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Abstract

RNA interference (RNAi) has been considered as an efficient therapeutic approach against the human immunodeficiency
virus type 1 (HIV-1). However, to establish a durable inhibition of HIV-1, multiple effective short hairpin RNAs (shRNAs) need
to be stably expressed to prevent the emergence of viral escape variants. In this study, we engineered a randomized
lentiviral H1-promoter driven shRNA-library against the viral genome. Potent HIV-1 specific shRNAs were selected by
ganciclovir treatment of cell lines stably expressing the cDNA of Herpes Simplex Virus thymidine kinase (HSV-TK) fused to
HIV-1 nucleotide sequences. More than 50% of 200 selected shRNAs inhibited an HIV-1 based luciferase reporter assay by
more than 70%. Stable expression of some of those shRNAs in an HIV-1 permissive HeLa cell line inhibited infection of wild-
type HIV-1 by more than 90%. The combination of a randomized shRNA-library directed against HIV-1 with a live cell
selection procedure yielded non-toxic and highly efficient HIV-1 specific inhibitory sequences that could serve as valuable
candidates for gene therapy studies.
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Introduction

RNAi is a highly conserved process that protects the host from

transposable elements and viruses [1,2]. In mammalian cells,

RNAi can be initiated by the introduction of synthetic double

stranded short interfering RNAs (siRNAs) of 19–21 basepairs,

which are recognized by the cytoplasmic RNA induced silencing

complex (RISC) and trigger the specific degradation of comple-

mentary mRNA, thereby circumventing an interferon response

[3]. Besides its role as an experimental technique for loss-of-

function studies [4,5], RNAi emerges as a powerful therapeutic

approach towards human diseases as well as viral infections [6,7].

Different vectors have been developed both for transient and

stable expression of the inhibitory RNA species [8], more

commonly by RNA Polymerase III driven transcription of the

inverted sense and antisense strands of shRNAs, connected by a

linker-sequence (loop) [9,10]. In the case of HIV-1, siRNA- and

shRNA-mediated post-transcriptional gene silencing offers a

promising strategy to inhibit viral replication at different stages

of viral infection by targeting viral as well as host genes

[11,12,13,14]. However, the stable expression of antiviral shRNAs

did not evoke the expected long-term inhibition of the virus due to

the emergence of viral escape mutants [15,16,17]. To circumvent

the emergence of RNAi-resistant variants it seems to be

mandatory to identify multiple potent inhibitory sequences

targeting different or conserved regions of the viral genome

[18,19,20,21].

There are several publicly available design algorithms [22,23],

but reliable rules for efficient siRNA-sequences are still missing

and designed siRNAs need to be assayed for their inhibitory

potential and possible cytotoxic or other off-target effects [24].

Furthermore, the costly and time-consuming synthesis and

validation of designed siRNAs limit their use in large-scale studies.

Consequently, several groups have developed techniques for the

generation of randomly prepared shRNA libraries [25,26,27]. All

these approaches employ a similar principle for the construction of

the library: cDNA is enzymatically converted to short inverted

repeats separated by a linker-sequence and transcribed into

shRNAs by appropriate expression systems. However, the

feasibility and efficiency of these techniques has been disputed

[28].

We have adopted and modified these technologies to generate

the first randomized shRNA-library against the HIV-1 genome. A

stringent cell-based selection procedure was introduced, which

allowed for the identification of novel and potent HIV-1 specific

shRNAs with little or no host cell toxicity. Moreover, a range of
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these virus-specific shRNAs were applied as synthetic siRNAs with

a comparable efficacy. Additionally, the same sequences were

stably expressed in permissive HeLa CD4 (HeLa P4) cell lines

[29], where they effectively inhibited wild-type HIV-1 infections.

Thus, our data demonstrate for the first time that a straightfor-

ward shRNA-library construction protocol in line with a stringent

cellular selection procedure yield potent and readily convertible

shRNAs against a viral genome.

Materials and Methods

Construction of the shRNA-library
The construction of the shRNA-library can be divided into 7

steps. Step 1: 5 mg viral DNA (pNL4.3; NIH AIDS Research

and Reference Reagent Program) was partially digested with

161023 U DNaseI in the presence of 1 mM MnCl2 (109, 37uC).

DNaseI was inactivated by vortexing (300) and heat-inactivation

(109, 65uC). Cleaved 59 and 39 ends were repaired with 5 U T4

DNA Polymerase and 10 U Klenow Fragment in the presence of

200 mM dNTPs. DNA was separated on 20% polyacrylamid in

TBE and fragments of the appropriate size (150–300 bp) were

isolated by diffusion in 0.5 M NaCl; 1 mM EDTA (1h, 50uC,

shaking) and purified by EtOH precipitation. Step 2: 4.5 mg of

the DNA was ligated to 1.5 mg of the 39loop. Subsequently the T4

ligase was heat-inactivated (109, 65uC) and the DNA was digested

with MmeI (1h, 37uC). The reaction was separated on 20%

polyacrylamid in TBE and the product of 39 loop and gene

fragment was isolated and purified. The PAGE-purified 39 loop

(59-GTTGAATCCCGGTTCAAGAGACCGGGATCCAAC) was

purchased from QIAGEN (Hilden, Germany) and contained a

MmeI restriction enzyme site. Step 3: 1 mg of the purified DNA

fragment was ligated to 500 ng 59loop. The reaction was separated

on 20% polyacrylamid in TBE and the single-stranded circular

DNA ring of 39 loop, gene fragment and 59 loop was isolated and

purified. The PAGE-purified 59loop (59-GGAGAGACTCACTG-

GCCGTCGTTTTACCAGTGAAGATCTCCNN) was purchased

from Qiagen. Step 4: The purified DNA ring was used for a RCA

using 10 U W29 Polymerase and the 59loop specific primers RCA1

(59-ACTGGTAA) and RCA2 (59-GCCGTCGT) in the presence of

0.01 U Pyrophosphatase and 200 mM dNTPs (o.n., 30uC). The

RCA products were digested with BglII and MlyI (1h, 37uC) and

separated on 20% polyacrylamid in TBE. The palindromic, inverted

repeats were isolated and purified. Step 5: 10 ng of the BglII-MlyI –

digested fragments were ligated to 100 ng of pENTR/shLib. The

transformed bacterial colonies were pooled and the primary shRNA-

library isolated. Step 6: The isolated plasmids were digested with

BamHI and re-ligated (pENTR/shLib -BamHI). The resulting

bacterial colonies were pooled as the secondary shRNA-library.

Step 7: The shRNA-expression cassettes were subcloned into

pLPac/shLib (LR ClonaseTM II Enzyme Mix, Invitrogen, Karls-

ruhe, Germany).

Generation of pENTR/siLib
pENTR/ siH1/mDD-stuffer [30] was linearized with BbsI and

the resulting 59 T-overhangs were blunt-ended using 5 U T4 DNA

Polymerase in the presence of 200 mM dATP. After digestion with

BglII, shRNA-sequences were ligated between the H1-Promoter

and the polyT cassette.

Generation of pENTR/TA
2 inverted Xcm I restriction enzyme sites were created by

annealing 36 nt single-stranded oligonucleotides with 59BamHI

and 39HindIII overhangs (MWG, sequences on request) and

ligated into pENTR/siH1/mDD-stuffer. Digestion of the

pENTR/TA with XcmI allows for TA-cloning of the Taq-

Polymerase amplified shRNA-expression cassettes.

Generation of pLP/EGFP/siLib
The puromycin-gene was PCR-amplified from pPGK-puro

(K. Rajewski, Harvard medical school; primer-sequences on

request). The PCR-product was digested with SmaI and Bpu1102I

and ligated into the GATEWAYH compatible lentiviral vector pL

[30].

Generation of selection constructs
The HSV-TK gene was PCR-amplified from pRapid-flirt (A.

Waisman, Medical Hospital Mainz, [30]) and ligated into

pENTR/siH1/mDD-stuffer to yield pENTR/TK. Afterwards,

three overlapping HIV-1 genomic segments were PCR-amplified

and ligated between HSV-TK ORF and the polyA to yield the

selection constructs pENTR/TK/HIV-Lib1, pENTR/TK/HIV-

Lib2 and pENTR/TK/HIV-Lib3, respectively (primer-sequences

on request). The selection cassettes were next subcloned into the

lentiviral vector pL by means of LR ClonaseTM II Enzyme Mix

(Invitrogen, Karlsruhe, Germany).

Production of lentiviral particles
The production of lentiviral particles was performed as

described in the Manual ‘ViraPowerTM Lentiviral Expression

System’ (Invitrogen, Karlsruhe, Germany).

Generation of stable cell lines
HeLa wt or HeLa P4 cells were transduced with viral particles

at a (MOI: 0.1) in the presence of 6 mg/ml polybrene. 48h post

transduction, cells were treated with 10 mg/ml blasticidin for 10

days. Surviving clones were expanded in 3 mg/ml blasticidin and

analysed for stable integration of the transgene and expression of

HSV-TK protein and the fusion-mRNAs.

Selection of efficient HIV-1 specific shRNAs
The library selection cell lines HeLaTK/HIV-LIB1, HeLaTK/HIV-LIB2

and HeLaTK/HIV-LIB3 were transduced with lentiviral particles of the

relevant shRNA-libraries (MOI: 0.1). 48h post transduction, selection

cell lines were treated two days with 1mg/ml puromycin followed by

ganciclovir treatment (261026 M) for 5 days, replacing the selection

media each day. Surviving cells were expanded clonally and the

integrated shRNAs were recovered by nested PCR (primer sequences

on request).

Western blot analysis
Equal amounts of proteins were probed either with HSV-TK

antibody (W.C. Summers, Yale University), HIV-1 Integrase

antibody (acris antibodies, Herford, Germany), Hsp70 antibody

(BD Pharmingen, Heidelberg, Germany) or b-actin antibody

(Sigma-Aldrich, Muenchen, Germany), and with horse-radish

peroxidase-conjugated antibody to rabbit or mouse IgG (Sigma-

Aldrich, Muenchen, Germany) as the primary and secondary

antibodies in blocking buffer (10% milk in TBS), respectively.

mRNA isolation and Northern Blot analysis
Total RNA was isolated using TRIZOLH (Invitrogen, Karls-

ruhe, Germany). Enrichment of mRNA was achieved with the

NucleoTrap mRNA kit (Macherey-Nagel, Düren, Germany). 1 mg

mRNA was separated on denaturing 1.8% Agarose in MOPS

buffer and transferred onto positively charged nylon membranes

in 206SSC. Membranes were pre-hybridized (4h, 65uC) and

hybridized with 32P-labeled HSV-TK cDNA probe (overnight,

Potent HIV-1 Specific shRNAs
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65uC). Washed membranes were exposed to Phosphoimager

screens.

Luciferase activity assays
HEK 293 FT cells (Invitrogen, Karlsruhe, Germany) were co-

transfected with either PCR-amplified shRNA-expression cassettes

or shRNA-expressing vectors and pNL4.3Luc.R-E- (NIH AIDS

Research and Reference Reagent Program). Luciferase expression

was measured 48h post transfection using the Luciferase Assay

Reporter Kit (Promega, Mannheim, Germany) and normalized to

total protein.

Sequencing
The PCR amplified shRNA expression cassettes were cloned

into pENTR/TA and sequenced via TouchDown-PCRs using the

BigDyeH Terminator v3.1 Cycle Sequencing Kit in combination

with the dGTP BigDyeH Terminator v3.1 Cycle Sequencing Kit

(both applied biosystems) in a ratio of 3:1 and in the presence of

0.83 M Betaine.

IFN-b and P24 antigen ELISAs
IFN-b ELISAs (PBL Biomedical Laboratories, Piscataway, NJ)

and p24 ELISAs (Aalto Bio Reagents Ltd., Dublin, Ireland) were

performed as described by manufacturers instructions.

Detection of cell death via crystal violet staining
36103 cells were seeded overnight per well of a 96 well plate.

Adherent cells were quantified with crystal violet dye as previously

described [30] for up to 5 days and normalized to day 1.

Results

Construction of a randomized shRNA-library targeting
the HIV-1 genome

The construction of the randomized lentiviral shRNA-library

against HIV-1 was based on a previously described technology

with some modifications [26]. The consecutive enzymatic steps to

produce the shRNA-library based on the cDNA of HIV-1 are

shown in Figure 1 and are described in detail in the Material and

Method section. In order to circumvent the production of wild-

type virus in selection cell lines, the HIV-1 genome (pNL4.3) was

divided into three internal overlapping segments, comprising all

genes of HIV-1. The three parts HIV-1.1 (2.5 kb), HIV-1.2

(2.5 kb) and HIV-1.3 (2.8 kb) comprised the NL4.3 nucleotides

855–3374, 3297–5796 and 6067–8447, respectively. In order to

maximize the diversity of the shRNA-library, the HIV-1 segments

were randomly fragmented with DNase I (Fig. 1a) which exhibits

only minor if any sequence specificity [31,32]. Blunted fragments

of about 150–300 bp were ligated to the 39loop which connects

the final sense and antisense strands and enables the restriction of

the target sequence to 20 basepairs by the insertion of the Mme I

recognition site at the start of its stem (Fig. 1b). The subsequent

ligation of the 59loop produces single-stranded DNA rings which

were amplified by rolling circle amplification (RCA) to concate-

mers of inverted repeats that are flanked by Bgl II and Mly I

restriction sites (Fig. 1c–d). The resulting palindromic, inverted

repeats encoding shRNA molecules were inserted downstream of

the RNA Polymerase III Promoter H1 derived from pSUPER

[33] and upstream of the poly-T termination site of the

GATEWAYH compatible linearized vector pENTR/shLib

(Fig. 1e, primary library). Excess 39 loops were removed by diges-

tion with Bam HI. The following religation yielded expression-

ready shRNA-vectors (Fig. 1e, secondary library). To generate the

final HIV-1 shRNA-library, the shRNA-sequences were subcloned

by LR recombination into the lentiviral vector pLP/EGFP/shLib

(Fig. 1e, final library) which allows for the enrichment of transduced

cell lines by puromycin selection and fluorescence monitoring by

means of enhanced green fluorescence protein (EGFP).

The combined complexity of the primary libraries was about

1.46104 (1750 colonies per kB of cDNA). Sequencing of 10

individual clones revealed 10 different HIV-1 specific shRNA-

sequences consisting of sense and antisense strand as well as the

loop sequence (not shown). Thus, our modifications allowed us to

elevate the complexity of our shRNA-library as compared to the

original technology, which utilized restriction enzymes for

fragmentation of target DNA. Furthermore, we amplified the

number of colonies by a factor of about 10 in order to maintain the

complexity of the libraries throughout the subsequent cloning steps

(Table 1). Hence, our data suggest that the randomization of a

cDNA by DNaseI produces a broader diversity and complexity of

a given library [26].

Generation and validation of library selection cell lines
In order to maximize the stringency of the selection scheme, our

method employed a fourfold combination of negative/positive

selection measures, comprising ganciclovir (negative) [27] and

blasticidin selection of stable selection cell lines (Fig. 1a) in line

with selection of the shRNA library via puromycin, and EGFP

fluorescence (positive), respectively. Several stably transduced

HeLa selection clones (HeLaTK/HIV-LIB1, HeLaTK/HIV-LIB2 and

HeLaTK/HIV-LIB3) were shown to express the HSV-TK protein

(Fig. 2b) and to be functional by means of ganciclovir induced cell

death, as visualised by crystal violet staining of adhering cells

(Fig. 2c). Furthermore, we tested if our pooled lentiviral shRNA

library is able to downregulate the HSV-TK expression in the

corresponding selection cell lines. Upon transient transfection of

the shRNA libraries into the selection cell line clones indicated by

asterisks in Fig. 2c, only the complementary library is capable of

downregulating the HSV-TK expression significantly as compared

to the non-matching libraries (Fig. 2d).

Furthermore, the proper expression of the fusion-mRNAs was

verified by Northern blot analysis of mRNA from these selection

cell lines using a HSV-TK specific probe (Fig. 2e). Finally, we

show that in the presence of puromycin and gancyclovir only the

transduction of a relevant shRNA-library into the corresponding

selection cell line enables the transduced cells to proliferate and

form colonies, suggesting that our selection design represents a

highly stringent procedure for the selection of shRNA-libraries

(Fig. 2f).

Selection of potent HIV-1 specific shRNAs
The lentiviral shRNA-libraries were stably transduced into the

corresponding selection cell lines and treated with ganciclovir in

order to select for potent shRNAs. Transduced cells were then

treated with puromycin and only surviving, EGFP positive

colonies were picked for analysis. Next, shRNAs were recovered

by nested PCR amplification of shRNA-expression cassettes [34]

from the genomic DNA of surviving cell clones. PCR amplified

shRNA cassettes were subjected to co-transfections into HEK 293

FT cells along with the HIV-1 specific luciferase reporter construct

pNL4.3luc.R-E-. Of the 200 individual cassettes tested, more than

50% inhibited luciferase activity by over 70% as measured 48h

post transfection and are thus considered as effective (Fig. 3a).

To enable a vector-based expression of those shRNA-sequences

we subcloned a collection of highly potent PCR-amplified shRNA-

expression cassettes into the GATEWAYH compatible TA-cloning

vector pENTR/TA. 36 recovered shRNA-expression cassettes

Potent HIV-1 Specific shRNAs
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Figure 1. Construction of the shRNA-library. a) The 3 HIV segments of pNL4.3 were fragmented using DNaseI and blunt-ended. b) Fragments of
150–300 bp were eluted and ligated to the 39 loop. To limit the size of the HIV-1 inverted repeats, a recognition site for MmeI, which cleaves exactly
20nt from its recognition site and leaves 2 nt 59 overhangs, was engineered into the 39 loop. c) Ligation of the 59 loop to the MmeI-digested
fragments generated a quasi-circular single-stranded structure. d) Rolling circle amplification (RCA) reactions using W 29 DNA polymerase and the
primers RCA1 and RCA2 were performed to amplify the single-stranded circular DNA and to generate the complementary strand yielding a DNA
concatemere of palindromic, inverted repeats encoding siRNA molecules. Digestion with BglII and MlyI liberated shRNA sequences which were
inserted into the expression vector pENTR/siLib. d) The shRNA sequences were cloned into the linearized pENTR/Lib generating the primary library
which was religated after BamHI digestion yielding the secondary library. The final lentiviral shRNA-library was generated by LR recombination of the
secondary library into pL/EGP/siLib.
doi:10.1371/journal.pone.0013172.g001

Table 1. Clone size of randomized shRNA-libraries.

primary library pENTR/siLib secondary library pENTR/siLib final library pL/EGFP/siLib

library 1 4.56103 cfu 1.66104 cfu .105 cfu

library 2 3.46103 cfu 1.46104 cfu .105 cfu

library 3 66103 cfu 1.56104 cfu .105 cfu

To indicate the complexity of the shRNA library, the number of bacterial colonies of each transformation step (primary library, secondary library and final library) was
documented as colony forming units (cfu).
doi:10.1371/journal.pone.0013172.t001

Potent HIV-1 Specific shRNAs
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were sequenced and their inhibitory potential was reconfirmed in

the HIV-1 specific luciferase assay described above (Fig. 3b). The

relative nucleotide positions and HIV-1 target sequences of this

selection are depicted in Figure 3b and Table 2. 24 individual

shRNAs were directed against the gag (g) and gag-pol transcript (g/

p), 2 shRNAs against vif (vif), one against rev (revE1) and one

against env (env), respectively. Subsequent BLAST analysis against

the HIV-sequence data base of the Los Alamos National Laboratory

(http://www.hiv.lanl.gov) revealed that some shRNAs target well

conserved HIV-1 sequences, whereas some target more variable

regions. It is worth emphasizing that none of our shRNA-

sequences has been described so far, pushing us to analyse the

selected sequences using RNAi design algorithms [24]. Interest-

ingly, none of our sequences matched all parameters of those

algorithms, suggesting that there are still unknown sequence

characteristics for potent siRNAs and shRNAs.

Figure 2. Generation of HIV-1 specific selection cell lines. a) HeLa selection cell lines stably express a fusion-mRNA consisting of the HSV-TK
upstream of a untranslated fragment of the HIV-1 genome (pNL4.3), that acts as target mRNA for the shRNA-library. Only cells which express an
efficient HIV-1 directed shRNA do not express HSV-TK and are able to proliferate. b) Western blot analysis of stably transduced HeLa selection cell
lines with a HSV-TK specific antibody. Parental HeLa cells were used as control. c) Selection cell lines and HeLa wt cells were functionally analysed by 8
days of ganciclovir (GCV: 261025 M) treatment. Surviving cells were stained with crystal violet. Designated clones (*) were used to select the shRNA-
library. d) Western blot analysis of HSV-TK expression in HeLa selection cell lines transiently transfected with pooled shRNA-libraries. Only relevant
libraries downregulate HSV-TK in the corresponding selection cell line. e) Expression of the fusion-mRNA was examined by Northern blot analysis
with a HSV-TK specific probe. f) Transduction and subsequent puromycin (2 days) and GCV-selection (5 days) of a relevant (shLib2) and not of an
irrelevant shRNA-library (shLib3) allows for clonal expansion of transduced cells.
doi:10.1371/journal.pone.0013172.g002

Potent HIV-1 Specific shRNAs
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These data suggest that our stringent fourfold selection protocol

yielded a high proportion of potent inhibitory shRNAs that are

unique in their sequence preferences as compared to those

predicted by publicly available design algorithms.

Antiviral activity and cellular tolerance of siRNA and
lentiviral shRNA derivatives

In eukaryotic cells, shRNAs are transcribed in the nucleus and

exported to the cytoplasm by exportin-5 where they are processed

into functional siRNAs by Dicer [35]. For that reason, we

expected a similar inhibitory potential of exogenously adminis-

tered siRNA derivatives compared to their equivalent vector based

shRNAs. 11 effective shRNA sequences were randomly selected

and synthesized as siRNAs to be co-transfected with the

corresponding selection constructs into HEK 293 FT cells.

Western blot analysis revealed that all of them were able to

inhibit the TK expression from the HSV-TK/HIV fusion-mRNA

constructs even at the lowest concentration used (Fig. 4a),

demonstrating that our shRNA sequences could also be converted

to efficient siRNAs.

It has been described that some short inhibitory sequences may

exert a cytotoxic effect which was linked to the interferon (IFN)

type I responses (IFN-a and IFN-b) [36,37]. In order to test our

sequences in that regard, we performed IFN-b ELISAs on HeLa

cells transfected with the siRNA as described previously [38]. Even

at the highest concentration used none of the above sequences

induced detectable levels of IFN-b (Fig. 4b).

In addition, we investigated the inhibitory potential of the

identified shRNA sequences with regard to wild-type HIV-1

infections. The corresponding 11 shRNAs were subcloned into the

lentiviral vector pL and stably transduced into HIV-1 permissive

HeLa P4 cells. Stable shRNA-expressing clones were infected with

wt HIV-1 and the amount of the HIV-1 capsid protein p24 was

determined in the culture supernatants by p24-antigen ELISA

42 h post infection. As shown in Fig. 4c, all cell clones expressing

the verified shRNAs showed a significant reduction of p24 in the

culture supernatant in comparison to cell clones expressing an

HIV-1 irrelevant shRNA (scr). Finally, we investigated whether

stable lentiviral expression of the shRNAs may have any

detrimental cellular effects. As shown in Fig. 4d, none of the

shRNAs impaired the division rate of the corresponding cell line

Figure 3. Reconfirmation of the inhibitory potential of selected shRNA-sequences. a) ShRNAs were PCR-amplified from genomic DNA of
selected cell clones as shRNA expression cassettes consisting of H1 promoter, shRNA-sequence and polyT. Each of the 200 individual cassettes were
co-transfected with the HIV-1 specific Luciferase reporter construct pNL4.3Luc.R-E- into HEK 293 FT cells. Luciferase expression was measured 48 h p.t.
Cells transfected with pNL4.3Luc.R-E- and a scrambled shRNA (sh scr) expressing cassette were used as control. b) Map of the identified shRNAs and
re-evaluation of their inhibitory potential upon co-transfection as described in a). Cells which were transfected with pNL4.3LucR-E- alone or co-
transfected with a scrambled siRNA control served as controls. Error bars indicate +/2 SD of mean of three independent experiments.
doi:10.1371/journal.pone.0013172.g003

Potent HIV-1 Specific shRNAs
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compared to the controls as seen by quantitative crystal violet

staining of adherent cells through four days of culture. Taken

together, our data indicate that our selected shRNAs can be

converted to potent siRNAs and exert a high inhibitory effect on

wt HIV-1 infections, when stably expressed, both without any

detectable cytotoxicity.

Comparison of H1- and U6-promoter driven shRNA-
expression

To develop an effective RNAi-based gene therapy against HIV-

1, a combinatorial approach using several shRNAs expressed from

different polymerase III promoters is supposed to be mandatory

[39]. To this end, we tested the human U6 promoter for

expression of our shRNA sequences and compared its activity

against H1 promoter driven shRNA expression. Western blot

analysis of integrase gene expression after co-transfection of the

shRNA vectors in combination with pNL4.3R-E-Luc revealed

that there is no significant difference in the efficacy of the two

promoters tested (Fig. 5a).

Additionally, we compared our newly identified shRNAs with

previously reported anti-HIV shRNAs. For this purpose, we

generated plasmids for U6 promoter driven shRNAs against gag/

pol, nef, rev and vpu/enf. The shRNAs against gag/pol [20] as

well as vpu/env [18] were directed at highly conserved regions of

the HIV-1 genome, whereas shNef [12] has been designed

according to the siRNA algorithm provided by Dharmacon and

the shRev [13] has been chosen due to the accessibility of the

target mRNA. As shown in Fig. 5b, shRNAs selected from our

randomized shRNA-library show comparable inhibitory potential

to the published shRNA sequences. To confirm this observation,

we quantified the inhibitory potential of the shRNAs by

performing luciferase assays on the lysates (Fig. 5c). Together,

these results demonstrate that our highly potent HIV-1 specific

shRNA sequences exert comparable efficacy as to the published

sequences. They could also be expressed from different promoters,

which suggest them as possible candidates for combinatorial gene-

therapeutic approaches against HIV-1.

Discussion

RNA interference by means of siRNAs and shRNAs has

emerged as a promising therapeutic approach against HIV-1 [40].

However, the design of highly efficient and specific siRNAs and

shRNAs still remains critical. This is mainly due to the absence of

a standard algorithm for the design of siRNAs [41,42]. We

generated an HIV-directed shRNA library based on the proviral

DNA of HIV-1 (NL4.3), in order to systematically identify efficient

HIV-1 specific shRNAs. Our study is the first application of a

randomly engineered shRNA-library technology on the human

immunodeficiency virus (Fig. 1). The proviral DNA of HIV-1 was

fragmented using DNase I (Fig. 1a) in order to yield diverse

overlapping cDNA-fragments [31,32]. A stringent fourfold

selection protocol based on positive selection via blasticidin,

puromycin and EGFP fluorescence as well as negative selection by

means of ganciclovir/HSV-TK in selection cell lines was applied

and enabled us to enrich for cell lines expressing potent inhibitory

shRNAs (Fig. 2). Besides their efficiency our sequences were

devoid of any detectable cytotoxicity, which is probably also due to

the stringent selection procedure (Fig. 4).

By comparing these sequences with published shRNAs, we

could show that the selection of our randomized shRNA-library

indeed identified efficient shRNAs with a comparable inhibitory

potential (Fig. 5). Many published siRNAs or shRNAs were

designed according to publicly available in silico algorithms.

Surprisingly, none of our sequences satisfied all parameters of

them. Certainly, more shRNA-sequences from randomized

libraries have to be analysed to determine general sequence

preferences. However, these functionally but not structurally

selected shRNAs may contribute to a better understanding of the

critical parameters for the design of potent siRNA and shRNA

sequences. Moreover, this information could be combined with

studies concerning the secondary structure and therefore the

accessibility of the target-mRNA, which also influences the

potential of RNAi. For this purpose Jakobsen et al. generated a

sense and antisense oligonucleotide RNA-library to identify

accessible target sites in the HIV-1 leader sequence, which is

considerably structured, and identified five particular sites [43].

It has been shown that the activity of a lentiviral vector

combining 2–3 anti-HIV shRNAs was markedly reduced with the

increasing number of shRNA expression cassettes [39] based on

recombination of repeat sequences in shRNA expression cassettes.

We conclude, that this could be abrogated using different

polymerase III promoters. Here, we could show that the shRNAs

Table 2. Specificity of shRNAs against HIV-1.

shRNA target sequence (pNL4.3) Starting nt Los Alamos hits

g 1 agctaccataatgatacaga 1454 7288

g/p 1 tcagagcagaccagagccaa 1642 8767

g/p 2 ccaccagaagagagcttcag 1668 9767

g/p 3 gagacaacaactccctctca 1699 35180

g/p Slip ctgagagacaggctaattt 1722 45201

g/p 4 gacaacaactccctctcaga 1749 10211

g/p 5 acaactccctctcagaagca 1753 3583

g/p 6 acagcgacccctcgtcacaa 1771 10267

g/p 7 tctgagagggagttgttgtc 1816 65399

g/p 8 tacaggagcagatgatacag 1873 66221

g/p 9 gtacagcctatagtgctgcc 2816 43997

g/p 10 acagctggactgtcaatgac 2822 34735

g/p 11 gtcaatgacatacagaaatt 2855 35518

g/p 12 ggcaagtcagatttatgcag 2893 33484

g/p 13 gaagcagagctagaactggc 2987 27153

g/p 14 acagagtattggcaagcaac 3302 60013

g/p 15 agagtattggcaagccacct 3304 3986

g/p 17 gagtgggagtttgtcaatac 3322 3579

g/p 18 gtcaatacccctcccttagt 3344 3456

g/p 19 actttctatgtagatggggc 3410 2931

g/p 20 aaagttgtccccctaacgga 3487 25962

g/p 22 ccagcacacaaaggaatt 4114 2825

g/p 23 ggacaagtagactgtagccc 4384 2554

g/p 24 agtactacagttaaggccgc 4142 30137

g/p 26 gtcaaggagtaatagaatct 4215 3121

vif 1 tggttttatagacatcacta 4698 3034

vif 2 gaacaagccccagaagacca 5108 4591

rev E1 gagctcatcagaacagtcag 5545 4545

env 1 tccaggcaagaatcctggct 7487 12141

a) Designation of the identified shRNAs b) shRNA-target sequence of the HIV-1
proviral clone pNL4.3 c) starting nucleotide of the shRNA based on +1 being
the transcriptional start site. d) Number of known isolates which include the
target sequence.
doi:10.1371/journal.pone.0013172.t002
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selected from our randomized library can be sufficiently expressed

from different polymerase III promoters (Fig. 5). This suggests

them as promising candidates for multiple shRNA approaches.

Although, retroviral shRNA gene therapy approaches showed

only moderate success in the case of patients suffering from X-

linked SCID [44], the durable potential of related vector systems is

undeniable. Furthermore, siRNAs, e.g. against VEGF to combat

AMD (age-related macula degeneration) [45], cytomegalovirus

retinitis [46] and RSV infections (respiratory syncitical virus) [47]

are currently being validated in clinical phase III trials,

highlighting the significance of RNA-based therapeutics [48].

Thus, we liked to examine if our selected shRNAs would be

suitable for a gene therapeutic approach against HIV-1.

Therefore, we subcloned a range of our selected shRNAs into

the lentiviral vector pL and stably transduced them into HIV-1

permissive HeLa P4 cells at a low multiplicity of infection (MOI:

0.1) to obtain low copy integrants and reduce the risk of insertional

mutagenesis. After HIV-1 infection, all HeLa P4 cell lines stably

expressing a HIV-1 specific shRNA showed a considerable

reduction in progeny virus release in comparison to scrambeled

shRNA expressing or parental cells by inhibiting the production of

progeny virus.

It has been shown that more than one shRNA against HIV-1 is

necessary to circumvent the generation of viral escape mutants

Figure 4. Convertibility of the shRNA-library species and cellular tolerance of siRNA and lentiviral shRNA derivatives. a) 11 individual
shRNAs were chemically synthesized as siRNAs and co-transfected (5 nM, 20 nM and 100 nM) with the corresponding HSV-TK selection construct into
HEK 293 FT cells. Western blot analysis with a HSV-TK specific antibody 48h p.t. revealed that the synthetic siRNAs efficiently inhibit HSV-TK
expression in a dose-dependent manner. Hsp70 was used as loading control. b) IFN-b ELISAs were performed with HeLa cells transfected with siRNAs
or poly (I:C). None of the siRNAs induced any detectable amounts of IFN-b. c) The same sequences were stably expressed as lentiviral shRNAs in the
HIV-1 permissive HeLa P4 cells. Individual clones were infected with HIV-1 and the production of p24 was determined via ELISA 42 h p.i.. d) The
viability of the clones was determined at the indicated time points using crystal violet, demonstrating no detrimental effects of shRNA expression.
Error bars indicate +/2 SD of mean of three independent experiments.
doi:10.1371/journal.pone.0013172.g004
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[19,20]. Others reported that an efficient T-cell specific delivery of

three siRNAs directed against the co-receptor for HIV CCR5 and

the viral vif and tat genes resulted in a significant suppression of

HIV-1 infections in humanized mouse models [49]. Moreover, as

an optimal strategy to prevent the emergence of escape mutants, it

has been recently proposed to combine a polymerase III driven

shRNA targeting the shared exon of tat and rev in combination

with a TAR decoy and a chimeric VA1-ribozyme targeting human

CCR5 [50]. Indeed, a pilot feasibility study using this gene

therapeutic approach is already underway [48]. We suggest that

e.g. a combination of our shRNAs vif1 or vif2 with the gag/pol

shRNAs could target all alternatively spliced viral mRNAs and

thus might provide a strong defence against HIV escape mutants

(Fig. 3, Table 2). Nevertheless, a putative application of shRNA

approaches would greatly benefit from the development of

efficient non-integrating but stable vectors. Additionally, the

present expression systems could be optimized by the use of

inducible or lineage-specific promoters that drive the shRNA

expression [51,52,53], thereby reducing possible off-target or

mutagenic effects.

Recently, three whole genome screens used siRNA libraries to

identify host genes critical for HIV infections [54,55]. These

screens have suggested hundreds of previously unrecognized host

cell genes being involved in viral propagation and replication and

hence should be considered in future approaches. Although a few

HIV-specific shRNAs have been previously described, the

increased numbers of potent and non-toxic shRNAs are probably

needed to identify an optimal set of inhibitory sequences. This is

especially true in light of the fact that shRNAs can mediate

unintentional sequence-specific and –unspecific silencing of non-

targeted genes. Our study clearly demonstrates that a stringently

selected shRNA-library is well suited for the unbiased identifica-

tion of novel potent and non-toxic shRNAs in addition to those

predicted by commonly used public algorithms.

Figure 5. Expression of the shRNAs from different polymerase III promoters. a) 6 potent shRNA sequences were subcloned to allow for U6
promoter driven shRNA expression. U6 or H1 promoter expression vectors and pNL4.3LucR-E- were co-transfected into HEK 293 FT cells. Western blot
analysis with a HIV-1 Integrase specific antibody 48 h p.t. indicated that the shRNAs can be efficiently expressed from both polymerase III promoters.
Actin was used as loading control. b) c) Published shRNA-sequences against pol, nef, rev/env, gag and vpu/env were cloned to be expressed by the
U6 promoter. These constructs as well as 14 library shRNAs and pNL4.3LucR-E- were co-transfected into HEK 293 FT cells and analysed 48 h post
transfection. Western blot analysis b) with a HIV-1 Integrase specific antibody or c) luciferase assays demonstrated that the newly identified shRNAs
are as potent as the published shRNAs. A scrambled shRNA (sh scr) and non-transfected cells were used as controls.
doi:10.1371/journal.pone.0013172.g005
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