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The TIFY gene family, a key plant-specific transcription factor (TF) family, is involved
in diverse biological processes including plant defense and growth regulation. Despite
TIFY proteins being reported in some plant species, a genome-wide comparative and
comprehensive analysis of TIFY genes in plant species can reveal more details. In
the current study, the members of the TIFY gene family were significantly increased
by the identification of 18 and six new members using maize and tomato reference
genomes, respectively. Thus, a genome-wide comparative analysis of the TIFY gene
family between 48 tomato (Solanum lycopersicum, a dicot plant) genes and 26 maize
(Zea mays, a monocot plant) genes was performed in terms of sequence structure,
phylogenetics, expression, regulatory systems, and protein interaction. The identified
TIFYs were clustered into four subfamilies, namely, TIFY-S, JAZ, ZML, and PPD. The
PPD subfamily was only detected in tomato. Within the context of the biological
process, TIFY family genes in both studied plant species are predicted to be involved in
various important processes, such as reproduction, metabolic processes, responses
to stresses, and cell signaling. The Ka/Ks ratios of the duplicated paralogous gene
pairs indicate that all of the duplicated pairs in the TIFY gene family of tomato have
been influenced by an intense purifying selection, whereas in the maize genome, there
are three duplicated blocks containing Ka/Ks > 1, which are implicated in evolution
with positive selection. The amino acid residues present in the active site pocket
of TIFY proteins partially differ in each subfamily, although the Mg or Ca ions exist
heterogeneously in the centers of the active sites of all the predicted TIFY protein
models. Based on the expression profiles of TIFY genes in both plant species, JAZ
subfamily proteins are more associated with the response to abiotic and biotic stresses
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than other subfamilies. In conclusion, globally scrutinizing and comparing the maize and
tomato TIFY genes showed that TIFY genes play a critical role in cell reproduction, plant
growth, and responses to stress conditions, and the conserved regulatory mechanisms
may control their expression.

Keywords: JAZ genes, ZIM subfamily, expression profile, in silico study, phylogenetic analysis

INTRODUCTION

Transcription factors (TFs) are main regulatory proteins in
whole living cells that bind to DNA flanking target genes. An
interaction occurs among transcriptional regulators, consisting
of chromatin-modifying or remodeling proteins, activating
or repressing transcription. In plants, TFs play a significant
role in regulating gene expression and plant responses to
environmental conditions. TIFY is a particular gene family
that is annotated as TFs by its function, also formerly
named ZIM (zinc-finger protein expressed in inflorescence
meristem; Nishii et al., 2000; Aparicio-Fabre et al., 2013),
and is involved in diverse biological processes including plant
defense and growth regulation (Xia et al., 2017; Liu et al.,
2020). Members of the TIFY gene family contain a common
TIFY domain with the conserved motif TIF[F/Y]XG (Vanholme
et al., 2007; Xia et al., 2017). TIFY genes are divided into
four subfamilies: TIFY subfamily, jasmonate ZIM (JAZ), ZIM-
like (ZML), and PEAPOD (PPD) (Bai et al., 2011). The
members of the TIFY subfamily possess only the TIFY domain,
whereas the JAZ subfamily, in addition to the TIFY domain,
has a Jas motif (SLX2FX2KRX2RX5PY) near the C-terminus
(Staswick, 2008). ZIM (zinc-finger expressed in inflorescence
meristem), and ZML proteins to gether belong to the ZML
subfamily, which contains a CCT domain (CONSTANS, CO-
like, and TOC1) and a C2C2-GATA zinc-finger domain (Saha
et al., 2016). Proteins of the PPD subfamily have a PPD
domain in the N-terminals and a changed Jas motif, which
replaces the conserved proline–tyrosine in their C-terminals
(Chung et al., 2009).

The JAZ proteins suppress TFs such as MYC2, which
plays a role in promoting jasmonic acid (JA)–responsive
gene transcription in plant cells with low levels of JA. The
NINJA/TPS (novel interactor for JAZ/TOPLESS) corepressor
complex engages as a molecular mechanism in the suppression
of the downstream genes (Pauwels et al., 2010). The JAZ
protein plays an important role in the JA signaling pathway
(Garrido-Bigotes et al., 2019). The level of JA in a plant cell
that is growing naturally is low. The level of JA-isoleucine (JA-
Ile) expression is usually enhanced once a plant is subjected
to harsh conditions or in development. JAZ proteins link to
coronatine-insensitive 1 (COI1) via Skp1/Cullin1/F-box protein
COI1 (SCFcoi1) complex-mediated ubiquitination and adjust
ubiquitin-26S proteasome destruction. JAZ protein synthesis is
induced by JA to prevent TFs’ activity (Katsir et al., 2008;
Sun et al., 2017; Garrido-Bigotes et al., 2019). The COI1,
MYC2, and JAZ performance in JA signaling resembles the
main components of the auxin signaling pathway (Katsir et al.,
2008). Furthermore, some TIFY gene family members are

involved in modulating the signaling pathways of hormones
such as JA and abscisic acid (ABA) (Zhang et al., 2012;
Sirhindi et al., 2016). JAZ directly adjusts plant flower initiation,
morphology, tanshinone biosynthesis, salvianolic acids, and
cotton fiber initiation (Boter et al., 2015; Hu et al., 2016; Pei
et al., 2018; Yu et al., 2018). To date, TIFY genes have been
recognized in various species, for instance, 27 TIFY genes
in maize (Bai et al., 2011), 18 in Arabidopsis (Chung and
Howe, 2009), 49 in wheat (Ebel et al., 2018), and 20 in rice
(Chung and Howe, 2009). Some functional studies of the TIFY
gene family have been performed. AT4G14720 (PPD2) and
AT4G14713 (PPD1) are engaged in the coordination of leaf
growth (White, 2006). AT4G24470 (ZIM) adjusts hypocotyl and
petiole elongation through mediating cell elongation (Shikata
et al., 2004), whereas AT1G51600 (ZML2) plays a transcriptional
repressor role in the lignin biosynthesis of transgenic maize
(Vélez-Bermúdez et al., 2015).

TIFY genes play a remarkable role in leaf growth
synchronization and phosphorus-starvation adaptation in
Arabidopsis and common bean (White, 2006; Aparicio-Fabre
et al., 2013White, 2006). In rice, OsTIFY11b (OsJAZ10) and
OsTIFY3 (OsJAZ1) are regulators governing grain size and
spikelet development (Hakata et al., 2012; Cai et al., 2014). TIFY
proteins are broadly involved in the plant response to abiotic
and biotic stresses such as Pseudomonas syringae DC3000 (jaz10
mutants) in Arabidopsis (Demianski et al., 2012) and bacterial
blight resistance (OsJAZ8) in rice (Taniguchi et al., 2014). TaJAZ1
overexpression leads to increased bread wheat resistance in
biotic stress (Jing et al., 2019); GhJAZ2 overexpression leads
to increased sensitivity in transgenic cotton under salt stress
(Sun et al., 2017). AtTIFY10a, 10b, and GsTIFY10a (as their
wild soybean homologs) and OsJAZ8 (in rice) overexpression
play significant adjusting roles in the responses of the plant
under alkaline and salt stresses, respectively (Zhu et al., 2014;
Peethambaran et al., 2018). All of these results indicate that the
TIFY gene family has multiple regulatory roles in cell signaling
and regulating plant responses to stresses and so might be
precious resources for stress-responsive genes.

Several studies have examined the function of this gene
family’s members, but many structural and regulatory aspects
of this gene family remain unknown. Tomato and maize are
among the most valuable plants, being important in the human
food supply. Previously, 30 TIFY genes in maize (Zhang L.
et al., 2015) and 20 genes in tomato (Chini et al., 2017) were
identified; the studies were mostly accomplished based on gene
expression and phylogeny studies. However, in the current study,
the number of TIFY genes was elevated using the updated
reference genomes of maize and tomato, which comprised 18
and six new members of the TIFY gene family in maize and
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tomato, respectively. Hence, a genome-wide comparison analysis
of the TIFY gene family between tomato (Solanum lycopersicum)
as a dicot and maize (Zea mays) as a monocot was performed
based on sequence structure, expression, regulatory systems, and
protein interaction. Overall, the reported results increase our
knowledge of the evolutionary and regulatory mechanisms of the
TIFYs and lay the basis for revealing the mechanism of regulatory
and future functional analyses related to molecular mechanisms
of TIFY genes.

MATERIALS AND METHODS

Identification of TIFY Gene Family
Members
Reference genomes of Z. mays and S. lycopersicum were obtained
from the Ensembl platform (Bolser et al., 2017) for the detection
of TIFY family members. The hidden Markov model search
was fulfilled through the TIFY domain (PF06200) in the query
box of the HMMER 3.0 program (E < × 10−5), and the
retrieved amino acid sequences were assessed using the SMART1

(Schultz et al., 2000) and Pfam2 (Finn et al., 2010) databases
for the identification of the particular TIFY domain. Genomic
sequences and the corresponding cDNA of the predicted proteins
were also determined using the Phytozome v13.1 database3

(Goodstein et al., 2012), and the locations of TIFY genes on
chromosomes were determined using the gene ID in Ensembl
Plants (Bolser et al., 2017). The ProtParam program on the
ExPASy server4 (Gasteiger et al., 2003) was used to specify
the physicochemical characteristics of the TIFY family proteins,
such as theoretical isoelectric point (pI) and molecular weight
(MW). The CELLO2GO (Yu et al., 2014) and Gene Ontology
(GO) (Yu et al., 2006) programs were used at an E < 0.001
to determine GO annotation of TIFY genes and for proteins
subcellular localization.

Chromosomal Mapping, Gene
Duplications, and Estimation of Ka/Ks
Ratio in the Duplicated Pairs
The retrieved TIFY genes were mapped onto the maize and
tomato chromosomes according to their predicted positions
through Ensembl using MapChart software (Voorrips, 2002). The
duplication events among the genes were identified using the
alignment of the TIFY coding DNA sequences via ClustalW5

(Larkin et al., 2007). The matrix with the aligned CDS sequences
was predicted by BioEdit software (v. 7.2.5) (Hall, 1999). Genes
were considered to be duplicated when there was more than
85% identity at their nucleotide sequences (Zheng et al., 2010),
which were manually marked on the chromosomal location. The
sequence duplications among species were then determined via

1http://smart.embl-heidelberg.de/webcite
2http://pfam.sanger.ac.uk
3https://phytozome.jgi.doe.gov/pz/portal.html
4https://web.expasy.org/protparam/
5https://www.genome.jp/tools-bin/clustalw

the Plant Genome Duplication Database using the MCScan v0.8
program (Wang et al., 2012).

The pressure of selection on the duplicated pairs and dividing
of homologous TIFY genes were computed by calculating
the synonymous (Ks) and nonsynonymous (Ka) exchange
rate per site among the gene pairs using the DnaSP v6
software (Rozas et al., 2017). The time of dividing and
duplication was appraised by a synonymous mutation rate of
λ substitutions per synonymous site per year as T = (Ks/2λ

(λ = 6.5 × 10−9)) × 10−6 (Yang et al., 2008). The
syntenic relationships of TIFY genes among the orthologous
pairs of maize–rice and tomato–Arabidopsis at both gene and
chromosome levels were visualized using the Circos software
(Krzywinski et al., 2009).

Phylogenetic Analysis, Motif
Recognition, and Promoter cis-Elements
Phylogenetic trees of the evolutionary relationships between
TIFY protein sequences from maize, rice, barley (Hordeum
vulgare), tomato, soybean (Glycine max), and Arabidopsis
(downloaded from the Ensembl platform) were constructed
using the ClustalW method and maximum likelihood (ML)
algorithm with 1,000 bootstrap replications, implemented
in the MEGA 6.0 software (Tamura et al., 2013). Finally,
the phylogenetic tree was drawn using an interactive tree
of life (Letunic and Bork, 2019). The MEME software6

(Bailey et al., 2009) was used to identify the conserved
motifs in amino acid sequences of TIFYs based on the
following setting: motifs number: 15; minimum width: 6;
maximum width: 50.

Promoter Analysis and Protein–Protein
Interaction Assay
cis-Elements within the promoter region of TIFY genes were
identified using the 2,000-bp upstream region of the ATG start
codon in each putative TIFY gene on the PlantCARE server http:
//bioinformatics.psb.ugent.be/webtools/plantcare/html/7 (Lescot
et al., 2002). The STRING v11 program http://stringdb.org8

(Szklarczyk et al., 2019) was used to determine key TIFY genes
in the studied plant species, considering GO annotations, and to
infer protein-protein interaction networks.

Three-Dimensional Protein Modeling and
Molecular Docking of the Protein Pocket
Sites
The three-dimensional (3D) protein structures associated with
some candidate TIFY proteins of the identified subfamilies were
built via iterative template-based fragment assembly simulations
in I-TASSER (Yang et al., 2015). The best models were purified
using the 3D-refine program (Bhattacharya et al., 2016). Then,
the predicted structures were validated using a Ramachandran
plot via measuring the backbone dihedral phi (φ) and psi (9)

6http://meme-suite.org/tools/meme
7http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
8http://stringdb.org
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angles using the RAMPAGE program (Lovell et al., 2003). For
the prediction of the protein pockets and cavities, the refined
structures of TIFY proteins were analyzed using P2Rank in the
PrankWeb software (Jendele et al., 2019) and the CASTp tool
(Tian et al., 2018). Finally, the results were visualized in PyMOL
(DeLano, 2002).

In silico Expression Analysis of TIFY
Genes Through RNA-Seq Data
For the assessment of maize and tomato TIFY gene transcription,
available RNA-seq data were used to retrieve data in response
to stimuli in multiple tissues. The fragments per kilobase of
exon per million fragments mapped (FPKM) expression values
in maize various tissues, in addition to under stimuli exposure,
were determined in the maize B73 v4 genome through a gene
ID (Zm00001) search in qTeller in MaizeGDB (Portwood et al.,
2019) using the previously published reports for multiple tissues
(accession IDs PRJNA171684 and SRP010680) (Stelpflug et al.,
2016) and under stresses with accession numbers GSE71046
(Forestan et al., 2016) and PRJNA244661 (Waters et al.,
2017). For the expression values of TIFY genes in tomato,
the RNA-seq transcriptome data related to various tissues in
the tomato cultivar Heinz and tomato leaves treated with
different bacteria and pathogen-associated molecular patterns
were extracted from the tomato functional genomics database9

(Fei et al., 2010). The extracted magnitudes were then log2
transformed and used to generate the heatmaps and Venn
diagrams via the TBtools package (Chen et al., 2020). Clustering
of heatmaps was performed using complete data and the
Euclidean distance method.

RESULTS

Identification of TIFY Genes and GO
Annotation
Based on the HMMER result, 48 and 26 nonredundant putative
TIFY proteins were identified in the Z. mays and S. lycopersicum
genomes, respectively (Supplementary Table 1). According to
the protein-specific domain, the recognized TIFY proteins were
classified into four subfamilies: JAZ, TIFY-S (also named TIFY),
PPD, and ZML; however, the PPD subfamily was not identified
in the maize genome (Supplementary Table 1). The putative
TIFY proteins in maize ranged from 60 (in Zm00001d024455) to
539 (in Zm00001d005726) amino acids in length, with the MWs
ranging from 6.65 to 57.69 kDa in these proteins, respectively.
The theoretical pI of the maize TIFY proteins ranged from
4.37 (in Zm00001d048264) to 10.88 (in Zm00001d032009).
The identified TIFY proteins in tomato also ranged from
61 (Solyc01g011175) to 427 (Solyc06g065650), with the MW
ranging from 6.95 to 44.85 kDa in these proteins, respectively,
and the pI values varied from 4.99 (Solyc01g009730) to 10.34
(Solyc01g097060). Most of the identified TIFY proteins in both
of the candidate species revealed an alkaline nature (∼73%

9http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/home.cgi

in maize and ∼69% in tomato; Supplementary Table 1). The
results of subcellular localization revealed that the majority of
maize TIFY proteins are localized in the nucleus, extracellularly,
intracellularly, and organelles (Figure 1), whereas most tomato
proteins showed potential to be located in the nucleus, cytoplasm,
and mitochondria (Figure 1).

The evaluation of the biological processes mediated by TIFYs
evidenced that most of the proteins are probably implicated in
growth and developmental processes and response to stimuli
in both monocot and dicot plant species (Figure 1). Among
the TIFY family proteins, ∼2 and 18% of TIFY proteins
showed potential involvement in the regulation of development
in maize and tomato, respectively (Figure 1). The roles of
TIFYs in reproduction (∼2% in maize and 5% in tomato)
and cellular component metabolism (11% in maize and 21%
in tomato) were determined through the GO assay. Most of
the recognized TIFYs in both plant species were predicted
to be involved in the response to adverse conditions. For
instance, 8 and 11% of TIFYs in maize and 10 and 14% of
these genes in tomato were assumed to be modulating genes
during signaling and stress responses, respectively. In the context
of molecular functions, most of the TIFY proteins showed
potential involvement in oxidoreductase activity (79% in maize
and 56% in tomato) and DNA-binding activity (8% in maize
and 10% in tomato) (Figure 1). The potential involvement
of some TIFY proteins in ion binding (2% in maize and 6%
in tomato) was also expected, in addition to their molecular
functions in the cell.

Chromosomal Distribution and Gene
Duplications
Uneven distribution of the TIFY genes was predicted on 10 maize
chromosomes with 11, eight, and eight genes on chromosomes
1, 2, and, 5, respectively (Figure 2A). Chromosomes 3, 8,
and 10 in maize also accounted for only two, one, and
two TIFY genes, respectively. In the tomato genome, TIFY
genes were distributed on 10 of 12 chromosomes, with a
high density on chromosomes 1 and 8, which contained nine
and four genes, respectively (Figure 2B). Sixteen and three
duplicated gene pairs were identified in the TIFY family
in maize and tomato, which clustered into five and two
groups, respectively (Supplementary Table 2). The segmental
duplication events were found to be higher in the maize
genome than tomato’s. Among the duplicated clades in maize,
groups A, C, and D showed significant duplication events with
five, four, and four gene pairs, respectively (Figure 2A and
Supplementary Table 2). The duplicated gene pairs in tomato
were localized only at chromosomes 1 and 8 (Figure 2B and
Supplementary Table 2), whereas the duplicated pairs in maize
were found to be distributed on all chromosomes with the
highest range of duplication on chromosomes 1 and 2. The
intraspecies synteny analysis revealed that all of the duplicated
blocks in tomato are collinear, such as Solyc01g009730 and
Solyc01g009740. The Ka/Ks ratios of the duplicated paralogous
gene pairs cover a domain from 0.491 to 1.830 in maize
and 0.570 to 0.775 in tomato, whereas in the maize genome,
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FIGURE 1 | Gene Ontology (GO) of TIFY family members based on molecular function, biological process, and cellular component in maize and tomato. The GO
terms were assigned based on a protein sequences search in the CELLO2GO program.

there are three duplicated blocks containing Ka/Ks > 1
(Supplementary Table 2).

Phylogenetic Relationships and
Conserved Motifs
A total of 169 TIFY protein sequences from three monocot
plant species, namely, maize, rice, and barley, along with three
dicot species, including tomato, Arabidopsis, and soybean, were
employed to assay the phylogenetic relationships that clustered
all TIFYs into the seven different groups (Figure 3). Based on
the conserved protein motifs, three of 15 motifs (motifs 1, 2, and
3) represent the specific TIFY protein domains in all candidate
species (Figure 4). The presence of only motif 2 demonstrates
the important functional part of the TIFY-S class; motif 2 with
motif 1 represents the JAZ clade, which includes more proteins;
and the presence of motifs 1, 2, and 3 demonstrates the ZML
group of the TIFY family (Figures 3, 4). In addition, some
conserved motifs were observed on the outside of the protein
domain. The TIFY proteins belonging to the same phylogenetic
class also have some conserved motifs beyond the specific domain
region. For instance, motif 7 is shared by the members of the

JAZ subfamily. Hence, the motif architectures are approximately
conserved in each TIFY-S subfamily, which refer to the conserved
and specific functions of the proteins in these clusters. Overall,
the members of the JAZ subfamily show high diversity, suggesting
relative evolutionary conservation in the cellular function of
these proteins from various plant species. High diversity between
TIFY genes was observed, indicating that the TIFY gene family
originated before the divergence of monocots and dicots.

Identification of Blocks Duplicated
Between Species With Estimation of the
Ka/Ks Ratios
The association of positive Darwinian selection in duplication
and divergence, an important parameter for studying the effects
of positive selection engagement in gene divergence (Yang et al.,
2008), was calculated for the duplicated TIFY genes in maize
in comparison with the monocot model plant (Oryza sativa)
(Figure 5A) and tomato compared with the dicot model plant
(Arabidopsis thaliana) (Figure 5B) as their closest orthologous
genes (Supplementary Table 3). As a result, 11 duplicated and
10 triplicated blocks in maize compared with rice species, and
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FIGURE 2 | Chromosomal distribution of TIFY genes predicted from the Zea mays (A), and Solanum lycopersicum (B) genomes. The graphical genetic maps were
created via the MapChart software, and the duplicated gene pairs are highlighted in the same color.

FIGURE 3 | Phylogenetic analysis of TIFY proteins from monocots (maize, barley, and rice) and dicots (tomato, Arabidopsis, and soybean) based on the maximum
likelihood (ML) method.
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FIGURE 4 | Conserved motif distribution in TIFY proteins from monocots (maize, barley, and rice) and dicots (tomato, Arabidopsis, and soybean). A total of 15
conserved protein motifs were predicted via the MEME program with a length of 6 to 50 amino acid residues. The proteins in the same clade have a similar motif
pattern in their structure.

three duplications and one triplication in tomato in comparison
with Arabidopsis, were identified; the average Ka/Ks ratio for the
diverged blocks was estimated to be 0.450 and 0.427 (<1) in
maize and tomato, respectively. The duplication event for the
TIFY genes was estimated to have occurred approximately 32–
137 MYA between maize and rice and 109 to 150 MYA between
tomato and Arabidopsis (Supplementary Table 3). Among the

closest orthologous TIFY in the grass species, the relatively higher
rate of synonymous substitution between maize and rice suggests
their earlier divergence about 63 MYA compared to that between
tomato and Arabidopsis genes (around 124 MYA). Therefore, the
duplication and divergence events among the TIFY genes from
monocot species can be considered as a significant aspect in the
evolution of this gene family.
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FIGURE 5 | Synteny analysis of TIFY genes. The syntenic blocks of maize
TIFY genes are compared with the monocot model plant (O. sativa) (A), and
the syntenic blocks of tomato are compared with the dicot model plant
(A. thaliana) (B).

Promoter cis-Elements and
Protein–Protein Interaction Network
In the present study, several kinds of cis-elements that deal
with various phytohormones, abiotic stimulus conditions, and
regulation of development were identified in the promoter of
TIFY genes (Figure 6). The ABA responsiveness (ABRE),
ethylene responsiveness (ERE), and methyl jasmonate

responsiveness (MeJA) factors were observed as highly
occurring hormone-responding cis-elements approximately
in the TIFY genes promoter. The light-responsive G-Box
and Box 4, wounding stress-responsive WUN-motif, and
stress-responsive MYB elements were detected as the other
regulatory cis-elements frequently distinguished in the TIFY
genes promoter area, suggesting the important roles of this
gene family in stress management in monocot and dicot
crops. Moreover, observation of the MBS element, the MYB
protein binding region engaged in drought stress coping,
and regulation of the flavonoid biosynthetic genes, in some
TIFY genes, such as Zm00001d041045, Zm00001d022139,
Zm00001d003903, and Zm00001d013331 in maize and
Solyc01g103600, Solyc07g042170, Solyc04g076527, and
Solyc01g106040 in tomato, confirmed the important role of
these genes in anthocyanin/flavonoid production and stimulus
coping. The TC-rich repeats (regulating defensive reactions),
low-temperature responsive element, TCA element (salicylic
acid–responsive), TGA element (auxin-responsive), and W-Box
(WRKY TF-binding region, important for responses to abiotic
stimuli) were detected as the important abiotic/hormone
stress–responsive elements significantly detected in most
TIFY genes. Another important finding was the discovery of
multiple regulatory cis-elements related to phytohormones and
environmental stimuli in the majority of TIFY genes, revealing
the role of these genes in plant growth and dealing with stress
conditions. In general, the results showed that the distribution
of regulatory elements in the promoter region of TIFY genes is
similar in both studied species, and the observation of different
regulatory elements indicated that this gene family is involved in
different cellular pathways.

The interactome data related to TIFY genes in maize
identified two subnetworks, which showed that TIFY proteins
interact with the genes engaged in protein dimerization
activity, RNA binding, hydrolase activity, and damaged
DNA binding (Figure 7A and Supplementary Table 4). The
GRMZM2G455115 and GRMZM2G118697 proteins, which are
cleavage and polyadenylation specificity factors, were reported
to interact with TIFY proteins to regulate posttranscriptional
gene silencing by RNA. The DNA ligases GRMZM2G427067
and GRMZM2G137968, which are single-stranded helicases,
also revealed a highly confident interaction with TIFYs in
maize that contributes to DNA ligation involved in DNA
repair, DNA replication, and cellular response to DNA damage.
Furthermore, the protein–protein interaction network in tomato
showed the interactions between TIFY proteins and TF MYCs
and salt-responsive proteins (Figure 7B and Supplementary
Table 5). The BIG SEEDS protein BS1, salt-responsive protein
SRG, TF MYC, and Pto-responsive gene Prg1 showed a
significant contribution with TIFY genes in the regulation
of the defense response, plant hormone signal transduction,
and multicellular organism development through a hormone-
mediated pathway. The interaction of TIFY proteins with the
critical coronatine-insensitive Coi1 and allene oxide synthase
regulates ubiquitin-dependent protein catabolic and fatty acid
biosynthetic processes, which are essential for protein function
and plant reproduction and viability. Therefore, our results
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FIGURE 6 | Heatmaps of cis-regulatory elements distribution in the promoter region of TIFY genes of maize (A) and tomato (B). The upstream region (2,000 bp) of
the ATG start codon in each putative TIFY gene promoter region was analyzed using the PlantCARE server (Lescot et al., 2002).

reveal that TIFY proteins significantly collaborate with the
proteins from various metabolisms, which can regulate plant
responses to external stimuli and growth.

Homology Modeling of TIFY Proteins and
Docking Assay of the Pocket Sites
The 3D structures revealed the presence of the conserved TIFY
domain in all of the studied TIFY proteins, which showed
a typical 3D frame comprising antiparallel β-sheets followed
by parallel α-helixes (Supplementary Figure 1). Topographic
features of TIFY proteins were evaluated through the P2Rank
program, and major pockets are shown in multiple-colored
regions in Figure 8. As a result, different pockets were predicted
as the binding region/active sites in the candidate proteins from
JAZ, TIFY-S, ZML, and PPD clusters. The amino acid residues
present in the pocket sites of TIFY proteins partially differ in
each subfamily, although Mg or Ca ions were heterogeneously
observed in the center of the active sites of all of the predicted
TIFY protein models. In the JAZ subfamily of maize, PRO,
ALA, ASN, HIS, ARG, GLY, ASP, and THR were predicted as
the important binding residues, whereas SER, THR, PRO, GLU,
VAL, LYS, LEU, and TYR were identified as the key residues.
Investigation of the predicted pocket sites of TIFY proteins also
showed that LEU, CYS, and SER in the TIFY-S of maize and
VAL, LYS, GLU, ARG, THR, SER, and LEU in the TIFY-S of
tomato have high potential as active binding sites. ARG, THR,

LEU, GLN, LYE, and VAL in ZML of maize and SER in ZML
of tomato were predicted as the important binding residues.
In the PPD subfamily, ARG and GLU showed high potential
as key binding residues (Figure 8). Based on our results, the
important amino acids found in the pocket sites of all of the
candidate TIFY proteins demonstrate the importance of these
residues in the positioning on the DNA molecule and, finally, the
cellular function performance during various developmental and
defensive processes.

Expression Assay of TIFYs in Multiple
Tissues and Under Abiotic/Biotic Stimuli
via RNA-Seq Data
The expression patterns of TIFY genes were investigated under
normal growth in multiple tissues in addition to during stress
conditions using RNA-seq data sets in maize and tomato. The
FPKM values from various parts of roots, leaves, internodes,
and seeds in maize were used for identifying genes differentially
expressed in these tissues. The results showed a tissue-specific
expression pattern of six, one, one, and one TIFY genes in
leaf, root, internode, and seed tissues, respectively (Figure 9A).
The transcription level of TIFYs could be divided into some
major expression groups that contained genes preferentially
expressed in all or one of the tissues. In addition to nine
genes that were not expressed across the tissues (such as
Zm00001d041045, Zm00001d016316, and Zm00001d004277),
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FIGURE 7 | Interaction network of TIFY genes in maize (A) and tomato (B)
predicted using the String database.

11 TIFY genes (e.g., Zm00001d036494, Zm00001d002029, and
Zm00001d020409) displayed significant transcription rates in
all of the maize tissues, suggesting control of a broad set of
genes at the transcriptional level. According to the RNA-seq
data related to stress conditions in maize, Zm00001d022139,
Zm00001d002029, Zm00001d026477, and Zm00001d048264were
recognized as the TIFYs expressing under all stimulus situations,
revealing their important potential in the stress resistance of
maize plants (Figure 9A). A total of eight TIFYs, for example,
Zm00001d050952, Zm00001d035382, and Zm00001d033048,
were not expressed under stress. There were two, one, and one
TIFY genes specifically expressed under UV, fungal, and cold
stresses, respectively. Nine TIFY genes were also expressed under
salt, drought, heat, and cold stresses. Regarding the results, most
of the genes with a tendency to express in response to stimuli

FIGURE 8 | Docking analysis of pocket sites of each subfamily of TIFY
proteins including JAZ, TIFY-S, ZML, and PPD.

were from the JAZ and ZML subfamilies, which may reveal the
important roles of these genes in dealing with these stimuli.

The RNA-seq experiments were also employed to further
verify the expression of the identified TIFY genes in various
tissues and under stress in tomato. There were four and
one tissue-specific TIFY genes in tomato flower and root
tissues, respectively (Figure 10A). A total of 11 TIFY genes,
such as Solyc01g005440, Solyc07g042170, and Solyc01g106030,
were significantly expressed in all of the candidate tissues
in tomato, whereas seven genes, such as Solyc01g011175,
Solyc04g076527, and Solyc01g009730, did not reveal any
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FIGURE 9 | Expression heatmaps of TIFY genes of maize in different tissues (A) and in response to abiotic and biotic stresses (B). The heatmaps were generated
based on the log-2–transformed RNA-seq fragments per kilobase of exon per million fragments mapped (FPKM) magnitudes in the maize genome B73 v4.

remarkable transcription level in the tomato tissues. The RNA-
seq data under stimulus conditions in tomato revealed one
TIFY gene responsible for resistance against Agrobacterium
tumefaciens; the genes Solyc08g036640 and Solyc08g036620
also demonstrated remarkable expression under exposure
to this bacterium (Figure 10B). Nine TIFY genes of tomato
were not induced by stress circumstances, whereas 14 genes,
such as Solyc01g005440, Solyc11g011030, and Solyc06g065650,
demonstrated significant expression in response to all the stimuli
(Figure 10B). Solyc08g036660 from the JAZ clade was found
to be significantly up-regulated in coping with A. tumefaciens
and flagellin 22, suggesting the potential of this gene in dealing
with stress. Stress coping in the JAZ protein-encoding genes was
significantly greater in comparison with the other subfamilies.

DISCUSSION

TIFY family proteins, a key TF plant family, have been
characterized in different plant species (Vanholme et al., 2007;
Aparicio-Fabre et al., 2013; Wang et al., 2020). For instance, 19
members of the TIFY gene family in common bean (Aparicio-
Fabre et al., 2013), 49 genes in Triticum aestivum (Ebel et al.,
2018), 36 genes in Brassica oleracea (Liu et al., 2020), 36 members
in Brassica rapa (Saha et al., 2016), 25 genes in poplar (Wang
et al., 2020), 20 genes in rice (Ye et al., 2009), Brachypodium
distachyon (Zhang Z. et al., 2015), 50 members in Gossypium
hirsutum (Zhao et al., 2016), 34 genes in Glycine soja (Zhu et al.,
2013), 30 genes in apple (Li et al., 2015), 21 genes in pear (Ma
et al., 2018), and 15 genes in watermelon (Yang et al., 2019) have
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FIGURE 10 | Expression heatmaps of TIFY genes of tomato in different tissues (A) and in response to abiotic and biotic stresses (B). The heatmaps were generated
based on the log-2–transformed RNA-seq FPKM magnitudes in the tomato genome.

been identified. Furthermore, in previous studies, 30 TIFY genes
in maize (Zhang L. et al., 2015) and 20 genes in tomato (Chini
et al., 2017) were recognized. In the current study, 48 and 26
nonredundant putative TIFY genes were identified in the genome
of maize (Z. mays) and tomato (S. lycopersicum), respectively.
Genome size and ploidy level may affect the number of members
of a gene family. For instance, bread wheat, a hexaploid species,
and G. hirsutum, a tetraploid plant, contain the most TIFY
genes. The identified TIFY proteins are diverse based on their
physiochemical properties and domain distribution in maize and
tomato. Subcellular localization analysis revealed that the TIFY
members of tomato are more located in the nucleus than the
TIFY members of maize. Several TIFY members were predicted
to be located in organelles, such as chloroplasts and mitochondria
(Figure 1). These differences in cellular components indicate
that the TIFY gene family developed in an extensive regulatory
system in plant cells to control various processes (Bai et al., 2011;
Cai et al., 2020). Previous studies indicated that the members
of the TIFY gene family are involved in various mechanisms
of plant responses to stress and the regulation of plant growth
and development (Hakata et al., 2012; Zhou et al., 2015; Sun
et al., 2017; Liu et al., 2020; Wang et al., 2020). In the context
of biological processes, the TIFY family genes in both candidate
plant species are involved in various important processes, such as

reproduction, metabolic processes, responses to stresses, and cell
signaling (Figure 1). In the context of molecular functions, most
identified TIFY family proteins have oxidoreductase activity and
DNA-binding TF activity.

High diversity between TIFY genes was observed, indicating
that the TIFY family genes originated before the divergence of
monocots and dicots. Interestingly, the PPD subfamily was only
detected in dicots, supporting the hypothesis that PPD genes
are absent in monocots (Ye et al., 2009; Bai et al., 2011). In
Arabidopsis, PPD proteins are involved in the regulation of the
cell cycle and cell growth (White, 2006). Some other genes in
monocots probably compensate for the molecular functions of
PPD genes (Bai et al., 2011). In the current study, some conserved
motifs were detected from outside of the DNA-binding domain
regions that may affect the functioning and cellular localization
(Heidari et al., 2020; Rezaee et al., 2020). The duplicated gene pair
showed different expression levels in response to stress, indicating
that duplicated TIFY genes probably undergo substantial changes
in their regulatory mechanisms and/or sequences to assume novel
functions (Faraji et al., 2020).

Gene duplication, an evolutionary event for different species,
has a significant role in the enlargement of plant TF families
(Freeling, 2009; Wang et al., 2013). In the current study, the
Ka/Ks ratios of the duplicated paralogous gene pairs showed that
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all of the duplicated pairs in the TIFY gene family of tomato have
been influenced by an intense purifying selection, which could
have led to conserved functions or pseudogenization (Juretic
et al., 2005), whereas in the maize genome, there were three
duplicated blocks containing Ka/Ks > 1, indicating accelerated
evolution with positive selection (Faraji et al., 2020). According
to intraspecies synteny analysis, all of the duplicated blocks in
tomato were collinear, suggesting that these duplication events
may have been derived because of the chromosome segmental or
large-scale duplication/triplication events (Wang et al., 2018).

Different factors, including interior cavities and protein
surface pockets, can affect enzyme activity and DNA–protein
interactions (Stank et al., 2016). Prediction of the potential
binding sites of proteins can be useful in determining the
interaction of proteins and how they are activated (Ahmadizadeh
et al., 2020; Faraji et al., 2020). The amino acid residues present in
the pocket sites of TIFY proteins partially differ in each subfamily,
although the Mg or Ca ions heterogeneously exist in the center
of the active sites of all of the predicted TIFY protein models.
The SER, GLY, HIS, PRO, GLU, TYR, and ARG amino acids
were identified as the important binding residues in the predicted
pocket sites of all types of TIFY proteins (Figure 8), which
illustrates the potential roles of these proteins in coping with
stimuli, in addition to growth and development adjustment, in
plant species (Faraji et al., 2020). Proteins with high contents
of GLY and PRO residuals play important roles in plants in
response to abiotic and biotic stresses (Mousavi and Hotta,
2005). The SER and THR amino acids were predicted as key
binding sites in the JAZ protein of tomato. SER, LEU, VAL, and
PRO play significantly roles in adjusting the various functions
in response to stress (Galili and Höfgen, 2002; Beauregard and
Hefford, 2006). The presence of the CYS, VAL, and LYS residues
as activating binding sites in almost all TIFY proteins revealed
that these proteins may also be involved in sulfur metabolism
(Yang et al., 2020). Our results revealed the key binding sites in
the protein sequences of each subfamily of TIFY family proteins,
which can be used to evaluate the exact function of these proteins.
Our findings also indicated that the protein surface pockets in the
TIFY family proteins are different in the studied monocot and
dicot species and that these differences can affect their associated
molecular pathways.

Adverse conditions, such as biotic and abiotic stresses, as
limiting factors, affect plant performance. Previous studies
revealed that members of the TIFY family, as specific plant
TFs, play critical roles in regulating plant responses to adverse
environmental conditions (Ebel et al., 2018; Chao et al., 2019;
Cai et al., 2020). For instance, overexpression of apple JAZ2
could significantly improve the tolerance to P. syringae pv. tomato
DC3000 in Arabidopsis (An et al., 2017). Ebel et al. (2018) found
that TIFY genes in durum wheat are involved in the response to
different stresses, and TIFY proteins may increase germination
under salinity treatment. Regarding the results, most of the genes
with a tendency to express in response to adverse conditions
were from the JAZ subfamily, which may reveal the important
roles of this subfamily in dealing with stimuli (Figures 9, 10).
Cai et al. (2020) recently stated that the JAZ genes of tuber
mustard are induced by pathogen Plasmodiophora brassicae and
salt stress. JAZ9 in rice can interact with the bHLH062 TF to

control salt tolerance via affecting the ion transporter genes (Wu
et al., 2015). Similarly, in wheat, five JAZ genes were induced
under salt stress (Wang et al., 2017). In G. hirsutum, 14 JAZ
genes were induced in response to salinity treatment (Sun et al.,
2017). The overexpression of maize JAZ14 in Arabidopsis could
increase seedling tolerance to hormone treatments, with ABA and
JA, and polyethylene glycol stress (Zhou et al., 2015). Based on the
expression profile of TIFY genes in both candidate plant species,
maize and tomato, we think that JAZ subfamily genes are induced
to a greater extent in the response to adverse conditions than
other subfamilies. It appears that most genes belonging to this
common family in both candidate species have similar expression
patterns, indicating that the conserved regulatory mechanisms
may control their expression.

Various stimuli responses are controlled by the genes’
transcriptional adjustment, which can be modulated by cis-
elements present in the promoter area (Ahmadizadeh and
Heidari, 2014; Heidari et al., 2019). In the present study, several
kinds of cis-regulatory elements related to cell signaling, the
response to biotic and abiotic stresses, and hormone signaling
were distinguished in the promoter region of TIFY genes.
The presence of light-responsive elements, especially G-Box,
indicates that light signals can significantly adjust the TIFY genes’
transcription, which eventually regulates the genes engaged in
defensive lines such as flavonoid biosynthesis pathways (Biłas
et al., 2016). The Box 4, ABRE, and MYB elements were
frequently distinguished in the TIFY genes’ promoter area
(Figure 6), suggesting the important roles of this gene family
in dealing with stress in monocot and dicot crops. Protein–
protein interactions can significantly modulate various cellular
functions, such as the replication and transcriptional adjustment
of DNA, growth and development, signaling processes, and
the coordination of multiple metabolic systems (Fukao, 2012).
According to protein–protein interactions, TIFY members in
maize can interact with genes involved in DNA replication and
the cellular response to DNA damage, whereas TIFY family
members in tomato showed significant relationships with TF
MYCs and salt-responsive proteins (Figure 7). The activities
of the JAZ proteins are associated with jasmonate responses,
which suppress the jasmonate signals by interacting with the
TFs including MYC2 and MYC3, which control the expression
of downstream genes (Yan et al., 2007; Melotto et al., 2008;
Bai et al., 2011). According to the results of protein–protein
interactions and promoter analysis, we think thatTIFY genes play
critical roles in cell reproduction, plant growth, and dealing with
stress conditions.

CONCLUSION

In the current study, the TIFY gene family was compared
between tomato (as a dicot) and maize (as a monocot) based
on sequence, structure, evolutionary, expression, interaction
network, and cis-regulatory elements. We identified 48 and 26
nonredundant putative TIFY genes in the genome of maize and
tomato, respectively. The identified TIFYs were classified into
four subfamilies (JAZ, TIFY-S, PPD, and ZML); PPD subfamily
proteins were only detected in dicots. Our results revealed that all
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of the duplicated pairs in the TIFY gene family of tomato have
been influenced by intense purifying selection. The amino acid
residues present in the pocket sites of TIFY proteins partially
differ in each subfamily, indicating that these proteins have
different activities based on their ligand-binding sites. Based on
the expression profile ofTIFY genes, we found that JAZ subfamily
proteins are more involved in the response to stress than other
subfamilies. Key cis-regulatory elements were observed in the
promoter site of TIFY genes, indicating that the TIFY gene
family, a group of plant-specific TFs, is induced by various
stimulus. Our findings demonstrate that the TIFY gene family
plays important roles in regulating growth and development
processes and inducing cell signaling in response to stress.
Therefore, the results of this study can be used in future research
related to the functional genomics of TIFY genes.
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