibular failure are
impaired at finding the hidden platform, but perform as well as
matched controls in navigating to the platform when it is visible.
Navigation deficits were far more subtle in unilateral vestibular-
deficient patients, and only appeared in patients with right, but
not left, vestibular failure (Hufner et al., 2007). Structural analyses
via magnetic resonance imaging revealed that hippocampal vol-
umes were significantly decreased in bilateral vestibular patients
(Brandt et al., 2005), whereas major volumetric reductions in
unilateral patients were limited to gray matter reductions in
the cerebellum, temporal neocortex, thalamus, and area MT/V5
(Hufner et al., 2009).

Vestibular patients are also impaired in object-based mental
transformations, another example of a cognitive task performed
with the head immobile and thus in the absence of self-movement
cues that would engage the vestibular system (Péruch et al., 2011)
The experimental groups were Menière’s patients after unilateral
vestibular neurectomy, patients with bilateral vestibular damage
and normals. One task required mental rotation of 3D-objects
and two other tasks involved mental scanning and tested the
ability to construct and manipulate mental images with metric
properties. The authors reported variations in performance corre-
sponding to the level of vestibular loss. Bilateral vestibular patients
often had the worst results. The Menière’s patients showed greater
deficits early after neurectomy and then gradually compensated.
This is of particular interest because it demonstrates a role for
vestibular signals in processing metric properties of mental rep-
resentations, supporting the hypothesis that high level processing
is in play.

It is fairly common for vestibular patients to have difficulty
detecting and estimating the magnitude of passive body displace-
ments in the dark. During goal-directed locomotion, these patients
usually make errors in executing the desired trajectory (e.g., Borel
et al., 2004; Brandt et al., 2005; Cohen and Sangi-Haghpeykar,
2011). Spatial disorientation is even stronger during complex tasks
such as reversing the trajectory along a triangular path or finding
a shortcut (Péruch et al., 1999, 2005; Glasauer et al., 2002; Guidetti
et al., 2007). Péruch et al. (1999) found that unilateral vestibular
loss impairs the orientation component (estimation of the angular
displacements) of navigation. The distance component (estima-
tion of the linear displacements) of the spatial representation is
also impaired, although to a lesser extent.
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Self-motion or optic field flow in the opposite direc-
tion can elicit comparable perceptual, motor, and neuro-
physiological responses. Convergence of visual field flow and
vestibular inputs have been observed in many structures includ-
ing the vestibular nuclei (Xerri et al., 1988), vestibular area 2v
(Büttner and Buettner, 1978) and the parieto-insular vestibular
cortex (Grüsser et al., 1990).

Hanes and McCollum (2006) identified cognitive deficits asso-
ciated with vestibular dysfunction including short-term memory,
concentration, arithmetic, and reading. For example, patients with
central vestibular lesions required to count backward by twos make
more errors and are slower than controls. This was interpreted
as resulting from “spatialization” of the task, perhaps in terms of
number line representation. Performance impairments can be cat-
egorized as direct, that is, tasks that implicitly or explicitly require
using information about the 3D structure of space and movements
(such as navigation and spatial memory). This also includes the use
of spatial strategies in non-spatial domains. Of particular interest
here is that a common strategy of skilled mnemonists is to employ
mental imagery of places and signs to situate information to be
memorized. It would then follow that spatial cognitive deficits
could limit the capacities of patients for this type of memorization
skill.

Indirect effects of vestibular deficits on cognition derive from
the greater demand on attentional and cognitive processing
resources at the expense of other ongoing activities (Smith et al.,
2005b). For example, the lack of vestibular information requires
the sometimes effortful substitution of visual, proprioceptive, and
other signals in order to maintain balance, posture, and gaze.
Visuospatial processing is also more difficult. This reduces atten-
tion, limits concentration and could tie up mental processing
resources, impairing other activities such as multi-tasking, pro-
cessing sequences, and attention-shifting. Patients could thus have
difficulty organizing multiple sources of information, in particu-
lar integrating new information while retaining previous items
in memory – this could impair problem solving and conflict res-
olution. All of these are important for spatial orientation and
navigation. For example, routes are often schematized in terms of
sequences of intermediate goals and the associated trajectories to
be followed to the next intermediate goal.

Note also that vestibular deficits often report sensations such
as vertigo, disorientation, discomfort with repeated peripheral
patterns during movement, etc. These then are associated with
psychiatric problems such as agoraphobia (such environments
provide troubling cue conflicts), excessive fatigue, depression, and
anxiety. Overall, these all can lead to indirect negative impacts on
measures of spatial and non-spatial cognitive processing.

PROCESSING OF VESTIBULAR SIGNALS FOR SPATIAL
REPRESENTATIONS IN THE HIPPOCAMPAL SYSTEM
Head direction (HD) cells fire when the head of the rat (or mouse,
or chinchilla) is oriented in a particular direction in the yaw
plane, regardless of its position in the environment (Ranck, 1986;
Taube et al., 1990; Muir et al., 2009; Yoder and Taube, 2009). HD
responses are found in all of the brain areas designated as the Papez
circuit, running from the brainstem to the hippocampus. The sig-
nals are generated in the brainstem lateral mammillary nucleus and

dorsal tegmental nucleus (DTN) of Guddens which receives inputs
from the vestibular nuclei (Bassett and Taube, 2005). Although
the direction responses are anchored by background visual cues
(likely distinguished by motion parallax; Zugaro et al., 2001) and
are influenced by optic flow stimuli (Arleo et al., 2013), they remain
selective for direction in darkness (e.g., Yoder and Taube, 2009).
Stackman and Taube (1997) injected sodium arsanilate in the
vestibular end-organs of rats, and this abolished the directional
responses in the anterodorsal thalamus. Yoder and Taube (2009)
studied HD cells in a mouse strain with nearly complete absence
of otoconia and hence minimal otolith function. HD cells were
observed but signals were more weakly controlled by visual land-
mark cues, and responses degraded over successive trials and were
unstable in darkness.

Principal neurons of the hippocampus discharge selectively
as the rat, mouse, or human occupies a particular position in
its real or virtual environment (O’Keefe and Dostrovsky, 1971;
Ekstrom et al., 2003; Chen et al., 2013). This activity is considered
to participate in an internal representation of the environment
(O’Keefe and Nadel, 1978). Indeed, during immobile pauses
prior to locomotion, these cells fire in rapid sequences corre-
sponding to the imminent trajectory the rat is about to take
(Pfeiffer and Foster, 2013). Vestibular lesions suppress these place
responses (Stackman et al., 2002; Russell et al., 2003a) and cause
other changes in hippocampal physiology (Smith et al., 2005a;
Russell et al., 2006). Furthermore, rats with hippocampal lesions
are impaired in orienting to a goal after being passively rotated
(Mathews et al., 1989) and in spatial learning (Russell et al., 2003b).

Place learning in the Morris water task critically depends upon
intact circuitry upstream of the vestibular organs leading to hip-
pocampus (and involved in the generation of HD cell signals;
Vann et al., 2003; Clark and Taube, 2009; Clark et al., 2013) as
well as the hippocampus itself and related structures (Morris
et al., 1982; Sutherland et al., 1982). These patterns of damage
can leave other forms of navigation, such as cued navigation,
unimpaired.

Comparisons of place responses in hippocampal neurons of
rats before and after rotation of the experimental arena in
darkness revealed that a subset of neurons maintained their fir-
ing fields at the same position in absolute space, rather than
rotating with the apparatus (Wiener et al., 1995). This was inter-
preted to indicate that the brain had detected the angle of
rotation, perhaps via the horizontal semicircular canals, then
compensated for it by stabilizing the hippocampal position rep-
resentation. Since proprioceptive cues may have also played a
role in this, a new experiment was devised where the head
of the rat was immobilized, its body suspended in a ham-
mock (with the leg protruding through holes), and passively
displaced on a mobile robot (Gavrilov et al., 1998). Hippocam-
pal place responses were recorded under light conditions, and
they persisted in complete darkness. This provided further, and
more direct support for vestibular updating of hippocampal
spatial representations. In this same experimental protocol, pas-
sive rotations in the dark synchronized hippocampal local field
potentials to rhythmically oscillate at 8 Hz, the “theta” rhythm,
which is associated with locomotion and active exploration
(Gavrilov et al., 1996).
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During locomotion in an open field, hippocampal responses
in a given place are the same regardless of the orientation of the
head, and hence the view perceived by the rat, which is a form of
abstraction (Wiener, 1996). This suggests that there is a memory
process associating the successive multiple views to produce the
same cellular response, presumably reflecting a single coherent
representation. One way for the brain to detect that the head is in a
certain place would be to compute the distances and angular head-
ings of at least two environmental landmarks. This would require
simultaneous storage and comparison of this information, impli-
cating working memory and multi-tasking, processes associated
with the hippocampal–prefrontal cortex pathway. Since vestibular
lesions abolish place cell activity and induce hippocampal atrophy,
perhaps these losses could also impair these processes as well as
affecting memory in spatial and non-spatial domains as observed
after hippocampal lesions.

Grid cells of the entorhinal cortex (situated in the pathway from
the HD system to the hippocampus) discharge as a rat occupies
places that are distributed along the nodes of a hexagonal grid
within its environment (Moser et al., 2008). Thus these neurons
provide a coordinate reference frame for navigation. No study
has yet tested the effects of vestibular lesions on grid cells. How-
ever, computational models of grid cells require head orientation
input – and HD cells are also found in entorhinal cortex. This, and
the additional computational requirement for self-displacement
signals, indicates that vestibular signals would also be required for
grid cell activity.

If vestibular-deficient patients do not have place, HD or
grid responses in their hippocampal system, this would deprive
them of valuable spatial signal processing and representation
capacities. Furthermore, the absence of these signals during devel-
opment could impair the construction of circuits underlying
orientation and navigation behaviors, and perhaps other cog-
nitive functions that these areas contribute to as well. Indeed,
eventual hippocampus mis-wiring in the absence of vestibu-
lar inputs could also have an impact on non-spatial cognitive
processing (Wiener, 1996) by this structure as well and on sig-
naling to downstream structures like prefrontal cortex and ventral
striatum.

DEVELOPMENT OF BRAIN REPRESENTATIONS OF THE
ENVIRONMENT AND ORIENTATION CAPACITIES IN RATS
During the first few weeks of postnatal life the navigational capac-
ities of the rat and other rodents develops rapidly. Rat pups first
venture out of the nest around postnatal days (PD) 10–11 (Bolles
and Woods, 1964) and rapidly increase explorations there around
PD 16–19 (Alberts and Leimbach, 1980). (Rat pups first open their
eyes on PD 15, the same age that they start to walk while bearing
the body weight). These exploratory trips appear to be directed
not only by internal motivational cues and biologically significant
proximal cues (e.g., heat sources) but also to acquire informa-
tion about distal visual cues (Loewen et al., 2005). During this
period the circuitry of the hippocampus and related structures
also undergo significant structural and functional development
(Bachevalier and Beauregard, 1993; Dumas, 2005). It is generally
believed that maturation of the hippocampus is delayed compared
to other brain regions, rendering rats incapable of performing

hippocampal dependent tasks until at least PD 19–25 (Bachevalier
and Beauregard, 1993; Stanton, 2000; Dumas, 2005). A growing
body of data from studies investigating the ability of young rats
to navigate, however, suggests that the neural systems involved in
navigation may be functional even earlier than this. Of particu-
lar interest are studies examining the ontogeny of spatial firing
characteristics of neurons in the hippocampus and related brain
regions implicated in spatial navigation and memory. Langston
et al. (2010) reported that the activity of HD cells in the pre- or
parasubiculum of preweanling rats displayed adult-like properties
at PD 15–16 and the proportion of HD cells was similar to that
of the adult animal. Although hippocampal place cells displayed
spatially selective firing and medial entorhinal grid cells displayed
their characteristic spatially periodic firing shortly thereafter (PD
16–18), the spatial firing patterns of these cells either continued to
become more precise and mature and the proportion of responsive
cells continued to increase toward adult levels over the next 10–17
days (Langston et al., 2010; but see Wills et al., 2010, 2012). Over-
all, these observations suggest a primacy of directional processing
by HD cells, which is followed by the maturation of place and
grid cell signals, respectively (Ainge and Langston, 2012). If hip-
pocampal place cells and the directional tuning observed in some
grid cells depend upon HD cells (Knierim and Hamilton, 2011), it
is perhaps not surprising that HD cells also mature earlier. These
considerations would lead to the expectation that behaviors guided
by orientation signals provided HD cells should emerge earlier in
development than more complicated cognitive functions such as
place navigation (Ainge and Langston, 2012).

Akers et al. (2011) adapted the Morris water task in order to
develop a more sensitive assessment of control of navigation by
distal visual cues. Prior work from this group examined the effects
of translating the pool to another overlapping position in the room
with salient visual cues on the walls (i.e., shifting it within the dis-
tal cue reference frame). The rats were first trained to navigate to
a hidden platform, the pool was displaced in the room, and the
rats could swim either to the same precise location in the room
where the platform was previously located or to navigate toward
the previous location relative to the pool border, respecting its
orientation relative to the room cues (Hamilton et al., 2007, 2008,
2009). The rats chose the latter, suggesting that the distal cues
can be engaged for orientation information while precise spatial
location is based on the local frame of reference (the pool border).
The possible outcomes of the translation test described above were
recently dissociated by Stackman et al. (2012) in the mouse. Fol-
lowing training these authors pharmacologically inactivated either
the anterodorsal thalamus or CA1 subfield of the hippocampus
prior to the translation test. Mice with CA1 inactivation navigated
to the relative location relative to the pool, whereas mice with
thalamic inactivation preferred the location in the room, support-
ing the contention that navigation based on orientation relative to
distal room cues depends on thalamic HD cells.

Hamilton et al. (2007) also trained rats to navigate to a cued
platform (i.e., marked by a conspicuous visual cues) in the same
distal room environment as used in the hidden platform task. After
the rats mastered performance the pool was translated while the
cued platform either remained in the same location relative to the
room cues or the same location relative to the pool border. The rats
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succeeded at the latter, but surprisingly, when the cued platform
was placed in the same precise location relative to the room cues,
but in a different part of the pool, the rats first navigated in the
direction of the platform’s previous position relative to the pool
walls (respecting the orientation of the room) before correcting
course to the cued platform. Thus they initially ignored the cues
co-localized with the platform, and instead relied on the pool bor-
der in relation to the room orientation, suggesting a priority for
this type of navigation strategy at the expense of beacon utilization.
These observations provide further evidence that distal cues can
control orientation independently of processes that would deter-
mine precise spatial localization, and are consistent with previous
work by the same group showing that the initial orientation of
swim trajectories to a cued platform in the water task are con-
trolled by distal room cues, whereas the proximal cue co-localized
with the platform guided subsequent navigation (Hamilton et al.,
2004). Interestingly, this dissociation was hinted at by the fact that
rats tended to engage in head-scanning behavior after navigating a
short distance from the release point. Further manipulations such
as changing room cues or relocating the cued platform revealed
that these head-scanning behaviors marked the transition between
control by distal room cues and control by the proximal cue.

Recently, Clark et al. (2013) demonstrated that lesions of the
DTN (part of the brainstem circuit processing vestibular signals to
generate HD cell activity) dramatically impair the engagement of
distal cues in this Morris water task. Using the cued navigation task
described above these authors demonstrated that rats with DTN
lesions directly to the cued platform regardless of its position in
the room and pool during the translation test. Akers et al. (2011)
also utilized this variant of the task to examine the developmen-
tal trajectory of orientation control by distal cues. Interestingly,
rats at PD 16 showed no significant difference in latencies to the
cued platform whether it was in the same location in the pool or
room, whereas all rats PD 17 or older displayed the adult pattern
of outcomes, first erroneously swimming to the previous posi-
tion relative to the pool walls, as guided by its orientation relative
to the room. Most studies indicate that the emergence of place
navigation in rats begins between PD 20–22 (review: Akers and
Hamilton, 2007) which is generally taken to reflect the matura-
tion of the hippocampus, supported by upstream sensory and
cognitive systems involved in navigation. The observations of
Akers et al. (2011) are consistent with the hypothesis that distal
cues control orientation, but not precise position, very early in
development, at the same time that HD cells are maturing func-
tionally, prior to the appearance of mature place cell and grid cell
responses.

HIPPOCAMPAL DEVELOPMENT IN CHILDREN
Knickmeyer et al. (2008) reported a 13% increase of hippocampal
volume from the ages of 1 to 2 years (but relatively little growth
could be seen after it was normalized for total brain volume).
Giedd et al. (1996) found that right hippocampus growth (nor-
malized with respect to cerebral volume) correlated with age only
in females, and that the left hippocampus did not increase with
age between 4 to 18 years in males, or females. Uematsu et al.
(2012) employed a cubic regression to chart the developmental
trajectories of hippocampal regions. Their data show increases in

hippocampal volume during the first 6–7 years of life, with a peak
at about the age of 10–11. Gogtay et al. (2006) performed a volu-
metric study of MRI scans from humans aged from 4 to 25. They
observed that total hippocampal volume does not change over this
period although there are regional variations. Concerning connec-
tivity, Ábrahám et al. (2010) showed that myelination progresses
differently in hippocampal subregions, reaching adult levels in
fimbria-fornix, stratum lacunosum-moleculare and alveus at 3
years of age, stratum radiatum of CA3 and all of stratum oriens at
8 years, but not the stratum radiatum of CA1, pyramidal cell layer
of all subregions and the hilus. Even at the age of 11, myelinization
was not complete in the hilus. An adult-like pattern of calbindin
immunoreactivity can be observed at 11 years of age.

All of these data show periods when growth is taking place and
is completed, but do not reveal when the networks are functional,
which may occur somewhere within these periods. Even if a par-
ticular network arrives at maturity in the absence of vestibular
inputs, the hippocampus is a highly plastic structure and would
be expected to integrate substitutive inputs easily. However, the
hippocampal atrophy in adult neurectomy patients would suggest
that the absence of vestibular input in childhood would also impair
hippocampal development. This could have different impacts at
the respective ages. The data presented above suggests that differ-
ent types of growth and maturation are occurring in the periods
up to age 2–3, then leading up to 6–8, and then up to the age of 11
where adult-like characteristics appear.

ONTOGENESIS OF SPATIAL NAVIGATION AND ORIENTATION
IN CHILDREN
Several laboratories have examined the development of place nav-
igation and related processes in young children, controlling and
distinguishing from other simpler behaviors such as cued navi-
gation. Lehnung et al. (1998) tested children in a 3.6-m diameter
circular area closed off with curtains. Under dim lighting condi-
tions, points on the floor were marked with lit fiberglass wires.
The child had to first explore the group of points to find those
selected as rewarded sites for that day, and then return and find
them again. Both proximal cues on the floor (teddy bear, etc.) and
wall cues were present. Various controls and experimental condi-
tions were tested. While 5-year-olds employed the proximal cues,
the 10-year-olds were able to use distal or proximal cues for orien-
tation. Seven-year-olds were at a transition point, where half used
only proximal cues, while the other half could use both cue types.

Overman et al. (1996) tested children in large real world envi-
ronments, including a radial arm maze, a “dry Morris water maze”
0.9 m high and 3.6 m in diameter filled with plastic packing chips
and a large 61 m circle in an outdoor playing field. In the radial
arm maze, where each arm was rewarded only once per trial, chil-
dren under 5 years old were impaired in both cued and non-cued
versions when eight arms were used, showing spatial working
memory performance inferior to older children and adults. (With
only four arms open in the maze, these children succeeded at
performing at adult levels however). When confronted with four
forced choice trials, then, after a short delay, they were required to
go to the remaining arms, the children under 5 years old performed
at chance levels, 6- to 10-year-olds performed better, but only 20%
of the latter achieved adult performance in this place learning task.
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In the dry Morris water maze, performance in finding the hidden
“treasure chest” progressively improved among subjects until the
age of 7 years. And only those children above the age of 8 years
could localize the reward on a scale model of the maze. In the field
the subjects were shown a goal location, blindfolded and driven
along a circuitous route inside the circle, then asked to return to
it. Performance improved in children 7 years and above, with 9-
year-olds and older performing as well as adults. This is consistent
with observations that 10-year-old children can resolve large-scale
navigation tasks, but not 3- to 4-year-olds (Acredolo, 1976).

Virtual navigation tasks were developed as analogs of behav-
ioral protocols used with rodents, and it is notable that many
aspects of control of these tasks by spatial and non-spatial cues
are similar across species. In cue competition experiments rats
and humans display similar patterns of responses to removal of
distal visual cues (e.g., Hamilton and Sutherland, 1999; Red-
head and Hamilton, 2009). When the local apparatus is displaced
in the same room after training both animal and human vir-
tual navigation experiments suggest that distal cues control the
directionality of navigation within the local apparatus (i.e., the
pool). This too provides evidence for a fundamental simi-
larity in how distal cues control navigation in the respective
tasks. Thus it has been argued that parallel studies in humans
and non-human animals could provide important information
at multiple levels of analysis about the neurobehavioral rela-
tionships involved in place navigation and the development of
these relationships. Interestingly, there are notable parallels in
the development of spatial navigation abilities in rodents and
humans in the respective tasks. Using a VMWT, Hoesing et al.
(2000) found that children younger than age 7 did not reli-
ably use a place navigation strategy to solve the VMWT but
rather relied on various types of other strategies (e.g., circling
a particular distance from the pool wall until the platform was
encountered, randomly searching the pool). However, the pat-
tern of successful performance by prepubertal children above age
7 (Hoesing et al., 2000) and post-pubertal adolescents (Hamil-
ton et al., 2003) are comparable to that observed in adults
(e.g., Hamilton et al., 2009) in that they learn to execute direct
trajectories from multiple release points and persisted in search-
ing at the target location during a probe trial with no escape
platform.

Newcombe et al. (1998) found that from the age of 22 months,
infants benefit from the use of the relations between distal cues
to find a toy they had seen buried in a sand box. The children’s
gaze at the site was interrupted and they started searching from
a different point on the periphery. Ribordy et al. (2013) studied
children aged from 2 to 5 years searching for rewards beneath an
array of cups distributed in an open field arena 4 m × 4 m sur-
rounded by opaque plastic walls on three sides. At 25–39 months
of age, the infants could locate one rewarded cup out of the four
presented (a simplified version of the task), albeit in the absence
of local cues. However, 18- to 23-month-old infants were inca-
pable of this. Thus both studies concur that near the age of 2 years
capacities emerge for localization relative to distal cue configura-
tions. Ribordy et al. (2013) point out that the age of 2 also marks
the beginning of autobiographical memory as well as when the
hippocampus reaches a certain state of maturity.

In summary, these studies suggest that there are at least two
periods in development when new spatial skills appear. At the
age of 2, infants are capable of rudimentary spatial localization
(Ribordy et al., 2013), while capacity for place navigation emerges
around 6–7 years of age in the Overman et al. (1996) and Hoesing
et al. (2000) studies, and at the age of 11, adult performance
appears. This is remarkably concordant with the three ages which
mark milestones in hippocampal volume increase and myelination
as noted in the previous section. Nevertheless, the interpretation
of the coincidences of crucial ages in these developmental studies
is clouded by the occurrence of other interrelated events at these
ages. For example, at the age of 2, infants have recently gained mas-
tery of independent walking and exploration, and this too might
help elaborate spatial representations and promote hippocampal
development.

Further advances could be made measuring performance in
specific types of navigational processing using virtual environ-
ments such as the VMWT. Manipulations such as the combined
cued navigation and pool translation in the VMWT permit to dis-
tinguish different ways of using distal visual cues for orientation
alone or precise localization – processes that may be differen-
tially affected by loss of vestibular function before or after key
ages. Thus such approaches may prove useful in characterizing the
effects of damage to the vestibular system on subsequent devel-
opment of spatial navigation abilities. Importantly, because tasks
of this type are administered via a computer program and inter-
face experimental conditions can be controlled precisely, and can
also be easily coupled with measures of functional brain activ-
ity (Cornwell et al., 2008), they will likely play an important role
in further advancing our understanding of the behavioral con-
sequences of early vestibular damage and their neurobiological
bases.

CRITICAL PERIODS
Rieser et al. (1986) compared sighted with blind adults who had
lost vision early or late in life and had similar performance in
evaluating perspective from an imaginary new observation point.
When subjects walked without vision to the new point, pointing
performance improved in the sighted and late-blinded subjects
but not those of the early-blinded subjects. This suggests that
early absence of vision leads to different types of representations
of space. While there is a great variety in the performance levels
of early blind vs late blind subjects, there seems to be a tendency
for the former to employ route strategies while the latter engage
mapping for navigation tasks (Thinus-Blanc and Gaunet, 1997).

The concept of critical period has been well developed for visual
system ontogenesis (Imbert and Buisseret, 1975). Since multiple
brain systems are respectively implicated in complementary ori-
entation and navigational processing and they mature at different
times, accurate vestibular signals at these times would be neces-
sary for timely development. Critical periods for vestibular inputs
would thus exist for each respective type of spatial processing.

POSSIBLE MECHANISMS FOR VESTIBULAR DEFICITS
LEADING TO COGNITIVE IMPAIRMENTS
Vestibular deficits could lead to diverse and distinct types of prob-
lems in cognitive processing problems with different respective
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underlying mechanisms. We showed (Wiener-Vacher et al., 2012b)
that posturomotor control is delayed after a sudden complete
vestibular loss due to meningitis before the age of independent
walking. This led to long-lasting posturomotor instability in the
absence of any neurological impairment. We suggested that the
oscillopsia resulting from a complete lack of vestibular informa-
tion in these children leads to dynamic and head–trunk instability.
This could then contribute to secondary delays in learning pro-
cesses (reading, writing, fine motor control) as well as building
coherent representations of the body as well as its position rela-
tive to surrounding space. Much remains to be learned about the
impact of complete or partial vestibular loss at different ages in
children on the development posturomotor and fine motor con-
trol, oculomotor control in cognitive activities (reading, writing),
spatial orientation, and body representation.

The absence of vestibular inputs to the hippocampus would
lead to failure to establish normal brain representations of the
body in space. A consequence of this would be difficulties in
understanding spatial relations of environmental features. How-
ever, the resulting hippocampal atrophy could have a negative
impact on other processes as well, like memory, context-dependent
behaviors and relational reasoning. Another problem would derive
from vestibular impairments leading to incomplete and impre-
cise sensorimotor feedback loops of many varieties. This would
not be limited to activities involving head movements, since head
immobility would be detected with lower certainty too. During
development infants make myriad movements, and when the
brain detects their outcomes, it can make corrections to refine
sensorimotor coordination and build representations. Objects
in three-dimensional space are understood not simply by their
visual profile, but by how they feel, how they change appear-
ance when manually rotated or when one walks around them,
their weight, inertial and dynamic properties. Vestibular-impaired
children’s problems with the gravity sense, the sense of orienta-
tion, awareness of the relations among one’s body parts and the
distinction of self-movement from object movement could lead
to impairments in their acquisition of knowledge through such
sensorimotor feedback and interactive behavior. Another type of
problem is related to absent or incomplete gravitational infor-
mation which can lead not only to balance problems, but also to
inaccurate compensation for gravitational forces on the body parts
and environmental objects, particularly during movement. It has
been demonstrated that the brain elaborates models of visually
observed movement dynamics that distinguish those modulated
by gravitational force (i.e., linear acceleration at 9.8 m/s2) from
others (Zago and Lacquaniti, 2005). Other cognitive representa-
tions may also be built up from cerebral simulation of concordant
sensorimotor loop activation experience, for example, mentally
replaying walking through an environment could help build brain
representations of that environment. Whether such experience
is limited by choice (by a child who moves about and explores
less frequently and less freely to avoid instable or disturbing
situations) or by the incomplete nature of the sensory return
information, this would nonetheless lead to poor spatial repre-
sentations. Other sensory inputs can also be compromised in
cases of vestibular deficits. For example, unstable gaze (in par-
ticular patients with spontaneous nystagmus) would impair visual

perception and hence visual feedback from movements. Again
the failure to distinguish visual field movements due to self or
environmental features could have dramatic consequences. Many
vestibular patients also suffer from partial or complete auditory
deficits, which would impair access to echoes and ambient sound
which also provide information about position and environmental
structure.

CONCLUSION
Our hypothesis is that an absence of vestibular information early in
life can lead to reduced cognitive performance in several domains,
as well as altered spatial cognitive representations (compared to
children with no such vestibular deficit). This would persist a long
time after vestibular compensation in the absence of appropriate
therapy. The argument can be summarized as follows: the impor-
tance of the hippocampal system in spatial and other cognitive
processing is supported by a vast experimental and neurological
literature. Particularly striking evidence comes from neurophys-
iological recordings of place cell, HD cell and grid activity in
rodents, activation of the hippocampus during virtual naviga-
tion in humans, and others. Theoretical arguments were advanced
here for the roles of vestibular signals in building spatial reference
frames and updating spatial representations. This is motivated by
the observations that vestibular inactivation leads to the loss of HD
and place cell activities as well as hippocampal atrophy and navi-
gation deficits. Finally, the data on the ontogenesis of navigation
behavior and hippocampal development converged remarkably
on milestones at the ages of 2, 7, and 11. This leads to a refine-
ment of our hypothesis wherein the onset of vestibular dysfunction
prior to these milestones will delay the normal development of
corresponding cognitive functions, and possibly lead to specific
period-dependent changes in hippocampal structure and func-
tion. These may prove difficult to detect behaviorally because of
rapid compensation of partial vestibular deficits, the high degree of
plasticity that characterizes the hippocampal system, and variabil-
ity among patients in their experiences learning to substitute other
sensory modalities for the missing vestibular inputs. Nonetheless
we predict that specific cognitive deficits will be detectable in at
least a subpopulation of patients who lost vestibular function prior
to the respective ages of 2, 7, and 11. One interesting question
concerns the respective contributions of otolith and semicircu-
lar canal inputs for achieving these milestones. This knowledge
would then lead to adapted therapies to help recover from these
deficits.

In general, the issue of cognitive impact of deprivation of
vestibular signal in children should have important consequences
in patient care. Screening for vestibular loss should be done
routinely in deaf children or in children with psychomotor devel-
opmental delays, who are often misdiagnosed as neurologically
impaired or “slow.” Every effort should be made to avoid aggravat-
ing vestibular loss, for example, detect residual vestibular function
prior to cochlear implantation in young patients and planning
surgeries accordingly (Jacot et al., 2009). It is important to con-
trol for the possible effects of hearing impairment that are often
associated with vestibular deficits. For example, vestibular deficits
may impact on reading performance and further compromise
language skills beyond impairments due to hearing loss. These
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screening tests must be comprehensive, including otolith testing
which can now be performed easily, reliably, and relatively inex-
pensively via vestibular evoked myogenic potentials (VEMP; Jacot
and Wiener-Vacher, 2008). While the caloric test remains a staple
of the vestibulometry clinical battery, it is insensitive to otolith
function, which we argue to be essential for establishing spatial
reference frames.
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