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Background: Eosinophils develop from CD34+ progenitor cells in the bone marrow

under the influence of interleukin (IL)-5. Several cell types produce IL-5, including type 2

innate lymphoid cells (ILC2s). The alarmin cytokine IL-33 is known to activate ILC2s in

mucosal tissues, but little is known about IL-33-responsive ILC2s in the bone marrow in

allergen-induced airway inflammation.

Methods: Wild type (WT) and Rag1 deficient (Rag1−/−) mice, which lack mature T

and B cells, received intranasal doses of papain to induce acute allergic inflammation.

In some experiments, mice were pre-treated with anti-IL-5 prior to the papain challenge.

Furthermore, recombinant IL-33 was administered to WT mice, Rag1−/− mice,

lymphocyte deficient mice (Rag2−/−Il2rg−/−) and to ex vivowhole bone marrow cultures.

Bone marrow eosinophils and ILC2s were analyzed by flow cytometry. Eosinophil count

was assessed by differential cell count and secreted IL-5 from bone marrow cells

by ELISA.

Results: Intranasal administration of papain or IL-33 increased the number of mature

eosinophils in the bone marrow despite the absence of adaptive immune cells in

Rag1−/− mice. In parallel, an increased number of eosinophils was observed in

the airways together with elevated levels of Eotaxin-2/CCL24. Bone marrow ILC2s

were increased after papain or IL-33 administration, whereas ILC2s was found to

be increased at baseline in Rag1−/− mice compared to WT mice. An upregulation

of the IL-33 receptor (ST2) expression on bone marrow ILC2s was observed after

papain challenge in both Rag1−/− and WT mice which correlated to increased

number of bone marrow eosinophilia. Furthermore, an increased number of ST2+

mature eosinophils in the bone marrow was observed after papain challenge, which

was further dependent on IL-5. In addition, bone marrow-derived ILC2s from both

mouse strains produced large amounts of IL-5 ex vivo after IL-33 stimulation of

whole bone marrow cultures. In contrast, IL-33-induced bone marrow and airway

eosinophilia were abolished in the absence of ILC2s in Rag2−/−Il2rg−/− mice and

no production of IL-5 was detected in IL-33-stimulated bone marrow cultures.
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Conclusion: These findings establish bone marrow ILC2s and the IL-33/ST2 axis as

promising targets for modulation of uncontrolled IL-5-dependent eosinophilic diseases

including asthma.
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INTRODUCTION

Eosinophils are terminally differentiated granulocytes that
contribute to tissue damage and remodeling in asthmatic
airways by releasing toxic inflammatory mediators (1, 2).
Previous studies have shown that airway allergen challenge
promotes bone marrow eosinophilopoiesis in individuals with

asthma and in animal models of allergic airway inflammation
(3–11). Importantly, high levels of eosinophils have been
shown to correlate with increasing asthma severity (12).

Eosinophils develop from CD34+ progenitor cells in the

bone marrow under the influence of the interleukin family
(IL)-3, IL-5, and granulocyte-macrophage colony-stimulating

factor (GM-CSF) (13, 14). IL-5 plays an essential role in

eosinophil biology by controlling several key features, including

terminal differentiation, proliferation, and cell migration (15–

17). It was previously shown that the alarmin cytokine IL-
33 induces eosinophil lineage commitment in murine bone

marrow (18). This was suggested to be regulated by an IL-
5-dependent mechanism since blocking IL-5 prevented IL-33-
induced eosinophil expansion. However, the source of IL-5 was
not addressed in the study (18). Furthermore, Anderson et al. (11)
showed that murine allergen-challenge with Alternaria triggered
IL-33 release from the airways to induce IL-5 production by lung
type 2 innate lymphoid cells (ILC2s). Elevated levels of IL-5 were
shown to reach the circulation and promote eosinophilopoiesis
in the bone marrow (11). Indeed, ILC2s are producers of type
2 cytokines such as IL-5 and IL-13 at sites of inflammation and
have been implicated in the pathogenesis of several inflammatory
diseases, including asthma (19, 20). In addition, Nussbaum et al.
proposed that the predominant source of circulating IL-5 is from
tissue-resident ILC2s which constitutively produce IL-5 (21).
Several studies have suggested that CD4+ T cells and CD34+

progenitor cells produce IL-5 locally in the bone marrow at both
homeostatic conditions and after airway allergen challenge (22–
24). Recently, we showed that CD34+ progenitors and ILC2s,
but not CD4+ T cells produce IL-5 locally in the bone marrow
of IL-33 challenged mice (25). Interestingly, bone marrow ILC2s
were the predominant source of IL-5 which coincided with the
expansion of IL-5-responsive CD34+ progenitors following IL-
33 challenge (25). Indeed, a positive relationship between IL-
33 and eosinophilia has been demonstrated in several studies,
including reports of lower baseline levels of eosinophils in
peripheral blood in knock out mice that lack IL-33 or the IL-
33 receptor (ST2) (18). Moreover, studies of ST2 deficient mice
in allergic inflammatory settings revealed that disruption of
the IL-33 signaling pathway resulted in impaired eosinophilic
airway inflammation and reduced levels of type 2 cytokines upon

allergen challenge (26, 27). However, the contribution of IL-33-
responsive ILC2s in allergen-induced bone marrow eosinophilia
remains to be determined. Thus, in the current study we sought
to assess the role of ILC2s in the regulation of allergen- and IL-
33-induced bone marrow eosinophilia utilizing wild type (WT)
mice, Rag1−/− mice lacking mature T and B cells but retain ILCs,
and mice lacking all lymphocytes (Rag2−/−Il2rg−/−).

METHODS

Mice
All animal experiments were approved by the Gothenburg
County Regional Ethical Committee (permit number 126/14
and 2459/19). WT C57BL/6J and C57BL/6JRj mice were
purchased from Charles River (Sulzfeld, Germany) and Janvier
Labs (Le Genest-Saint-Isle, France), respectively. Rag1−/− mice
and WT C57BL/6 mice, used in some experiments, were
obtained from in-house breeding (University of Gothenburg,
Sweden). Rag2−/−Il2rg−/− mice were purchased from Taconic
(Germantown, NJ, USA). Age and sex-matched mice at 7–12
weeks of age were used in all experiments. Mice were housed
in pathogen-free conditions and were given food and water
ad libitum.

Allergen-Induced Airway Inflammation
To induce allergic airway inflammation mice were administered
10 µg papain (Sigma-Aldrich) intranasally on days 1–3 and
samples were collected 24 hours (h) after final exposure as
previously described (28). In some experiments mice received an
intraperitoneal single dose of 25 µg anti-mouse IL-5 or isotype
control (BD Biosciences, San Jose, CA, USA) 1 h before the first
exposure. In the kinetic study, mice received an intranasal single
dose of 10 µg papain and samples were collected at 3, 6, 12,
24, and 48 h. Control mice received phosphate buffered saline
(PBS) vehicle.

IL-33-Induced Airway Inflammation
IL-33-induced airway inflammation was performed as previously
described (25, 29). In brief, WT, Rag1−/−, and Rag2−/−Il2rg−/−

mice were exposed to 1 µg recombinant murine IL-33 (rmIL-33,
PeproTech, Rocky Hill, NJ, USA) by intranasal administration
on day 1, 3, and 5. Samples were collected 24 h after the final
exposure. Control mice received PBS vehicle.

Sample Collection
Bronchoalveolar lavage (BAL), blood, and bone marrow were
collected in this study. A detailed description of the sample
collection is provided in Johansson et al. (29). Cells in BAL
were processed for differential cell count analysis. Furthermore,
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cell-free BAL and serum were processed for mediator analysis
by ELISA. Bone marrow cells were isolated from left and right
femurs by flushing with wash buffer (2% fetal bovine serum,
Sigma-Aldrich, in PBS). The samples were filtered through a
100µm cell strainer (CellTrics R©, Sysmex, Goerlitz, Germany)
and red blood cells were lysed (0.1mM EDTA in distilled
water/0.15M NH4Cl, Sigma-Aldrich/Merck Chemicals) by 10
minutes (min) incubation on ice. The cells were further processed
for flow cytometric analysis, ex vivo stimulation, and differential
cell count as previously described (25).

Differential Cell Count
Approximately, 10,000–50,000 cells were used for slides (425
× g, 6min, Shandon Cytospin 3 centrifuge) and stained
with Hemacolor R© Rapid stain (Merck, Darmstadt, Germany)
according to the manufacturer’s protocol. Eosinophils were
assessed by histological examination as previously described (29).

Ex vivo Stimulation of Bone Marrow Cells
Bone marrow cells from PBS exposed WT mice were seeded
at a concentration of 2.5 x 106/ml in complete cell culture
medium: RPMI-1640 (HyCloneTM; GE Healthcare Life Sciences,
South Logan, UT, USA), 10% fetal bovine serum (Sigma-
Aldrich), 2mM L-glutamine (HyClone), 100 U/ml penicillin,
100µg/ml streptomycin (HyClone), 1mM sodium pyruvate
(Sigma-Aldrich). Cells were stimulated with rmIL-33 (100 ng/ml)
for 24 h or kept in complete culture medium as control.
Monensin (BD GolgiStopTM, BD Biosciences) was added to all
samples (4 µl/6ml) during the last 3 h of the incubation. Newly
produced IL-5 by ILC2s (SSCloLin−CD45+CD127+ST2+) was
measured by intracellular flow cytometry. Bone marrow cells
from IL-33 and PBS exposed WT mice, PBS exposed Rag1−/−

and Rag2−/−Il2rg−/− mice were cultured as described above
(2.5 × 106/ml in complete cell culture medium) with or without
rmIL-33 (100 ng/ml) for 44 h and cell-free culture supernatants
were collected for measurement of secreted IL-5 by ELISA.

Flow Cytometry
Bone marrow cells were resuspended in 2% mouse serum
(Dako, Glostrup, Denmark) and antibodies for surface
receptors were added (30min, 4◦C). Cells were washed
and fixed (BD CellFixTM, BD Biosciences, Erembodegem,
Belgium) for 15min in the dark at room temperature (RT).
Cells were washed and analyzed on a BD FACSVerseTM

Flow Cytometer running BD FACSuiteTM software (BD
Biosciences). Collected data were analyzed by FlowJo Software
(tree Star Inc, Ashland, OR, USA). Linage negative cells were
determined as CD45+CD3−CD45R/B220−CD11b−TER-
119−Ly-G6/Gr1−CD11c−CD19−NK-1.1−FceR1−.
Eosinophil progenitors, mature eosinophils, and
ILC2s were defined as SSCloCD45+CD34+IL5Rα

+,
SSChiCD45+CD34−IL5Rα

loCCR3+Siglec-F+, and
SSCloLin−CD45+CD127+CD25+ST2+, respectively. Antibodies
used are listed in Table S1. The IL-33 receptor (ST2) expression

Abbreviations: BAL, Bronchoalveolar lavage; ILC2, type 2 innate lymphoid cell;

IL, Interleukin; WT, Wild type.

was estimated by mean fluorescence intensity (MFI) values.
Relative MFI (rMFI) equals MFI of monoclonal antibody
divided by MFI of corresponding fluorescence minus one
(FMO) control.

Intracellular Staining
Cultured bone marrow cells were stained with surface antibodies
(as described above) and fixed with 4% Paraformalaldehyde
(Sigma-Aldrich) in PBS for 15min at RT in the dark. All
solutions used before fixation were supplemented withMonensin
(BD GolgiStopTM, 4 µl/6ml). Cells were permeabilized with
0.1% saponin (Sigma-Aldrich) in Hank’s balanced salt solution
(HyClone). Anti-IL-5- or isotype control antibodies were added
and cells were incubated for 40min at RT in the dark and washed
before flow cytometric analysis.

Cytokine and Chemokine Measurements
Cytokine and chemokine quantification was performed using
mouse ELISA Kits (DuoSet R©, R&D Systems, Minneapolis, MN,
USA) according to the manufacturer’s instructions. IL-5 was
measured in cell-free bone marrow culture supernatants and
serum. CCL24/Eotaxin-2 and IL-33 was measured in cell-
free BAL. Absorbance or luminescence was measured on a
VarioskanTM LUX multimode microplate reader (ThermoFisher
Scientific Vantaa, Finland). Samples below detection limit was set
to zero.

Statistical Analysis
The statistical analysis was performed with GraphPad Prism
8 Software (GraphPad Software Inc, La Jolla, CA, USA).
Kruskal-Wallis test was used to determine the variance among
more than two groups. If significant variance was found, the
nonparametric Mann-Whitney U test was used for analysis
between two independent groups. Paired Student’s t-tests were
applied for the analysis of in vitro studies. Statistical significance
was defined as ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and,
∗∗∗∗P < 0.0001.

RESULTS

IL-33-induced Bone Marrow Eosinophilia
Develops Normally in the Absence of
Adaptive Immune Cells
Investigations of the requirement of ILC2s in IL-33-mediated
bone marrow eosinophilopoiesis were carried out using Rag1−/−

mice which have an intact innate immune system, but lack
mature T and B cells. Naïve WT and Rag1−/− mice were
challenged with rmIL-33 (Figure 1A) which resulted in increased
eosinophil numbers in both bone marrow (Figures 1B,C) and
BAL (Figures 1B,D) compared to control mice that received
PBS vehicle (25). Furthermore, IL-33 challenge caused elevated
levels of the eosinophil chemokine CCL24/Eotaxin-2 in BAL in
both mouse strains where higher levels of CCL24/Eotaxin-2 were
observed in Rag1−/− mice compared to WT mice (Figure 1E).
Mature eosinophils were significantly increased in the bone
marrow of mice exposed to IL-33 (Figure 1F) whereas the
relative number of eosinophil progenitors (Figure 1G) remained
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FIGURE 1 | Adaptive immunity is dispensable for IL-33-induced bone marrow eosinophilia. (A) Wild type (WT) and Rag1−/− mice received intranasal (i.n.) challenges

of rmIL-33 or PBS vehicle and were sacrificed 24 h after the final challenge. (B) Representative cytospin preparations for quantification of eosinophils (eosin positive

cells, indicated by arrows) in bone marrow (BM) and bronchoalveolar lavage (BAL). (C) Number of eosinophils (Eos) in BM and (D) total number of Eos in BAL

analyzed by differential cell count. (E) Concentration of CCL24/Eotaxin-2 in BAL measured by ELISA. (F) Number of mature eosinophils (Mat Eos) and (G) eosinophil

progenitors (EoPs) among all CD45+ BM leukocytes. Data are representative of two to four independent experiments (n = 5–12/group) and displayed as the mean ±

SEM. Mann-Whitney U test. **P < 0.01, and ****P < 0.0001. ns, not significant.

unchanged. Importantly, WT and Rag1−/− mice responded with
a similar increase of eosinophils after IL-33 challenge, suggesting
that adaptive immunity is dispensable in both IL-33-driven
eosinophil production and recruitment of eosinophils from the

bone marrow. Thus, in the current study by using Rag1−/−

mice, we confirm our previous findings suggesting that bone
marrow ILC2s support eosinophil development in WT mice in
IL-33-induced inflammation (25).
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FIGURE 2 | IL-33-responsive ILC2s produce IL-5 in both Rag1−/− and WT bone marrow. (A) Number of type 2 innate lymphoid cells (ILC2s) among all CD45+

leukocytes, and (B) total number of ILC2s in the bone marrow. (C) IL-33 receptor (ST2) expression on ILC2s showed as relative mean fluorescence intensity (rMFI) in

the bone marrow of wild type (WT) and Rag1−/− mice exposed to IL-33 or PBS control. (D) Representative dot plots of IL-5+ ILC2s following ex vivo stimulation with

IL-33 or unstimulated medium controls (values indicate percent of the parent population). (E) Fold change ST2 MFI (MFI of IL-33 stimulated cells divided by MFI of

unstimulated control cells). (F) Number of IL-5+ cells among ILC2s. Data are representative of two to four independent experiments (n = 4–7/group) and displayed as

the mean ± SEM. Mann-Whitney U test and paired t-test (D). *P < 0.05, **P < 0.01, and ***P < 0.001. ST2 = IL-33 receptor.

IL-33-Responsive ILC2s Produce Large
Amounts of IL-5 in Both Rag1-/- and WT
Bone Marrow
The number of bone marrow ILC2s in Rag1−/− mice
were significantly increased when compared to WT controls
(Figures 2A,B) at baseline. Thus, IL-33 challenge resulted in a
significant increase of ILC2s in WT bone marrow only, and not
in bone marrow from Rag1−/− mice (Figure 2A). Moreover,
ILC2s from bothmouse strains responded to IL-33 challenge with
increased ST2 expression (Figure 2C). Of note, 100% of bone
marrow ILC2s (SSCloLin−CD45+CD127+CD25+) in PBS and
IL-33 challenged mice were ST2+, while IL-33 challenge further
increased the ST2 receptor expression (Figure 2C). Furthermore,
these results were consistent with an approximate 2-fold
upregulation of ST2 expression evaluated after IL-33 stimulation
of WT and Rag1−/− bone marrow cells ex vivo (Figure 2D). In

addition, stimulation with IL-33 in ex vivo cultures generated
high levels of IL-5+ ILC2s in both mouse strains (Figures 2E,F),
which suggests that bone marrow ILC2s contribute to IL-
33-induced eosinophil development in vivo independent of
adaptive immunity.

Intranasal Administration of Papain
Induces Bone Marrow Eosinophilia in
Rag1–/– Mice
To investigate eosinophil development and the downstream
effects of IL-33 in allergic inflammation WT and Rag1−/−

mice were subjected to a model of allergic inflammation
using the protease allergen, papain (Figure 3A). Increased
numbers of eosinophils in both bone marrow (Figure 3B)
and BAL (Figure 3C) were detected in WT and Rag1−/−
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FIGURE 3 | Papain induced IL-33-driven eosinophilic inflammation is similar in Rag1−/− and WT mice. (A) Wild type (WT) and Rag1−/− mice received intranasal (i.n.)

challenges of papain or PBS vehicle and were sacrificed 24 h after the final challenge. (B) Number of eosinophils (Eos) in bone marrow (BM) and (C) total number of

Eos in BAL analyzed by differential cell count. (D) Concentration of CCL24/Eotaxin-2 and (E) IL-33 in BAL measured by ELISA. (F) Fold change (FC) in numbers of

eosinophil progenitors (EoPs), (G) mature eosinophils (Mat Eos) and (H) ST2+ Mat Eos among all CD45+ BM leukocytes in mice exposed to papain compared to PBS

control. Data are representative of at least three independent experiments (n = 7–14/group) and displayed as the mean ± SEM. Mann-Whitney U test. *P < 0.05,

**P < 0.01, ***P < 0.001, and ****P < 0.0001. ST2 = IL-33 receptor.

mice following papain challenge. Furthermore, both WT and
Rag1−/− mice demonstrated elevated levels of CCL24/Eotaxin-2
and IL-33 in BAL following papain challenge (Figures 3D,E)

allowing mature eosinophils to migrate toward the airways. A
marginally decreased relative number of eosinophil progenitors
was observed (Figure 3F and Figure S1A) whereas an
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FIGURE 4 | Protease allergen challenge makes bone marrow ILC2s susceptible to IL-33 by upregulation of the ST2 receptor. (A) Number of type 2 innate lymphoid

cells (ILC2s) among all CD45+ leukocytes, and (B) fold change MFI (mean fluorescence intensity) IL-33 receptor (ST2) expression on ILC2s in the bone marrow (BM)

of wild type (WT) and Rag1−/− mice exposed to papain compared to PBS control. (C) Correlation plot of relative MFI (rMFI) ST2 on ILC2s and the number of BM

eosinophils (Eos) in WT and Rag1−/− mice from two representative experiments (D) Correlation plot of ST2+ mature eosinophils and ST2 expression on ILC2s in the

BM of papain challenged WT and Rag1−/− mice compared to PBS controls presented as fold change (FC). Data are representative of three independent experiments

unless stated otherwise (n = 7–11/group) and shown as the mean ± SEM. Correlation were performed by using Spearman’s rho, with rS indicating the Spearman

correlation coefficient. Mann-Whitney U test. **P < 0.01. ST2 = IL-33 receptor.

approximate 2-fold increase of mature eosinophils was found in
papain-challenged WT and Rag1−/− mice compared to
saline exposed control mice (Figure 3G and Figure S1B). We
have previously reported a higher amount of ST2+ mature
bone marrow eosinophils in IL-33 induced inflammation
(25). We next investigated the amount of ST2+ mature
bone marrow eosinophils during allergic inflammation and
whether adaptive immunity is required for the generation
of ST2-expressing eosinophils. An increase of ST2+ mature
eosinophils was detected in WT and importantly, elevated
levels of ST2+ mature eosinophils were also detected in
papain challenged Rag1−/− mice (Figure 3H and Figure S1C).
Altogether, these results indicate that adaptive immunity
is not required for induction of papain-driven eosinophilic
inflammation in the bone marrow where IL-33 is an
important mediator.

Protease Allergen Challenge Induces an
Increased ST2 Expression on Bone Marrow
ILC2s Which Correlates to Bone Marrow
Eosinophilia
An increased relative number of bone marrow ILC2s was

observed in WT mice airway challenged with papain compared

to PBS exposed control mice whereas Rag1−/− mice had a

higher number of bone marrow ILC2s already at baseline
(i.e., PBS exposed control) (Figure 4A). Bone marrow ILC2s

from both WT and Rag1−/− mice upregulated ST2 expression

after papain challenge, which is crucial for the activation

of ILC2 effector functions (Figure 4B). Moreover, high ST2

expression on ILC2s demonstrated a positive correlation with

both increased bone marrow eosinophilia (Figure 4C) and an
increased number of ST2+ mature eosinophils (Figure 4D).
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FIGURE 5 | Kinetic profile of bone marrow ILC2s and eosinophilia post protease allergen challenge. (A) Wild type (WT) mice received one dose PBS or papain

intranasally (i.n.) and were sacrificed at 3, 6, 24, 48, and 72 h. (B) Number of eosinophils (Eos) in bone marrow (BM) and (C) total number of Eos in BAL analyzed by

differential cell count. (D) IL-33 receptor (ST2) expression on ILC2s shown as delta mean fluorescence intensity (1MFI) in the BM of wild type (WT) mice challenged

with papain compared to PBS vehicle mice where PBS equals zero (dotted line). (E) Concentration of CCL24/Eotaxin-2 and (F) IL-33 in BAL measured by ELISA.

Data are representative of one experiment (n = 3–5/group) and displayed as the mean ± SEM (D) or mean with min/max values represented by error bars (B,C,E,F).

Collectively, these data indicate that IL-33-responsive bone
marrow ILC2s contribute to allergen-induced bone marrow and
airway eosinophilia.

Bone Marrow ILC2s Upregulate ST2
Expression Within 24h After Airway Papain
Challenge
We next performed a time course to identify when bone marrow
ILC2s respond to the inhaled protease allergen papain. WT mice
were exposed to a single dose of papain intranasally (Figure 5A).
Elevated levels of eosinophils in bone marrow were detected

at 48 h (Figure 5B) whereas a higher relative number of BAL
eosinophils was seen at 24 h (Figure 5C). In line with increased
eosinophil levels in the airways there was a significant increase
of ST2 expression on ILC2s in the bone marrow (Figure 5D).
Additionally, high levels of BAL CCL24/Eotaxin-2 (Figure 5E)
and a trend toward elevated IL-33 levels in BAL (Figure 5F)
were detected at this time point. At 48 h, the ST2 expression on
bone marrow ILC2s was significantly lower and CCL24/Eotaxin-
2 and IL-33 levels in BAL showed a trend toward decreased
levels. At 72 h the inflammation in the airways was resolved
where BAL eosinophil levels were similar to control mice
(Figure 5C). In line with these data, the ST2 expression on bone
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FIGURE 6 | Lymphocyte deficient mice are unable to develop IL-33-induced bone marrow and BAL eosinophilia. (A) Wild type (WT) and Rag2−/− Il2rg−/− mice

received intranasal (i.n.) challenges of rmIL-33 or PBS vehicle and were sacrificed 24 h after the final challenge. (B) Representative cytospin preparations for

quantification of eosinophils (eosin positive cells, indicated by arrows) in bone marrow (BM) and bronchoalveolar lavage (BAL). (C) Number of eosinophils (Eos) in BM

and (D) total number of Eos in BAL analyzed by differential cell count. (E) Number of eosinophil progenitors (EoPs) and (F) mature eosinophils (Mat Eos) among all

CD45+ BM leukocytes. Data are representative of one experiment (n = 3–6/group) and displayed as the mean ± SEM. Mann-Whitney U test. *P < 0.05 and

**P < 0.01.

marrow ILC2s was significantly decreased along with lower BAL

CCL24/Eotaxin-2 and IL-33 levels. These data suggest that

eosinophils are no longer recruited to the airways at 72 h post
airway challenge. Collectively, our results suggest that bone

marrow ILC2s act rapidly in response to an inhaled allergen by

upregulating its ST2 receptor expression in the bone marrow at

the onset of eosinophil development.

Mature Eosinophils are Unable to Develop
in Absence of ILC2s in Rag2–/–Il2rg–/– Bone
Marrow
To determine whether IL-33-induced eosinophilia can develop in
the absence of ILC2s, we challenged naïve lymphocyte deficient
Rag2−/−Il2rg−/− mice with rmIL-33 (Figure 6A). No induction
of eosinophils was detected by differential cell count analysis
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of the bone marrow (Figures 6B,C) and BAL (Figures 6B,D)
samples from Rag2−/−Il2rg−/− mice. The relative number of
eosinophil progenitors was lower in Rag2−/−Il2rg−/− bone
marrow compared to WT (Figure 6E). The most dramatic
difference was observed in the number of mature eosinophils
which was severely impaired in the bone marrow of both
IL-33 and PBS challenged Rag2−/−Il2rg−/− mice (Figure 6F).
Together, these data suggest that innate lymphocytes are essential
for the maintenance of eosinophils under homeostatic conditions
as well as for the maturation of eosinophils in response to
inflammatory signals.

Absence of the Adaptive Immune System
Results in Higher Levels of IL-5 in
IL-33-Induced Inflammation
Both systemic IL-5 and local IL-5 production have been suggested
to regulate eosinophil development and maturation in the bone
marrow (11, 21, 25). Next, we analyzed the concentration of IL-5
in serum from WT, Rag1−/− and Rag2−/−Il2rg−/− mice. IL-
33 challenge significantly increased levels of IL-5 in serum of
WT and Rag1−/− mice but not in serum of Rag2−/−Il2rg−/−

mice (Figure 7A). Notably, the level of serum IL-5 was higher
in IL-33 challenged Rag1−/− mice compared to WT mice
(Figure 7A), which might be associated with a greater number of
ILC2s in the bone marrow of Rag1−/− mice. Furthermore, bone
marrow cultures from WT and Rag1−/− mice stimulated with
IL-33 accumulated IL-5 in the culture media, but no IL-5 was
detected in cultures from Rag2−/−Il2rg−/− mice (Figure 7B).
Interestingly, we found that bone marrow cultures generated
from in vivo IL-33 challenged mice produced significantly more
IL-5 upon IL-33 re-stimulation ex vivo (Figure 7C). This result
suggests that in IL-33 challenged mice presenting an increased
expression of ST2 on bone marrow ILC2s makes the cells
more susceptible to IL-33, thus, potentially leading to a higher
production of IL-5, which in turn drives eosinophil development.

IL-5 is Required for Allergen-Induced
Eosinophilic Inflammation Despite the
Absence of an Adaptive Immune System
To assess whether IL-5 is required in the development and
maturation of bone marrow eosinophilia in Rag1−/− and
WT mice, mice were pre-treated with anti-IL-5 antibodies
1 h before the dose regimen of intranasal papain exposures
(Figure 8A). Anti-IL-5 treated papain challenged Rag1−/− and
WT mice were unable to induce eosinophilia in the bone
marrow (Figures 8B,D) and BAL (Figure 8C). Moreover, a
decreased number of ST2+ mature eosinophils was seen in both
mouse strains treated with anti-IL-5 (Figure 8E). Interestingly, a
significant decrease of the ST2 expression on mature eosinophils
was observed in both Rag1−/− and WT mice (Figure 8F). These
findings suggest link between IL-5 levels and ST2 expression
on eosinophils in the bone marrow. The relative number of
eosinophil progenitors (data not shown) and ILC2s were not
affected by anti-IL-5 treatment (Figure S2). Collectively, these
data show that papain induced eosinophilic inflammation is
dependent on IL-5 and that IL-5 levels might regulate ST2

expression on bone marrow eosinophils which in turn drives
the maturation of eosinophil within the bone marrow. In
addition, the absence of IL-5-producing T cells in Rag1−/−

mice make bone marrow ILC2s a potential local source
of IL-5.

DISCUSSION

A growing body of evidence links IL-33 to initiating events
that occur during allergen exposure. Important findings include
the identification of IL-33 and ST2 as major susceptibility loci
in several genome-wide association studies of allergic diseases
(30–35). In addition, a loss-of-function mutation in the Il33
gene has been reported to be associated with lower number of
blood eosinophils and a reduced risk of developing asthma (36).
Moreover, vaccination against IL-33 reduced airway eosinophilia
and airway hyperresponsiveness in a mouse model of HDM-
induced asthma, propose IL-33 as a promising target for asthma
intervention (37). A major finding in our study is that ST2+

ILC2s in the bone marrow is activated upon one intranasal dose
of the protease allergen papain within 24 h. This was followed
by an increased number of eosinophils in the bone marrow and
airways.Many studies of the ILC2 potent alarmin IL-33 in allergic
diseases have focused on barrier tissues such as the lung, but
our findings suggest that IL-33 has additional roles in the bone
marrow. Analysis of ILC2s in naïvemice show that bonemarrow-
derived ILC2s exhibit a 6-fold higher ST2 expression compared
to lung-derived ILC2s (29). It is possible that the expression
level of ST2 is related to differential stages of ILC2 development
in the bone marrow (i.e., ILC2 precursors) (38) vs. the lung,
but more importantly, it indicates that IL-33 signaling plays a
role in both compartments. Constantly exposed to the inhaled
environment, ILC2s in the airway mucosa are indeed located in a
prime position to react to IL-33. The bone marrow on the other
hand is privileged in this respect and the high ST2 expressionmay
suggest that bone marrow ILC2s are more sensitive to IL-33, thus
even low levels of IL-33 might be enough to activate the cells at
a distance.

Several immune cells express ST2 including eosinophils
and can thereby produce proinflammatory mediators upon
activation (39). We show that both the number of mature
eosinophils in the bone marrow and the ST2 expression on these
cells increases upon protease allergen challenge (Figures 3G,H).
These results are in line with a recent study demonstrating
an increased number of ST2-expressing sputum and blood
eosinophils post 24 h allergen challenge in allergic asthmatics
(40). Furthermore, our study show that the ST2 expression
was dependent on IL-5 demonstrated by the use of anti-IL-5
treatment (Figures 8E,F) suggesting a link between IL-5 and
ST2 expression on eosinophils. Prospective studies have to
be carried out in order to determine whether IL-5 directly
or indirectly regulate the ST2 expression on eosinophils. We
further demonstrate that ST2+ mature eosinophils positively
correlate with an increased ST2 receptor expression on ILC2s,
suggesting both cell types being IL-33-responsive simultaneously
in allergen-induced eosinophilic inflammation. Previous studies
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FIGURE 7 | Absence of IL-5 in IL-33 challenged lymphocyte deficient mice. (A) Concentration of IL-5 in serum of wild type (WT), Rag1−/− and Rag2−/− Il2rg−/− mice

exposed to IL-33 or PBS. (B) IL-5 in culture medium of bone marrow (BM) cells stimulated with rmIL-33 (100 ng/ml) for 44 h or unstimulated medium controls. (C) IL-5

in the culture medium of BM cells from IL-33 challenged or PBS controls (in vivo) followed by restimulation with rmIL-33 (100 ng/ml) ex vivo for 44 h or unstimulated

medium controls. Data are representative of four independent experiments (n = 2–12/group) and shown as the mean ± SEM. Mann-Whitney U test and paired t-test

(B). *P < 0.05, **P < 0.01, and ***P < 0.001.

have investigated IL-33-responsive blood eosinophils in atopic
subjects in terms of effects on adhesion, degranulation and
chemotaxis (39, 41). Eosinophils were more adherent and potent
in degranulation upon IL-33 stimulation whereas no effects was
observed on chemotaxis (39, 41). Moreover, the IL-33/ST2/IL-5
axis was recently shown to influence eosinophilopoiesis where
ST2 deficient mice challenged with the fungal Alternaria
exhibited lower levels of IL-5 in serum and a decreased relative
number of eosinophils in the bone marrow (11). In addition,
it has been shown that the increased number of IL-5+ blood
eosinophils from allergic asthmatics observed after IL-33
stimulation was attenuated by treatment with either anti-ST2
monoclonal antibody, soluble ST2 or the combination of the
two (40). An emerging interest in targeting IL-33 and its
receptor ST2 with pharmacological treatments in individuals
with respiratory diseases including asthma can be seen with
examples such as SAR440340 (ClinicalTrials.gov identifier,

NCT03546907) from Regeneron Pharmaceuticals and Sanofi,
MSTT1041A (ClinicalTrials.gov Identifier: NCT02918019)
from Hoffmann-La Roche, GSK3772847 (ClinicalTrials.gov
Identifier: NCT03207243) from GlaxoSmithKline and
etokimab (ClinicalTrials.gov Identifier: NCT03469934)
from AnaptysBio. Moreover, the anti-IL-33 or anti-ST2
strategy may hold a potential clinical future outside the
field of respiratory diseases with allergy or atopic dermatitis
as examples.

Interestingly, we observed an increased relative number of
bone marrow ILC2s and an upregulation of ST2 expression
on these cells after intranasal challenges with the allergen
protease papain. These findings were also observed in IL-33
challenged mice which are in line with previous reports (42–
44). In contrast, Stier et al. recently reported a decreased
number of progenitor ILC2s in the bone marrow upon acute
exposure to the fungal allergen Alternaria (45). This process
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FIGURE 8 | Neutralization of IL-5 disrupts ST2 expression on bone marrow eosinophils and abolish protease allergen-induced eosinophilic inflammation (A) Wild type

(WT) and Rag1−/− mice were pre-treated with anti-IL-5 (αIL-5) or isotype control (IC), received intranasal (i.n.) challenges of papain and sacrificed 24 h after the final

challenge. (B) Number of eosinophils (Eos) in bone marrow (BM) and (C) total number of Eos in BAL analyzed by differential cell count. (D) Number of mature

eosinophils (Mat Eos) among all CD45+ BM leukocytes. (E) Number of ST2+ Mat Eos in BM. (F) ST2 expression on BM Mat Eos shown as relative mean fluorescence

intensity (rMFI). Data are representative of three independent experiments (n = 4–6/group) and displayed as the mean ± SEM. Mann-Whitney U test. *P < 0.05,

**P < 0.01. IC is isotype control. ST2 = IL-33 receptor.

was indeed dependent on IL-33 signaling as both ST2 and IL-
33 deficient mice demonstrated lower numbers of ILC2s in
peripheral tissues while progenitor ILC2s accumulated in the
bone marrow (45). Furthermore, we have unpublished data
revealing an increased ST2 expression on bone marrow ILC2s in
HDM-sensitized mice, thus strengthen a role for bone marrow
ILC2s at an early stage of eosinophilic inflammation caused by
a variety of allergens. In line with our results, Brickshawana
et al. showed that IL-33 stimulation increased ST2 expression
and IL-5 production in an early study of bone marrow ILC2s
(42). However, the functional implication of IL-33-responsive
ILC2s in the development of eosinophilia was not addressed in
their study.

Importantly, we identified IL-5+ bone marrow ILC2s in IL-33
induced inflammation and we demonstrate by neutralizing IL-5
in vivo, that IL-5 is essential in eosinophilic inflammation in the
bone marrow in response to the protease allergen papain. We
further demonstrate that bone marrow ILC2s are able to respond
within 24 h by increased ST2 expression to an intranasal single

dose of papain. At 48 h, the ST2 expression on ILC2s was starting
to decrease and simultaneously eosinophils were increased in the
bone marrow. In addition, a similar increased relative number
of mature bone marrow eosinophils was found after papain
challenge in Rag1−/− mice lacking adaptive immune cells, but
with an intact innate immune system including functional ILC2s.
Therefore, bone marrow ILC2s, in addition to airway ILC2s,
are a possible early source of IL-5 in allergic diseases including
asthma (46). Likewise, restimulation with IL-33 ex vivo revealed
that bone marrow cultures from IL-33 exposed mice produced
larger amounts of IL-5 compared to bone marrow cultures from
PBS control mice (Figure 7C). Indeed, it has previously been
discovered that allergen-experienced airway ILC2s responded
more vigorously to a second challenge compared to naïve ILC2s
(47) and that ILC2s previously exposed to papain or rmIL-33
displayed higher responsiveness even to unrelated allergens (47).
Innate immune memory is an emerging field with important
implications in ILC2 biology that might extend to ILC2
functions in the bone marrow, with potential consequences
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such as increased eosinophil hematopoiesis in allergic
subjects (4, 7, 9, 48).

In our continued analysis of the requirement of ILC2s in
IL-33-driven eosinophilic inflammation, we demonstrate for
the first time that Rag1−/− mice display normal eosinophil
development in the bone marrow in both direct IL-33- and
in protease allergen-induced eosinophilic inflammation. This
result eliminates a contribution from the adaptive immune
system during acute airway inflammation and adds a functional
effect of ILC2s in the bone marrow. Interestingly, we observed
a significant increased relative number of ILC2s in the bone
marrow of Rag1−/− mice compared to WT mice. In addition,
IL-33 challenged Rag1−/− mice also demonstrated higher levels
of serum IL-5 and CCL24/Eotaxin-2 in BAL compared to WT.
These excessive responses might reflect a lack of inhibitory
signals that are mediated by adaptive immune cells and should
be further assessed in prospective studies. For instance, ST2+ T
regulatory cells have been described to be superior to ST2− T
regulatory cells in suppressing type 2 inflammation (49). Further,
Rag1−/− mice also exhibited a wide range of bone marrow ILC2s
at both baseline and upon airway challenge. These data might
indicate heterogeneity in the ILC2 population.

A striking result in our study was that Rag2−/−Il2rg−/− mice
displayed a reduced number of bone marrow eosinophils at
baseline and were unable to develop bone marrow eosinophilia
in response to IL-33 challenge. These findings clearly show
that innate lymphocytes are essential for the development of
eosinophils and we found it interesting that the difference
was more apparent in the number of mature eosinophils
compared to eosinophil progenitors, which might reflect the
critical role of IL-5 for terminal differentiation and maturation
of eosinophils. Indeed, no IL-5 production was detected in bone
marrow cultures from Rag2−/−Il2rg−/− mice and the level of
serum IL-5 was below detection limit. Moreover, we show that
Rag2−/−Il2rg−/− mice are unable to develop airway eosinophilia,
which is consistent with a previous study where airway eosinophil
numbers were restored upon adoptive transfer of ILC2s to
Rag2−/−Il2rg−/− mice (28).

We conclude that IL-33 plays important roles for the
initiation of bone marrow eosinophilia where IL-33-responsive
bone marrow ILC2s contribute to allergen-induced IL-
5-dependent eosinophilic inflammation. Identification
of mechanisms that regulate eosinophilic inflammation
is critical for developing new therapies of uncontrolled
eosinophilic asthma.
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Figure S1 | (A) number of eosinophil progenitors (EoPs) and (B) mature
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∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001. ST2 = IL-33 receptor.

Figure S2 | Number of type 2 innate lymphoid cells (ILC2s) among all CD45+

leukocytes in wild type (WT) and Rag1−/− mice pre-treated with anti-IL-5 (αIL-5) or

isotype control (IC) 1 h prior to intranasal (i.n.) challenges of papain (Figure 8A).

Table S1 | Antibodies used in flow cytometry.
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