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Abstract
In this paper, I posit that froma research point of view,Data Science is a language.More preciselyData Science is doingScience
using computer science as a language for datafied sciences; much as mathematics is the language of, e.g., physics. From this
viewpoint, three (classes) of challenges for computer science are identified; complementing the challenges the closely related
Big Data problem already poses to computer science. I discuss the challenges with references to, in my opinion, related,
interesting directions in computer science research; note, I claim neither that these directions are the most appropriate to solve
the challenges nor that the cited references represent the best work in their field, they are inspirational to me. So, what are
these challenges? Firstly, if computer science is to be a language, what should that language look like? While our traditional
specifications such as pseudocode are an excellent way to convey what has been done, they fail for more mathematics like
reasoning about computations. Secondly, if computer science is to function as a foundation of other, datafied, sciences, its own
foundations should be in order. While we have excellent foundations for supervised learning—e.g., by having loss functions
to optimize and, more general, by PAC learning (Valiant in Commun ACM 27(11):1134–1142, 1984)—this is far less true
for unsupervised learning. Kolmogorov complexity—or, more general, Algorithmic Information Theory—provides a solid
base (Li and Vitányi in An introduction to Kolmogorov complexity and its applications, Springer, Berlin, 1993). It provides
an objective criterion to choose between competing hypotheses, but it lacks, e.g., an objective measure of the uncertainty of a
discovery that datafied sciences need. Thirdly, datafied sciences come with new conceptual challenges. Data-driven scientists
come up with data analysis questions that sometimes do and sometimes don’t, fit our conceptual toolkit. Clearly, computer
science does not suffer from a lack of interesting, deep, research problems. However, the challenges posed by data science
point to a large reservoir of untapped problems. Interesting, stimulating problems, not in the least because they are posed by
our colleagues in datafied sciences. It is an exciting time to be a computer scientist.

Keywords Data mining · Data science · Inductive inference

1 Introduction

Themost important observation one canmake regardingData
Science is that its advent signals the end of the era in which
Computer Science was under the purview of computer scien-
tists. Started by, among others, mathematicians, physicists,
and engineers, computer science evolved into an indepen-
dent research area [60]. An area with its own traditions and
culture determining what is considered good research, what
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the important problems are, andwith its own publishing stan-
dards.

However, now, due to the digitization—or perhaps more
apt, datafication—of all of academia, computer science is
quickly becoming an integral part of all areas of academic
endeavor. Storing, manipulating and analyzing vast amounts
of data of a bewildering variety of types are becoming the
core of many new approaches to science, any kind of science.

Bioinformatics [36,38] is probably the first, and arguably
the biggest, example of the datafication of a science, but other
sciences are following quickly. From the Social Sciences
(computational social science [15]), to the Humanities (digi-
tal humanities [13]) to Education (learning analytics [55]) to
Astronomy (sky surveys [71]). All of these areas have their
own problems, invent their own solutions and have their own
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view on what the important problems are, what marks a good
solution, andhave their ownpublishing standards and culture.
Some of these problems, and their solutions, can be consid-
ered as computer science while others can not. But, when it
is computer science, it is computer science performed and
published outside the computer science community.

The umbrella term catching all these disparate research
areas is Data Science. That is, to me, data science is the
union of datafied research in all of academia. The question I
discuss in this position paper iswhat impact the advent of data
science has on computer science. What challenges does data
science pose to computer science? Note that I only discuss
challenges to computer science research, not to education.
This is not to be construed as that I am against Master or
Bachelor programs offering a solid base in the computational
aspects of Data Science. Far from it, like (almost) everyone
else, I’m enthusiastically involved in such initiatives. It just
means that I think that the research challenges posed are even
more exciting.

Clearly, data science is still very new; hence, this is just a
preliminary list of some challenges, far from an exhaustive
survey. Many challenges, of which we have no inkling at the
moment, will appear while data science evolves into its own
independent researchfield.Moreover, I’ll limitmyselfmostly
to that part of computer science I ammost familiar with, viz.,
machine learning and data mining. I do hope, however, that
the challenges I discuss illustrate the breadth and the depth
of the challenges for all of computer science. Even more I
hope they illustrate that the advent of data science is good
for computer science; if possible, it makes it even more fun
to be a computer scientist.

I will restrict myself to the academic context. This is not
to be read as stating that data science is not relevant out-
side academia. Far from it, data science is arguably far more
important outside academia than inside. The reason to restrict
myself to academia is that this context makes it possible to
point out challenges that are more difficult to discern in the
torrent of non-academic applications. I am sure that the points
I make and the challenges I identify are equally valid in the
wider context.

Note that the restriction to the academic setting has as a
consequence that we restrict ourselves mostly to the data-
driven science aspects of data science. Clearly, there is more
to data science than just data-driven science. The science of
data is an example of the wider notion and one that points
to interesting challenges as well. A discussion of those chal-
lenges is, however, beyond the scope of this paper.

The reader may already have noted I (mis)use the term
science to stand for all areas of academic endeavor, very
much like the word Wissenschaften in German or Weten-
schappen in Dutch. While the term Science is generally used
in the more restricted sense of natural sciences, this broader
understanding is cromulent according to the Oxford English

Dictionary. Moreover, using this broad understanding of the
term Science makes writing—and hopefully reading—this
position paper a lot easier.

Finally, in an area like machine learning, it is hard to make
a distinction between computer science and statistics. The
gap between two cultures Leo Breiman discerned [12] seems
to have all but gone, because of the ever growing dependence
on computational methods.1 A process that is, perhaps, best
illustrated in the chronological presentation of methods in
[23]. So,while I use the terms computer science and computer
scientist, the whole discussion is equally valid for statistics
and statisticians; in fact, equally valid for anyone working
on the foundations of data science. Restricting my self to
the term computer science—rather than writing “computer
science and statistics” everywhere—again makes the writing
(and hopefully the reading) of this paper easier. I hope that
this choice is not a major put-off to statisticians.

2 Data Science

To formulate challenges that data science poses to computer
science, it is necessary to discuss data science itself. What is
this data science?

Historically, data science has been posed as an alternative
name for computer science by Peter Naur and, later, by C.-F.
JeffWu and others, as an alternative name for statistics. Now,
it is most often used as a name for the field that arises out of
the datafication of all the sciences.

The most important implication of that observation is
that data science is not computer science. The close sec-
ond is that data science is not an interdisciplinary—or
multidisciplinary—affair. To start with the former, a historian
is out to answer historical questions, not to answer computer
science questions. She may need to solve CS problems to
answer her historical questions, but the interest is on the lat-
ter. That is, both the problems and their proposed solutions
are evaluated from the point of view of a historian.

This doesn’t preclude that an area like history
informatics—which is solely concerned with developing
solutions for historians—may arise in the not to distant
future. It does preclude that area will be just another com-
puter science area. A journal like Bioinformatics is really
different from a regular computer science journal, relegat-
ing crucial—to computer scientists(!)—information to the
Supporting Information.2 Moreover, contributions are not
primarily evaluated on their computer science merits, learn-

1 I hope that the datafication of all sciences will do the same for the—
more famous—two cultures Snow [56] distinguished, by giving them a
common language.
2 This also happens when computer scientists publish in not-primarily
computer science journals, see e.g., [39] for an example.
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ing analytics tools that do not align with current pedagogical
theories will not be seen as valid, however elegant the com-
puter science aspects are.

This may be seen as an argument to see data science as
an interdisciplinary field. But it isn’t. True, each separate
field—like bioinformatics or history informatics—may be
seen as an interdisciplinary field, albeit with its own cul-
ture and standards as noted above. A computer scientist
willing to learn enough of the host science to understand
the problems and what makes a valid solution can prob-
ably make important contributions. But solutions that are
valid in one corner of data science—say, bioinformatics—is
not necessary a valid solution in another corner, say history
informatics.

This is also the reason why data science is not multidis-
ciplinary. Biologists with data problems do not necessarily
always havemuch in commonwith historianswith data prob-
lems. Some problems and/or their solutions will be common;
others will be area specific.

It may be nice to know what it isn’t, but it is more use-
ful to know what it is. So, what is data science? That is
easy:

Data Science is a language

A computer science kind of language, its vocabulary con-
tains words like algorithms, data structures, queries, and so
on. However, the sentences uttered in that language are not
necessarily computer science. Rather,

Data Science is a language in which scientists – often
from disciplines other than computer science – can talk
about problems and their solutions in their discipline
that involve the storage, manipulation, or analysis of
(large amounts of) data.

There will be many dialects of Data Science, dialects that
allow a scientist to formulate problems in her own science
precisely. But all these dialects will contain a common core,
viz., algorithmic thinking and algorithms. A core that allows
scientists to talk about the computational problems and solu-
tions involved in solving their science problem. A core that
is Computer Science. That is,

Data Science is Computer Science as a language.

2.1 What is computer science as a language?

To explain what we mean with “computer science as a lan-
guage”, we start with an analogy.

Without a thorough grounding inmathematics, it is impos-
sible to read a basic law of physics, like Maxwell’s

∇ × E = −∂B

∂t

In fact, without proficiency in mathematics, it is impossible
to do physics. For example, to derive that a body of mass M
bends a ray of light at distance r by

θ = 4GM

c2r

from Einstein’s general relativity law:

Gμν + Λgμν = 8πG

c4
Tμν

one needs to be rather adept in manipulating expressions
according to the “laws” of mathematics.

Physics, or more poetically The Book of Nature, is writ-
ten in mathematics. Mathematics is the language of physics.
As Plato allegedly wrote above the door to his academy:
A�E�METPHTO	MH
EI	EI	IT�.

Note that deriving θ from Einstein’s law is doing physics,
not doing mathematics. The derivation adds to the body of
knowledge of physics and not to the body of knowledge of
mathematics.3

Just as physicists use mathematics as a language, datafied
scientists will use computer science as a language. Without
a thorough grounding in computer science, it will become
impossible to read and do science in the datafied sciences.
And just as physicists don’t do mathematics, datafied scien-
tists don’t do computer science, they do research in their own
field.

But, note, that they do their research in their own field in
a fundamentally new way. Data-driven research in X is dif-
ferent from the traditional way of doing research in X . Not
only because of the use of, e.g., computers and databases, but
also conceptually: the data-driven approach supports ques-
tions that simply couldn’t be answered before; see Sect. 3.2
for an example.

It is because this second aspect that Data Science deserves
its own name. If data science would “just” be about using
computer science tools to solve traditional problems in, say,
History, the term computer science would probably be suf-
ficient; after all physicists use mathematics, no new name.
The term Data Science emphasizes that the datafication of
sciences allow the study of new types of problems for which
the solutions are grounded in computer science

Note that to some extent this has already started to hap-
pen with the advent of Computational Science [46] in which
the complexities of nature are studied using computational
models and simulations. Data science, however, will have a
much further reach in all sciences and uses a larger part of
computer science as well.

3 In fact it formed the basis of Eddington’s famous first conformation
of general relativity, the deflection being twice as large as predicted by
Newton’s laws.
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Note that the relation between computer science and the
other sciences may run deeper than the relation between
mathematics and physics. In recent years, information is
more and more identified as a foundational concept in many
other sciences. For example, in [25], the Nobel-prize win-
ner Manfred Eigen lucidly builds bridges between physics
and biology based on a new theory of information; some
of the themes from this book are further expanded upon
in [26]. While most of those contributions are conceptual,
Verlinde [67] introduces a concrete model in which gravity
emerges from changes in the information associated with the
positions ofmaterial bodies, showing, e.g., that this emergent
force satisfies Newton’s laws.

While one could debate whether or not these examples
are data science, our final example most definitely does. In
[44], the author proposes a framework for theoretical physics
grounded in Algorithmic Information Theory, one of the
foundational theories for Data Science.4 Thus putting algo-
rithmic reasoning at the very heart of physics.

2.2 What does this language look like?

The discussion in the previous subsection was mostly con-
ceptual. Languages, however, have syntax and semantics.
What will those be for computer science as a language? How
will it look like? The short answer is: I do not know. In This
subsection, I discuss two aspects that I thinkwill be important
for this new language. The first is about syntax, the second
about semantics.

If onewould extend the analogywithmathematics further,
one would expect a symbolic language and mostly modestly
sized expressions in that language. For example, although
mathematicians have, e.g., named and studied a bewildering
variety of (special) functions—see the iconic handbook of
functions by Abramowitz and Stegun [1] or its modern day
counterpart (also) produced by NIST [45]5—one can read
vast parts of the mathematical literature knowing only a lim-
ited set of, e.g., symbols and functions.

Moreover, the symbolic expressions tend to be concise;
the page long Lagrangian in Appendix E of [66] is in my
experience an exception. Derivations—i.e., reasoning—may
be spread over multiple pages, but the individual expressions
in a derivation are usually modestly sized. The fact that the
reasoner has to keep track of all bits and pieces is undoubtedly
one of the major reasons for the conciseness; abstraction is
king.

Unfortunately, symbolic or formal languages in computer
science tend to be less concise. While algorithms are usually
described in some (semi-formal) pseudocode, they easily run

4 Which we will briefly discuss in Sect. 3.1.
5 Also available online as the NIST Digital Library of Mathematical
Functions at dmlf.nist.gov

into a page or more. Data scientists using existing algorithms
clearly do not have to reproduce the complete pseudocode,
rather, they “just” have to give the algorithms used as well
as their parameter settings and data sets; very much in the
way that computer scientists themselves describe their exper-
iments with their newly developed algorithms.

Note that the fact that there tend to be hundreds of algo-
rithms and variants for the same algorithmic task doesn’t
make this approach much easier to read (or write). One could
aim to standardize naming, leading to expressions like

Cluster(k- means(k = 3), Sample(unif, s = …), …)

Given the multitude of broadly ranging details of a com-
plete Knowledge Discovery process, this may again lead to
rather large and hard to parse expressions. An alternative is
the visual programming—work flow style—interface of data
mining tools such as KNIME [7]. Such annotated graphs are,
perhaps, a better language—leading to more comprehensible
expressions—for computer science expressions in data sci-
ence than the script-like expressions above.

Taking the analogy with mathematics further, physicists
do not only use mathematical expressions, they also reason
with them. Reasoning with the models a machine learning
algorithm delivers is very much part of what computer sci-
entists already do; model inference is part and parcel of the
field. Reasoning with the algorithms themselves—or, more
general, thewholeKDDprocess—is, however, far less devel-
oped.

Clearly, neither the use of parametrized tasks as suggested
above, nor theworkflowsofKNIMEallowone to reasonwith
algorithms in the way physicists reason with mathematical
expressions. The development of that aspect of computer sci-
ence as a language is one of the challenges data science poses
to computer science.

Perhaps the research area in computer science closest to
this challenge is that of program transformation [9]. Here,
the goal is to derive an efficient implementation from an
obviously correct specification. This goal is similar to the
rewriting of queries in relational algebra for query optimiza-
tion [29], but with a much larger collection of operators and
laws. To illustrate, using operators like ⊕, satisfying laws
like

⊕ /[a] = a

⊕ /(x + +y) = (⊕/x) ⊕ (⊕/y)

one performs derivations like

x ⊗ y = (⊗/ f · x ′) ⊗ (⊗/ f · y′)
...

= ((⊕/) · αx ′) + +(⊕/) · (x ++) · αy′
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to prove that

x ⊗ y = x + +((last x)⊕) · y

An expression that states the computational equivalence
between a quadratic specification (on the left) to a linear
implementation (on the right); see [9] for full details.

The question is: what would be the right operators—at
what level of abstraction—and what laws do they satisfy, to
allow for a similar type of reasoning about a data analysis
task?

3 Challenges for computer science

The observation “Data Science is not Computer Science”
does not mean that there is no computer science in data sci-
ence. Far from it. In the Introduction I already noted that
to me data science is the union of datafied research in all of
academia. One of these research areas is, of course, computer
science. In fact, as I will argue in this section, data science
poses new as well as already existing challenges to computer
science. Challenges that must be met to let computer science
truly become a language for data science.

First of all, again in the Introduction, we already noted that
storing, manipulating and analyzing vast amounts of data of
a bewildering variety of types is becoming the core of many
new approaches to science, any kind of science. That is, the
problems colloquially known as Big Data are an integral part
of the challenges posed by data science.

Despite that Big Data is a term coined by consultancy
firms rather than by the research community aswell as serious
concerns about it raised by researchers—see, e.g., [11]—the
term is an umbrella for a set of serious problems. Each of the
commonly used three V’s to describe the area, points to a set
of related problems.

The first V stands for Volume. The data is too big to han-
dle. Scalability of algorithms is an obvious related research
area here, with topics such as sublinear algorithms [18]
and property testing [30]. Another big topic is, of course,
sampling—to which we return below.

The secondV stands forVelocity, the high volumes of data
stream in at high rate. Either you look at it now or the oppor-
tunity is gone forever. This means again that scalability is an
important aspect, but so are, e.g., anytime algorithms [72]
and real time computing [14].

The final V stands for Variety. There are many algorithms
to mine many different types of data, such as transaction
data [4], text data [28], time series data [40], sequence data
(sequences of, again, a wide variety of types) [21], graph
data [16], network data [6,22] and multi relational data [20].
There are, however, few if any algorithms that can deal with
multiple data streams that combine such different data types.

While combining techniques for different data types is in
principle easy, it is far less easy to guarantee good results. It is,
e.g., well known in regression analysis that one should scale
the independent variables so that they all have a similar range.
If the variables are not scaled, the variable with the largest
range will have undue influence on the chosen model [59].
Whether one should “scale”, what it would actually mean—
what is the scale of text?—and how it should be done over
disparate data sources are still very much open problems.

And, then, we have not yet talked about the problem of
Veracity [8]; sometimes known as the fourth V. Data is often
uncertain or imprecise, due to noise and other factors. Keep-
ing track in a multi-source setting, of what part of the data
is derived from what (uncertain) source is the non-trivial
problem known as provenance [31]. Another problem is that
traditionalmethods are usuallywell-equipped to handle a sin-
gle noisy data source, but combining different data sources
with different levels of veracity is again still a very much
open problem.

It is not just Big Data that makes it challenging for data-
driven scientists to use our methods. We already briefly
discussed another one in the context of the language, viz.,
the large variety of algorithms for the same data mining
problem—such as classification. This is a challenge for those
who want to use machine learning algorithms to solve their
own problems. Which one should they use and with what
parameter settings? This is also still verymuch an open ques-
tion for the computer scientists working in the area.

One approach to solve it is OpenML.6 OpenML offers
various services to share and find data sets, to download
or create scientific tasks, to share and find implementations
(called flows), and to share and organize results [63]. By
having a comparison of many implementations over many
different data sets with many different parameter settings, a
user should get an idea of what might be the good approach
for her.

Another approach is to let the computer automatically
explore the vast search space of possibilities to find the best
fit for the data at hand. One project exploring this approach
is the Automatic Statistician project by the University of
Cambridge and MIT; see e.g., [33]. Another project on this
approach is the recently started Synthesising Inductive Data
Models project, an advanced ERC grant project of Luc de
Raedt.7

The challenges discussed so far are challenges one could
discuss equally well in a position paper with the title “Chal-
lenges Big Data Poses to Computer Science”, this raises the
question: is there more to Data Science than Big Data—at
least for computer scientists? To argue that there is, I end this

6 https://www.openml.org/.
7 http://synth.cs.kuleuven.be/.
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Section with two new, related, challenges: one foundational
and one conceptual.

3.1 A foundational challenge

Many of the problems discussed so far are in essence aspects
of the sameproblem: howdoweknowwehave agoodmodel?
By becoming a language for other disciplines, computer sci-
ence becomes foundational for these other sciences. This
can only happen if its own foundations are secure. The selec-
tion of models from data is one of these foundations for the
machine learning and data mining community.

It is well known that the so-called Problem of Induction is
unsolvable [68]. That is, there is no surefire way to induce a
model from a (finite) data set. The simplest way to illustrate
this is by observing that there are infinitely many functions
that go through finitely many given data points. Moreover,
a No Free Lunch Theorems by Wolpert [70] shows that in
supervised learning there is not even a best (approximating)
algorithm.

This hasn’t deterred computer scientists from develop-
ing well-founded theories to learn from data. Probably the
best known one is known under headings as Computational
Learning Theory (COLT), Probably Approximately Correct
(PAC) learning, and Statistical Learning Theory (SLT), aris-
ing out of the work of Valiant [62] and (earlier) Vapnik and
Chervonenkis [65].

The approach taken in PAC learning is to search for algo-
rithms that almost always lead to almost correct models.
More specifically, following [53], PAC learning is defined
as follows.

A hypothesis class H is agnostic PAC learnable with
respect to a set Z and a loss function l: Z × H → R+ if
there exists a functionmH: (0, 1)2 → N and a learning algo-
rithm A with the following property:

– for every ε, δ ∈ (0, 1)
– for every distribution D over Z
– when running A on m ≥ mH(ε, δ) i.i.d. samples gener-
ated by D

– A returns a hypothesis h ∈ H such that with probability
at least 1 − δ

LD(h) ≤ min
h′∈H

LD(h′) + ε

where LD(h) is the expectation of the loss l(D, h) on
samples D sampled according to D

And then, perhaps surprisingly, there is just one property that
decideswhether or not a hypothesis set is PAC learnable, viz.,
its VC dimension. Briefly speaking, the VC dimension ofH
is the size of the largest set it can shatter, i.e., the largest set

such that H can distinguish all its subsets—i.e., there is a
hypothesis that says yes to all elements of that subset and no
to all others.

Moreover, ifH has VC dimension d we know that we only
need a sample size of

O

(
d + log(1/δ)

ε2

)

to achieve the ε, δ bounds from the definition of PAC learn-
ing. A polynomial bound that is certainly valuable in a Big
Dataworld. Your datamay be too big to handle, but using just
a sample of this size will almost always give you an almost
optimal result.

In fact, PAC learning canbe set upbyfirst analyzing—with
H finite for the two-class classification problem—how big a
sample one should take. The fact that by turning these results
into a general learnability definition maintain the polynomial
sample size bound is a testament to the reasonableness of PAC
learning.

To further illustrate this reasonableness, we briefly look
at two relaxations of the PAC learning definition. Firstly,
the definition requires that the sample size bound mH
holds for all hypotheses uniformly. What if we allow larger
minimal sample sizes for “complex” hypotheses than for
simpler ones? That relaxation leads to Structural Risk Min-
imization [64] in which one—conceptually, not necessarily
practically—computes the optimal hypothesis by a tower of
approximation, each learned the PAC learning way.

PAC learning requires thatwecan approximate theoptimal
hypothesis arbitrarily close. What if we relax this assump-
tion? If we only require that our solution is slightly better
than random guessing? The Boosting lemma [51] then tells
us that we can approximate (strong) PAC learning with a
weighted sum of such weak learners.

Finally, the PAC learning framework is independent of
the distribution D the data set D has been sampled from.
If we are willing to take D into account, we can get even
better bounds for minimal sample sizes using Rademacher
Complexity (also known as Rademacher Averages), see [53].

In other words, PAC learning is in a way as good as it gets,
relaxations either approximate it or are approximated by it.

Our discussion so far was essentially for the two-class
classification setting, but to a large extent it holds far more
generally for supervised learning. In fact, there are also
results for unsupervised learning problems such as itemset
mining [49] and graph summarization [48]. These are, how-
ever, special among unsupervised problems in that they test
properties. One can objectively test whether these proper-
ties hold or not, leading to a loss function that is, more or
less, the same as for two-class classification. PAC learning is
essentially supervised learning.
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Unfortunately, not all datafied science is about predictions.
With the notable exception of Hari Seldon,8 historians sel-
dom attempt to predict anything. Rather, their aim is to try to
understand and explain the course of history. We’ll discuss
an example in some depth in the next subsection.

The point here is that many sciences are more concerned
with unsupervised learning than with supervised learning.
And, in general, unsupervised learning is notoriously hard to
evaluate.

For example, for clustering there are various—often
ad-hoc—methods to evaluate the quality of the returned clus-
ters [27]. But there is no established way to compute how
close your clustering is to the optimal clustering—in as far
as the latter is even defined.

While this is not so much of a problem in a non-academic
setting—or in the case where unsupervised learning is used
in an exploratory data analysis phase [61] followed by a pre-
dictive analysis—it is far from ideal when the unsupervised
analysis is the end product. In fact, this is exactly the reason
that makes some machine learners argue [69] that unsuper-
vised learning should never be the end product. It should
only be done within a (supervised) context, giving an objec-
tive evaluation criterion: the best clustering is the one that
leads to the best classifier later on.

In an extensionofPAC learning, knownasPACBayes [43],
this restrictive idea has been taken up to provide objective
foundations for clustering, more precisely co-clustering [52].
However, as I already stated above, in some sciences there is
simply no predictive context; a historian wants to understand
history, not to predict it.

However, much statistical tests and p values are mis-
understood and misused [32], such objective measures are
necessary quality control in the scientific process. It won’t
take long before researchers in other datafied areas will
request such objective measures for unsupervised learning.

One could argue that not even PAC learning in supervised
cases gives you such measures—after all, PAC learning only
tells you the results are probably as good as its gets with
the chosen hypothesis set. However, methods like train and
test or cross-validation will give you further evidence of the
quality of your result. Moreover, the bootstrap will give you,
empirically, all the test statistics you need [24].

All of this is lacking, in general, for the unsupervised
case. There is, however, a computer science theory for unsu-
pervised learning, viz., Algorithmic Information Theory or
Kolmogorov Complexity [42]. The assumption here is that
the model should be computable—not an overly stringent
requirement for models one may want to do something with.

8 The inventor of psychohistory, an algorithmic science that allows him
to predict the future in probabilistic terms. A fictional character in Isaac
Asimov’s Foundation series [5].

More precisely the requirement is that the data set is com-
puted by a model.

In a nutshell, fix a universal Turing machine and consider
all inputs that generate our data set D and then halt. Out of all
these inputs, choose the smallest; the length of the shortest
string is known as the Kolmogorov complexity of D.

Why the smallest? One argument is to refer to Ockham’s
razor, paraphrasing: don’t do with more for what you could
do with less; see e.g., [57] for a thorough analysis of that
argument.

Another argument is by compression. If the shortest input
string is shorter than D, we have compressed D. Compres-
sion works by detecting regularity, hence, the shortest input
string—the best possible compression—detects all regular-
ity in D. Data sets for which the Kolmogorov complexity is
not smaller than D,

K (D) ≥ |D|

are random data sets, data sets with no discernible structure.
A third, and final, argument is based on algorithmic proba-

bility [58]. Simplified, perhaps oversimplified, the reasoning
is as follows. All programs computing D are themselves
again bit strings.Kraft’s inequality [42] allows you to define a
probability distribution on this set; it is slightly more compli-
cated because the set is (countably) infinite, but this is the gist.
The shortest program—the shortest bit string—computing
your dataset D is the most likely under this distribution
among all that compute D.

One may now wonder: why should we use this distribu-
tion? It is known as Solomonoff’s universal prior and has
all the good properties one would like a non-informative
prior to have. For example, it does not suffer from the re-
parametrization problemsmost non-informative priors suffer
from. See [47] for a lucid discussion of this prior, its reason-
ableness and the theory of universal induction it belongs to.

So, we take the shortest program, but we did not specify
which universal Turing machine. The reader could wonder
whether this choice makes a difference. The answer is no,
because there is always a program—input string—which
turns one UTM into another one; a simple consequence of
being auniversalTuringmachine.Hence the complexitywith
regard to one UTM is at most a constant different from the
complexity with regard to another one. Kolmogorov com-
plexity analysis is always “upto a constant” for that reason.

A more serious problem is that the Kolmogorov complex-
ity is not computable. For the simple reason that we stated the
shortest program that computes D and then halts and it is well
known that the Halting Problem is not decidable. It is upper
semi-computable: dovetail over all Turing machines—input
strings for your chosen UTM—and whenever one outputs D
and then halts you have a newupper bound for the complexity
of D. This is, however, not an effective approach in practice.
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For that, note that an input string for your favorite UTM
consists—often—of two parts. First a part that selects a
certain Turing machine—the program—followed by a “ran-
dom” part that lets that program generate D. In such a case,
the complexity consists of two parts. Firstly, the complexity
of the model (the program). Secondly, the complexity of the
data given that model (the data encoded by the model).

This line of reasoning leads to the Minimum Descrip-
tion Length principle [34]. Like for PAC learning, we start
by choosing a set of hypotheses H. The principle can be
described roughly as follows.

Given a set of models H, the best model H ∈ H for data
set D is the one that minimizes

L(H) + L(D | H)

in which

– L(H) is the length, in bits, of the description of H
– L(D|H) is the length, in bits, of the description of the

data when encoded with H .

If this looks suspiciously much like maximum likelihood
with Bayes rule:

P(H | D) ∝ P(H) × P(D | H)

you are very much right. This rule was the original motiva-
tion9 for the inventor of MDL: Rissanen [50].

Based as it is in Algorithmic Information Theory, MDL
is a sound approach to induce models from data. Indeed, it
works very well for unsupervised learning, our own work on
pattern set mining—starting from [54]—could be cited as an
example of this. Clustering, to take that again as example,
can be handled in at least two ways. Firstly, we can simply
assume that each cluster Ci in the data is best described by
its own hypothesis Hi . This means that we no longer search
for the single hypothesis that minimizes L(H) + L(D | H),
but for a set of hypotheses {Hi } and a partitioning of the data
D = ⋃

i Di minimizing the sum

∑
i

L(Hi ) + L(Di | Hi )

Alternatively,we can employ the normalized informationdis-
tance [41] based on the Kolmogorov complexity:

d(x, y) = max {K (x | y∗), K (y | x∗)}
max{K (x), K (y)}

in which x∗ denotes a shortest program that computes x .

9 As it was for the universal induction we mentioned above.

This measure is, obviously, not computable, but it can be
approximated by your favorite compression algorithm.Using
that approximation to the distance, one can then use any of
the traditional clustering algorithms.

The Algorithmic Information Theory approach not only
works for unsupervised learning, but also for supervised
learning. In fact, universal induction, which we briefly men-
tioned above, was developed for predictive problems [58].
Still, AIT—or, more in particular MDL—falls short of the
foundational theory we are looking for.

Firstly because one has to choose a set of hypotheses, like
in the PAC learning scheme, but one also has to choose an
encoding scheme for MDL. In the limit, this choice may not
matter. But, in practice, this choice has major impact on what
one discovers—upto a constant is a problem when one has a
finite data set, however big it is.

Secondly, one often has to resort to heuristic algorithms
to a find a good—optimality not guaranteed—hypothesis.
Moreover, it is known that MDL optimal solutions can be
hard to approximate; see [2] for details. Hence, guarantees
one has from the theory do not easily carry over to applica-
tions.

Finally, like PAC learning, MDL tells you which H ∈ H
you should use.But unlike the supervised case, there is still no
way to measure how good your choice actually is. Therefore,
again unlike PAC learning, there is no way to estimate how
large a sample should be to get reasonable results.

In other words, computer science has produced—at
least—two beautiful theories to do well-founded induction
from data. However, both theories fall short—for different
reasons—if one would want to use them as inductive founda-
tions for Data Science. For me, this is the biggest challenge
computer science has to meet to become successfully the
language for Data Science; even bigger than the existence
of a symbolic language that one could use to reason about
algorithms, the challenge we briefly discussed at the end of
Sect. 2.

The fact that we have two theories that fail for different
reasons, do give hope that they could somehow be combined
into a universal algorithmic theory of induction. One that
can be used by data scientists on whatever problem they are
working on.

One way to approach to such an integration may be based
on information theory. PAC Bayes—the extension we briefly
discussed—is based onmutual information rather than a sim-
ple loss function. AIT is itself an information theory. Clearly,
these information theories live in different universes, entropy
describes the randomness at the source of messages, while
AIT describes the randomness of the object (message) itself.
Still, there is a strong connection between the two [35]:

Entropy ≈ expected Kolmogorov Complexity
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A long time ago, Haussler stated [37]

It’s a dangerous thing to try and formalize an enterprise
as complex and varied as machine learning…

That doesn’t mean that we shouldn’t try. Even if it wouldn’t
fit all possible approaches equally well, such a theory would
make computer science a far better language for data science.

3.2 A conceptual challenge

When one collaborates with scientists from other disciplines
on data science problems, most of the problems can be han-
dled very well by our existing toolbox. Now and again,
problems fit our concepts very well, but the way to approach
it is not immediately obvious. One example would be outlier
detection. We know very well what an outlier is [3]

An outlier is an observation which deviates so much
from the other observations as to arouse suspicions that
it was generated by a different mechanism

But if your colleagues asks you how to find outlying arti-
cles in a newspaper archive, the operationalization of that
knowledge is not immediately clear.

Even more rarely, problems come up that do not, yet, fit
the concepts we have. In this section, I discuss one such
problem. Not only because it illustrates so well why data
science is good for computer science: new problems are fun,
but also because in this particular example, we are looking
for an unsupervised solution, thus illustrating further the need
for the theory I was arguing for in the previous section.

Historians now routinely have access to large digital
historical archives, such as all—well, a large selection of—
newspapers published in the Netherlands between 1618 and
1995 at http://www.delpher.nl/. With the advent of such
resources, new kind of research questions become attainable.
Before such digital archives, archive based research was lim-
ited by what human labor could achieve. Now, tools can be
used to quickly select and analyze digital archives.

In one of our discussions, a colleague from the History
Department of the Universiteit Utrecht suggested the fol-
lowing challenge. New words and concepts regularly enter
our vocabulary and, especially the concepts, often lead to
discussions in newspapers. For example, the concept of Dar-
winism entered the Dutch vocabulary not long after Darwin
published his famous “On the Origin of Species” [19]. And
not only our vocabulary, but also the newspapers.

At first, the articles in the newspaper mainly consisted
of a discussion between proponents and opponents of the
theory of evolution. But gradually this changed, Darwinism
acquired a broader meaning. Rather than “just” referring to a
biological theory it could also refer to a social science theory:
social Darwinism [17]. A theory that upheld that humans and
human society were also in that sense subject to a struggle

for the survival of the fittest, “natural” selection also plays a
role in the evolution of human societies.

His goal is to discover and follow such evolving (no pun
intended) discourses automatically from, e.g., (digital) news-
paper archives. Having access to the complete discourse and
its evolution would give him a far more complete view on
if, and how, and when, the concept of Darwinism became
accepted by—a vast majority of—the Dutch population.

Note that this is very much an unsupervised learning task.
We do not necessarily know which discourses have taken
place and even less how they evolved. On first sight, this
may seem like a relatively straightforward topic modeling
task, more specifically a dynamic topic modeling task [10]
since that technique was especially designed for that prob-
lem. However, it turned out not to be so easy.

Firstly, because it is not about the linear evolution of rec-
ognized topics such as Atomic Physics or Neuroscience, but
aboutmuchmore fuzzily defined topics—newspapers are not
scientific journals and characteristic termsmay vary between
different newspapers and different epochs. Secondly, the evo-
lution is far from linear, topics may split: the discussion goes
into different directions, e.g., the discussion on biological
Darwinism continues, while the discussion on social Dar-
winism starts. Topics may merge, they may die down and
then reappear later again; for the latter, think of periodic top-
ics like the Olympics.

This is not only a technical problem, but it is also a con-
ceptual one. Topic modeling is very much a special case of
clustering. That is, a topic is a cluster of newspaper articles
together with a set of (more or less) characteristic terms. How
can we decide that a cluster of one set of articles (with its
characteristic terms) is similar to another set of articles (with
its own characteristic terms)? Exacerbated the fact that all
articles and most of the characteristic terms will be different
among the two sets.

The goal of this discussion is not to solve this problem.
It is to illustrate that Data Science poses new, interesting,
questions to the computer science community. Moreover, it
should also illustrate the need for solid foundations, both for
supervised and unsupervised learning. Perhaps not with my
first attempts at a solution, but certainly later, my colleague
from the History department will ask: are you sure of this
result? How likely is it that there is no better explanation of
the course of history?

4 Conclusions

In this position paper, I argued that Data Science marks
the advent of datafied research in all academic research
areas. Moreover, it marks the end of computer science
being an area under the sole purview of computer sci-
entists, and researchers from other areas will contribute
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actively to the growth of computer science’s knowledge
base.

More importantly, it marks the beginning of computer
science as a language for other scientists. A language that
allows them to state and solve problems in their own research
area that involve the storage, manipulation and/or analysis of
data. This not only allows new ways to solve problems that
are already well known in their research area, but also new
problems—problems that were impossible to pose, let alone
solve, without using computer science as a language. And
this second aspect is the defining characteristic of Data Sci-
ence.

This usage poses challenges to computer science. Known
challenges, such as those that are already posed by Big Data:
how to store, manipulate and analyze vast amounts of data of
wide variety and veracity that stream in at an ever increasing
rate?

But it also poses new challenges. I discussed three of
these in some depth. Firstly, that our current way of writing
algorithms is not directly amenable to a mathematics-style
reasoning with algorithms. Secondly, and arguably the most
important one, that we need a well-founded way to induce
models from data—especially for unsupervised learning. If
computer science is to become a language, we should have
objective measures that guarantee the quality of the models
we induce. And finally, conceptual challenges. Data scien-
tists will come up with new problems for which we have
no algorithms yet, including problems that do not fit in our
existing data mining toolbox.

The most important message of this position paper is,
however, that the advent of Data Science is good for com-
puter science. Not only will we be presented with many new
challenges, the solutions we design become more and more
important to an ever increasing community of data scientists.
It is truly an exciting time to be a computer scientist.
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