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Background: Asthma is a chronic inflammatory disease of the
airways that is heterogeneous and multifactorial, making its
accurate characterization a complex process. Therefore,
identifying the genetic variations associated with asthma and
discovering the molecular interactions between the omics that
confer risk of developing this disease will help us to unravel the
biological pathways involved in its pathogenesis.
Objective: We sought to develop a predictive genetic panel for
asthma using machine learning methods.
Methods: We tested 3 variable selection methods: Boruta’s
algorithm, the top 200 genome-wide association study markers
according to their respective P values, and an elastic net
regression. Ten different algorithms were chosen for the
classification tests. A predictive panel was built on the basis of
joint scores between the classification algorithms.
Results: Two variable selection methods, Boruta and genome-
wide association studies, were statistically similar in terms of the
average accuracies generated, whereas elastic net had the worst
overall performance. The predictive genetic panel was
completed with 155 single-nucleotide variants, with 91.18%
accuracy, 92.75% sensitivity, and 89.55% specificity using the
support vector machine algorithm. The markers used range
from known single-nucleotide variants to those not previously
described in the literature. Our study shows potential in
creating genetic prediction panels with tailored penalties per
marker, aiding in the identification of optimal machine learning
methods for intricate results.
Conclusions: This method is able to classify asthma and
nonasthma effectively, proving its potential utility in clinical
prediction and diagnosis. (J Allergy Clin Immunol Global
2024;3:100282.)
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Asthma is usually an inflammatory condition of the airways
that results in immune hyperreactivity.1 This disease is heteroge-
neous and defined by a history of characteristics such as airway
inflammation, smooth-muscle contraction, epithelial sloughing,
mucous hypersecretion, bronchial hyperresponsiveness, and
mucosal edema.1

The model of asthma as a single entity is no longer accepted,
becoming a much more complex immune network of distinct and
interrelated inflammatory pathways.2,3

Both genetics and environment contribute to asthma risk and
interact in complex ways to influence asthma endotypes and
immune processes.4 Various studies have used strategies such as
genomics, transcriptomics, and proteomics to understand this
complexity.5 Identifying genetic variations associated with
asthma and discovering the molecular interactions between the
omics that confer risk of developing this disease will help us to
unravel the biological pathways involved in the pathogenesis of
asthma, resulting in improved treatment.6,7

Genome-wide association studies (GWASs), for example, are an
approach that use microarrays of single-nucleotide variant (SNV)
chips.8 The goal is to identify DNA variations associated with
asthma or its characteristics by comparing individuals with the dis-
ease to those without. GWASs have become one of the most widely
used genetic analysis methods in recent decades, mainly because
they are large-scale population studies that analyze variations in
the human genome without the need for extensive sequencing.6

Simultaneously, machine learning methods are tools that have
quickly evolved and changed the way we approach clinical and
laboratory data.9,10 These techniques enable insights into big data
sets that would be difficult or irresolvable with human processing,
and can more easily uncover relationships between biological vari-
ables and clinical outcomes, especially in complex disease studies.6

Depending on the purpose of the study, machine learning algo-
rithms can be independent from, or complementary to, GWASs.10

In this work, we established a predictive genetic panel for
asthma using machine learning methods, evaluating GWASs as a
variable selection method.
METHODS

Study population and genome-wide genotyping
This work was conducted using the ProAR (Programa para o

Controle da Asma na Bahia - Salvador, Bahia, Brazil) cohort. The
discovery population included 685 unrelated adults (349 asthma
1
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Abbreviations used

ANN: Artificial neural network

FVC: Forced vital capacity

GWAS: Genome-wide association study

NB: Naive Bayes

ProAR: Programa de Controle da Asma na Bahia

RF: Random forest

SNV: Single-nucleotide variant

SVM: Support vector machine
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cases, 336 controls) aged between 18 and 81 years. Individuals
diagnosed with a chronic respiratory disease that affects the lower
airways, such as active tuberculosis or sequelae of tuberculosis,
cystic fibrosis, lung cancer, or chronic obstructive pulmonary
disease, were excluded.

Asthma severity was classified according to the NIH-NHLBI
Guidelines for the Diagnosis and Management of Asthma and the
Global Initiative for Asthma guidelines, where the followingwere
assessed: daily symptoms, limitations of daily activities, night-
time symptoms more than twice a week, use of bronchodilators
more than twice a day, FEV1 less than 60% of predicted, and num-
ber of exacerbations in the previous year.

We performed spirometry by using a portable computerized
pulmonary function system (Ferraris KOKO Louisville, Colo)
according to American Thoracic Society criteria. We evaluated
spirometry before and after 15 minutes of 400 mg salbutamol
inhalation. We also used the skin prick test kit (GREER Labs,
ALK-Abell�o, Horsholm, Denmark) to assess hypersensitivity
status.

The skin prick test was conducted using allergens derived from
Dermatophagoides pteronyssinus, Blomia tropicalis, dog epithe-
lium, cat epithelium, Blatella germanica, Periplaneta americana,
Paspalum notatum, and Cynodon dactylon. A positive skin prick
test result was defined as the presence of a papule greater than or
equal to 3 mm in diameter.

Genomic DNAwas extracted from peripheral blood using the
Gentra Puregene Blood Kit (Qiagen, Hilden, Germany). ProAR
subjects were genotyped by using the Multi-Ethnic AMR/AFR-8
Kit BeadChip (Illumina), which was specifically designed to
capture genetic variation in populations with a significant African
and Native American genetic contribution.

Ethical approval was obtained through the Comitê de �Etica em
Pesquisa of the Unversidade Federal da Bahia and Comiss~ao Na-
cional de �Etica em Pesquisa (CONEP), Brazil (no. 15782/2010).
Data manipulation and quality control
The number of markers genotyped by the chip was 1,544,155.

We used PLINK 1.9 to perform data quality control. Data
exclusion criteria included more than 10% of data missing for a
marker, markers with minor allele frequency less than 1%, and
individuals with more than 10% of data lost. Repeated markers
with identical features were identified in the raw database and
excluded, leaving a final total of 1,009,762 SNVs (see Fig E1 in
this article’s Online Repository at www.jaci-global.org).

To impute lost data, 3 different methods were tested. First, we
used the mice package, but data imputation did not occur because
of the wide correlation among variables, and this algorithm
requires independence among them. We next tested imputation
using linkage disequilibrium between adjacent markers, but this
approach imputed only 10.11% of missing data.

The most viable method for imputation was to use the Naive
Bayes (NB) algorithm (a supervised method) to predict the
missing data. Imputation techniques using NB algorithms for
missing data are already well known in the literature.11 For this
imputation, the variable with missing data was considered the
outcome, whereas 200 other chromosomally adjacent variables
were predictors.

One concern arising with any method of imputing missing data
with respect to qualitative biological features is that the relative
frequencies should not vary too much after imputation. We
monitored this, and examples of relative genotypic frequency
before and after imputation can be found in Table E1 (in the On-
line Repository available at www.jaci-global.org).
GWAS analysis
The GWAS was performed on the data after quality control.

Analysis was performed using PLINK1.9with an additive genetic
model, and logistic regressionwas performed using age, sex, body
mass index, smoking, and genomic ancestry as covariables.12
Feature selection methods
In this work, we selected 3 feature selection methods: the Boruta

algorithm (feature selection wrapper algorithm with random forest
[RF] kernel), markers from GWASs according to their respective P
values, and elastic net regression (embedded method).
Supervised methods for asthma prediction
We have chosen 10 different algorithms for classification:

K-nearest neighbor, NB, artificial neural networks (ANNs),
support vector machine (SVM), classification and regression
trees, C5.0, bagging, adaptive boosting (AdaBoost), RF, and
XGBoost. One crucial step in constructing a machine learning
model is the selection of hyperparameters to arrive at the highest
model performance possible (tuning process). All methods used,
their hyperparameters, and their ranges are listed in Table E2 (in
the Online Repository available at www.jaci-global.org). The
definitive model was created after choosing the variable selection
method. The data partitioning into training and testing data sets
was conducted using the caret package. We allocated 80% (n 5
549) of the original data to the training data set, whereas the
model evaluation was performed on the remaining 20% (n 5
136) of our test data set. To ensure optimal model generalization,
we used 10-fold cross-validation (control parameters for train)
during the training phase. Consequently, 10 models were created
for each algorithm, and the average and SD of accuracies across
the 10 folds were assessed, in addition to the best model with
the highest accuracy. After this phase, the best model was evalu-
ated using the test data set, which yielded more reliable results for
accuracy, sensitivity, specificity, kappa coefficient, and F1 score.
Construction of the predictive genetic panel and

algorithm performance evaluation
First, we assessed the accuracies of the models by scanning

across the 3 feature selection methods mentioned above: Boruta,
elastic net, and GWASs. Once the feature selection method was
determined, we rebuilt all predictive models to ensure that the
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results were consistent. Subsequently, knowing which algorithms
generated a more informative set of features, we accessed the
importance score of each feature through the varImP function.
Each algorithm judges each feature in its own way, ranking the
features with a range between 0 and 100. The 10 scores were added
for each feature, finally giving a single score for each variable.

Because not all algorithms achieved satisfactory accuracy, the
maximum value of a given feature chosen by an algorithm
demonstrating low accuracy should not have the same judgment
value as that given by an algorithm that performed well. To
mitigate this discrepancy, scores were penalized as follows: if the
algorithm was accurate up to 79%, we multiplied the variable
importance scores by 1 (ie, kept the original value); if the
accuracy presented was between 80% and 89%, we multiplied
scores by 2, and if the test accuracywas above 90%,wemultiplied
the score by 3. Finally, we ranked markers in 2 ways: penalized
and not penalized.

We used 2 spirometry variables, FEV1 and FEV1/forced vital ca-
pacity (FVC) ratio, to compare importance scores with the genetic
markers, and thus observe how the genetic variables behaved in the
face of well-established clinical variables for asthma diagnosis.

We carried out a serial analysis to evaluate the evolution of test
accuracies of predictive subpanels (from best to worst), built by
adding 1 marker at a time, aiming to find the best panel with the
smallest possible number of SNVs. Finally, we performed
STRING analysis (https://string-db.org/) to functionally charac-
terize our sets of genes and their networks of interactions.
Statistics
The Kolmogorov-Smirnov test was used to evaluate the

normality of the numerical variables used. Means were compared
by Mann-Whitney (for 2 independent means) or Kruskal-Wallis
(for more than 2 means) test. Dunn’s post hoc test was used to
evaluate differences between means of accuracies generated by
the feature selection methods. Fisher exact test was used to infer
a relationship between the outcome and categorical variables. The
x2 goodness-of-fit test was performed to assess whether there was
a difference between genotypic proportions before and after
imputation of missing data. We used R software, version 4.1.2
(on Linux). The caret package was used for the creation of
models, to split train and test data, and to evaluate metrics such
as accuracy, sensitivity, specificity, and kappa value. The F1 score
was generated by using the MLmetrics package (China Pharma-
ceutical University, Nanjing, China). The receiver-operating
characteristic and area under the curve curves were calculated
by using the pROC package (Medical University Centre, Geneva,
Switzerland). The assigned statistical significance level was 95%.
RESULTS

Sampling and clinical characterization
A total of 685 participants were evaluated, including 192

(55.01%) individuals with mild to moderate asthma and 157
patients with severe asthma (44.99%) from the ProAR cohort and
336 control subjects. In our sample, 67 (10.31%) patients with
asthma-chronic obstructive pulmonary disease overlap syndrome
were recorded. Among them, 54 (80.60%) were female. Numer-
ical variables had a non-Gaussian distribution, except FVC.

Mean age differed significantly between asthma severity
groups (Table I), although boxplots (see Fig E2, B, in this article’s
Online Repository at www.jaci-global.org) show parity in the
general distribution between asthma cases and controls. Overall,
patients withmild asthmawere younger (mean age, 36 years) than
patients with severe asthma (mean age, 48 years) (Fig E2, A-C).

Proportionally, there was a greater number of female subjects
than males. Most subjects had no previous exposure to tobacco
(63.36%). All spirometry measurements, which assess lung
function, were significantly different between the asthmatic and
nonasthmatic groups. Body mass index was higher in asthmatic
patients, but as with age, the distributions are relatively evenwhen
looking at the boxplots; there was also a difference between mild
(bodymass index5 27.40) and severe (bodymass index5 29.37)
asthma (Table I and Fig E2,D-F). Blood eosinophil levels and to-
tal IgE levels were significantly higher in asthmatic patients than
in controls. Among neutrophils, therewas no statistical difference
(Table I).
Imputation of missing data
For outcomes of lost data predictions, all goodness-of-fit tests

were not significant. Therefore, the frequencies of the original
genotypes are statistically equal to the genotypic frequencies after
imputing missing data. The average P value obtained among all
analyses was .9946; minimum P value 5 .8730 and maximum
P value 5 .9999.
GWAS results
Among 1.5 million SNVs, we found 49,978 markers associ-

ated (P < .05) with asthma. Only 1 of them, rs2049388, closest
gene MCG4859, showed suggestive association (P 5
5.78 3 1026; odds ratio, 0.48; 95% CI, 0.35-0.66; see Manhat-
tan plot in Fig E3 in this article’s Online Repository at www.
jaci-global.org). rs2049388 is an intergenic SNV located on
chromosome 7, at position 10421190 (GRCh38). The most
frequent allele is A, the lowest frequency allele is G (minor
allele frequency 5 0.17), and the alleles are in Hardy-
Weinberg equilibrium (P 5 .66).

The genotypic frequencies for healthy individuals were GG 5
14 (4.14%), AG 5 113 (33.43%), and AA 5 211 (62.43%),
whereas asthmatic genotypic frequencies were GG 5 18
(2.38%), AG 5 187 (24.74%), and AA 5 551 (72.88%). The
x2 test of independence obtained a P value of .002.

The quantile-quantile plot (Fig E3) of the P values illustrates
that the observed significant associations were beyond those ex-
pected. Moreover, the estimated genomic inflation factor (l)
was 1.01, indicating that the population’s genetic structure had
an insignificant impact on association results.
Genetic prediction of asthma: Feature selection and

machine learning algorithms
For this analysis, we selected the 200 best markers from

GWASs according to their respective P values. Boruta selected
155 variables (both accepted and undefined). The elastic
net algorithm selected 18,271 variables, too many to drive predic-
tions. Therefore, elastic net variables with B (absolute value)
greater than 1.0 were selected, leaving 74 remaining features
(Fig E1).

Table II summarizes the results of the classification algorithms
among the 3 variable selection methods. It contains training
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TABLE I. Social and clinical characterization of subjects

Characteristic No asthma (n 5 336 [49.1%]) Asthma (n 5 349 [50.9%]) P value

Age (y) 44.00 (34.50-54.00) 41.00 (28.00-52.00) .008

Sex .017

Male 48 (14.29) 75 (21.49)

Female 288 (85.71) 274 (78.51)

Smoke .193

No 211 (62.80) 223 (67.78)

Yes 125 (37.20) 106 (32.22)

Pre-BD FEV1 % 87.13 (80.00-95.49) 70.28 (59.73-81.87) <.001

Pre-BD FEV1 (cutoff 80%) <.001

<80% 86 (25.60) 259 (74.21)
>_80% 250 (74.40) 90 (25.79)

D FEV1 (L) 0.07 (0.01-0.13) 0.24 (0.11-0.38) <.001

Pre-BD FVC % 86.06 (77.71-94.72) 81.11 (72.53-89.26) <.001

Pre-BD FEV1/FVC % 101.23 (96.43-106.25) 85.80 (78.35-95.18) <.001

Pre-BD FEF25%-75% 94.40 (79.77-113.7) 49.06 (36.33-70.24) <.001

Eosinophils/mL 150.00 (92.00-241.00) 264.00 (145.50-421.25) <.001

Eosinophils (categorical) <.001

<200/mL 221 (66.37) 119 (36.06)
>_200/mL 112 (33.63) 211 (63.94)

Neutrophils/mL 3227.00 (2432.00-4206.00) 3533.00 (2467.50-4479.25) .100

Lymphocytes/mL 2008.00 (1646.00-2335.00) 2011.00 (1692.75-2354.75) .700

Monocytes/mL 377.00 (297.00-473.00) 445.00 (351.00-544.00) <.001

Basophils/mL 61.00 (49.00-79) 68.50 (55.00-87.00) <.001

Total IgE (UI/mL) 118.20 (33.92-339.38) 291.59 (122.04-553.58) <.001

Skin prick test <.001

Nonreactive 179 (53.27) 93 (26.65)

Reactive 80 (23.81) 191 (54.73)

Not tested 77 (22.92) 65 (18.62)

BMI 26.16 (22.96-29.64) 27.64 (23.92-31.87) .002

Values are expressed as n (%) with P value obtained by Fisher exact test, or median (interquartile range) with P value obtained by Mann-Whitney test. The skin prick test P value

represents the difference between reactive and nonreactive subjects.

BMI, Body mass index; pre-BD, prebronchodilator.
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accuracy corresponding to the best test accuracy, the best test ac-
curacy, the mean of training accuracies across the 10 folds, the SD
of training accuracies across the 10 folds, as well as sensitivity,
specificity, kappa, and F1 score corresponding to the model
with the best test accuracy. The best predictive model found using
the variables selected by Boruta and GWAS was the SVM using
the polynomial kernel, obtaining test accuracies of 90.00% and
94.00%, respectively. SVM showed great sensitivity, specificity,
kappa, and F1 score. At this time, SVM appeared to be the best
model for the predictive panel, but other algorithms, including
bagging, AdaBoost, RF, and XGBoost, were also promising
(Table II).

The large difference in accuracy between training and testing is
evidence of elastic net feature selection. Overall, the models fit
the training data well. However, they could not extrapolate good
predictions with new data (Table II). Figs E4 to E6 (in the Online
Repository available at www.jaci-global.org) complement these
metrics with receiver-operating characteristic curves for each
feature selection method.

We observed that 2 methods of variant selection, Boruta and
GWAS, were statistically similar when comparing the averages of
the generated test accuracies (81.03% and 79.85%), whereas the
elastic net method had the worst overall performance (52.87%)
and was significantly different from the other 2 (see Fig E7 in this
article’s Online Repository at www.jaci-global.org). At this point,
Boruta was considered the best feature selection method, because
it had a higher overall average with less variability among tests.
Using the variables selected by Boruta and the sum of the
importance scores of each SNV in descending order (from best
to worst), it was possible to observe the performance of each
algorithm when adding SNVs 1 by 1 to form sequenced
predictive models. We evaluated the scores with and without
the penalized system and noticed a subtle difference in the
results (Fig 1).

The SVM algorithm used the lowest number of markers to
reach an accuracy of 80%, with 50 SNVs needed to reach an
accuracy of 80.15% for the nonpenalized system and 55 SNVs to
reach an accuracy of 80.88% for the penalized system.
Conversely, the classification and regression tree algorithm
showed poor test accuracies regardless of the number of SNVs
added to the model.

Overall, good predictive accuracies commonly appeared when
more than 100 markers were included. Furthermore, we observed
that 80% accuracies typically appear first in the penalized system,
implying that the penalty creates better predictive accuracies
(Fig 1).

When evaluating the panel’s interaction with spirometry-
related variables, we observed that obstruction (FEV1/FVC ratio)
and FEV1 had the highest scores and appeared first in all algo-
rithms (see Fig E8 in this article’s Online Repository at www.
jaci-global.org). The mean initial accuracy among the algorithms
was 69.71%6 3.51%; that is, most algorithms are approximately
70% accurate using only FEV1 or the FEV1/FVC ratio. Sequenced
analyses without the 2 spirometry features start at a predictive

http://www.jaci-global.org
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TABLE II. The summary of performance of algorithms to choose among 3 variable selection methods

Boruta

Algorithm Train* Testy Meanz SD Sensitivity Specificity Kappa F1 score

KNN 0.84 0.79 0.77 0.06 0.88 0.69 0.57 0.81

NB 0.93 0.82 0.84 0.07 0.97 0.67 0.65 0.85

ANN 0.87 0.78 0.79 0.05 0.97 0.58 0.56 0.82

SVM 0.93 0.90 0.85 0.06 0.91 0.90 0.81 0.91

Bagging 0.91 0.84 0.85 0.03 0.87 0.81 0.68 0.85

AdaBoost 0.93 0.86 0.86 0.04 0.90 0.82 0.72 0.87

CART 0.69 0.55 0.60 0.08 0.57 0.54 0.10 0.56

C5.0 0.89 0.85 0.83 0.05 0.74 0.96 0.69 0.83

RF 0.91 0.88 0.85 0.04 0.88 0.87 0.75 0.88

XGBoost 0.89 0.84 0.85 0.05 0.84 0.84 0.68 0.84

Mean 0.88 0.81 0.81 0.05 0.85 0.77 0.62 0.82

SD 0.07 0.10 0.08 0.01 0.12 0.14 0.20 0.10

200 GWASs

Algorithm Train Test Mean SD Sensitivity Specificity Kappa F1 score

KNN 0.91 0.86 0.86 0.03 0.94 0.78 0.72 0.87

NB 0.69 0.65 0.64 0.06 0.99 0.31 0.30 0.74

ANN 0.91 0.51 0.79 0.16 1.00 0.00 0.00 0.67

SVM 0.98 0.94 0.93 0.04 0.90 0.99 0.88 0.94

Bagging 0.93 0.85 0.85 0.04 0.90 0.81 0.71 0.86

AdaBoost 0.91 0.89 0.88 0.03 0.87 0.91 0.78 0.89

CART 0.64 0.66 0.57 0.04 0.74 0.58 0.32 0.69

C5.0 0.91 0.82 0.84 0.04 0.86 0.79 0.65 0.83

RF 0.91 0.90 0.87 0.03 0.88 0.91 0.79 0.90

XGBoost 0.96 0.90 0.89 0.04 0.86 0.94 0.79 0.89

Mean 0.87 0.80 0.81 0.05 0.89 0.70 0.59 0.83

SD 0.11 0.14 0.11 0.04 0.07 0.32 0.29 0.09

Elastic Net

Algorithm Train Test Mean SD Sensitivity Specificity Kappa F1 score

KNN 0.82 0.55 0.76 0.07 0.87 0.22 0.09 0.66

NB 0.81 0.49 0.67 0.08 0.10 0.90 0.00 0.17

ANN 0.95 0.49 0.81 0.11 0.19 0.81 0.01 0.27

SVM 0.93 0.54 0.87 0.03 0.57 0.51 0.07 0.55

Bagging 0.84 0.59 0.75 0.05 0.81 0.36 0.17 0.67

AdaBoost 0.91 0.51 0.83 0.05 0.48 0.55 0.03 0.50

CART 0.75 0.54 0.70 0.04 0.59 0.48 0.07 0.57

C5.0 0.80 0.54 0.68 0.05 0.75 0.33 0.08 0.63

RF 0.87 0.51 0.80 0.05 0.57 0.46 0.03 0.54

XGBoost 0.87 0.51 0.81 0.05 0.61 0.42 0.03 0.56

Mean 0.85 0.53 0.77 0.06 0.55 0.50 0.06 0.51

SD 0.06 0.03 0.07 0.02 0.25 0.21 0.05 0.16

Boldface indicates higher test accuracy.

CART, Classification and regression tree; KNN, K-nearest neighbor.

*Training accuracy corresponding to the best test accuracy.

�Best test accuracy.
�Mean is the average of train accuracies among the 10-folds. SD is the standard deviation of train accuracies among the 10-folds.
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mean of 57.72% 6 10.46% for both penalized and nonpenalized
systems.

The inclusion of spirometry variables also hastened the 80%
accuracy prediction and reduced the accuracy variation for ANN.
However, this method was not useful for bagging, AdaBoost, and
RF, because it reduced their cumulative predictive power.

The predictive genetic panel created with SVM is composed of
155 variants, including 81 (52.26%) intronic variants, 62
(40.00%) intergenic variants, 7 (4.52%) missense variants, 4
(2.58%) noncoding transcript variants (pseudogenes), and 1
(0.66%) 39 untranslated region variant. Table E3 (in the Online
Repository available at www.jaci-global.org) compiles these
genetic markers and relevant information, such as related genes,
variant type, alleles, genotypes, and frequencies.

Table III summarizes definitive prediction using the panel of
155 SNVs. Seven models were obtained with accuracies above
80%: NB, SVM, bagging, AdaBoost, C5.0, RF, and XGBoost
(Fig 2). With a test accuracy of 91.18%, sensitivity of 92.75%,
and specificity of 89.55%, the model generated by SVM was
the best predictive model (Table III). Although the ANN model
has low accuracy, this test demonstrated 100% sensitivity, pre-
dicting all patients with asthma.

The frequencies of SNVs from each chromosome were
verified, and it was observed that chromosome 6 had the

http://www.jaci-global.org


FIG 1. Cumulative sequential analysis, adding one feature at a time from highest to lowest importance

score. Even for algorithms with great potential, dozens of markers are necessary for predictive accuracy to

be powerful in asthma outcomes. Penalized and nonpenalized systems are similar, but in some cases, such

as K-nearest neighbor and C5.0, prediction becomes satisfactory with fewer markers. The vertical lines in

each graph represent the first appearance of 80% predictive accuracy (black lines5 original data; red lines5
penalized scores). Horizontal lines: dotted 5 80%, dashed 5 85%, filled 5 90%.
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highest occurrence of SNVs (16) selected for the predictive
panel (see Fig E9, A, in this article’s Online Repository at www.
jaci-global.org).
The analysis of linkage disequilibrium between the panel
SNVs showed an imbalance between only 2 markers: rs13153665
and rs6869545 (linkage disequilibrium r2 5 1.00; Fig E9, B).

http://www.jaci-global.org
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TABLE III. The final performance comparison of asthma predictive algorithms using the 155 SNVs selected by Boruta

Prediction

Actual, n (%)

Sensitivity Specificity Kappa F1 scoreHealth Asthma Accuracy test

KNN Health 46 (33.82) 8 (5.88) 0.79 0.88 0.69 0.57 0.81

Asthma 21 (15.44) 61 (44.85)

NB Health 56 (41.18) 6 (4.41) 0.88 0.91 0.84 0.75 0.88

Asthma 11 (8.09) 63 (46.32)

ANN Health 10 (7.35) 0 (0.00) 0.58 1.00 0.15 0.15 0.71

Asthma 57 (41.91) 69 (50.74)

SVM Health 60 (44.12) 5 (3.68) 0.91 0.93 0.90 0.82 0.91

Asthma 7 (5.15) 64 (47.06)

Bagging Health 53 (38.97) 8 (5.88) 0.84 0.88 0.79 0.68 0.85

Asthma 14 (10.29) 61 (44.85)

AdaBoost Health 55 (40.44) 7 (5.15) 0.86 0.90 0.82 0.72 0.87

Asthma 12 (8.82) 62 (45.59)

CART Health 36 (26.47) 30 (22.06) 0.55 0.57 0.54 0.10 0.56

Asthma 31 (22.79) 39 (28.68)

C5.0 Health 64 (47.06) 18 (13.24) 0.85 0.74 0.96 0.69 0.83

Asthma 3 (2.21) 51 (37.50)

RF Health 57 (41.91) 9 (6.62) 0.86 0.87 0.85 0.72 0.86

Asthma 10 (7.35) 60 (44.12)

XGBoost Health 60 (44.12) 9 (6.62) 0.88 0.87 0.90 0.76 0.88

Asthma 7 (5.15) 60 (44.12)

CART, Classification and regression tree; KNN, K-nearest neighbor.
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When we removed SNV rs6869545 from the panel and reeval-
uated the predictive accuracy, it dropped from 91.18% to
89.71%. Therefore, we decided to maintain this marker.

Several distinct clusters were observed in STRING analysis
(see Fig E10 in this article’s Online Repository at www.jaci-
global.org). The largest contained 17 genes involved in intracel-
lular signaling processes such as the JAK-STAT pathway
(PRLR and ERBB4), regulation of MAP kinase activity
(PDGFD), and regulation of SMAD protein signal transduction.
In addition, identified genes were involved in cell differentiation,
with SPEF2 contributing to respiratory system development and
JAG2 involved in T-cell differentiation. In this group, ERBB4 and
DLG2 are also central genes. Finally, the STRING analysis high-
lighted a cluster of genes related to respiratory diseases, including
JAZF1, FTO, LINGO2, andWDR41 (see Fig E11 in this article’s
Online Repository at www.jaci-global.org).
DISCUSSION
Machine learning is a subdivision of artificial intelligence that

can apply algorithms to make predictions.13 In recent years, it has
been widely applied to predict diagnosis and prognosis of many
diseases.10 In this study, we explore the use of machine learning
to predict the genetic risk of asthma in a typically mixed-race Bra-
zilian population. Here, we study the core of the disease, evaluating
possible markers in common with the types of asthma or the most
prevalentmarkers of the asthma subtype in our population. Howev-
er, on the basis of the general characteristics of our asthmatic pop-
ulation, most of our population is, actually, T2 asthma.

There are several ways to choose genetic markers to establish a
panel, including using a GWAS.14 Boruta’s algorithm is based on
an RF and already widely used in the function of selecting vari-
ables.15 We evaluated 3 different selection methods. As demon-
strated, these averages of prediction accuracies were equal
between the 200 SNVs selected by GWASs and those chosen
by Boruta’s algorithm. However, the formation and constitution
of the panels were quite different. Because of better performance
and less variation between test accuracies, we selected Boruta as
the best variable selection algorithm.

Regarding panel construction, we chose a novel method,
comparing 10 different algorithms (K-nearest neighbor, NB,
ANN, SVM, classification and regression tree, C5.0, Bagging,
AdaBoost, RF, and XGBoost).16-18 The sequence of markers was
established using 10 different algorithms, as each gives its own
judgment level (or score) for each variable. As such, these impor-
tance scores can vary dramatically from one algorithm to another.
This would result in a different predictive genetic panel for each
of the algorithms, which was not our goal. Instead, we added the
scores to reflect the joint judgment of each feature by many
algorithms.

However, it was still necessary to give more weight to the
algorithms that managed to understand the subject most. With
penalized scores, we were able to obtain minimum accuracy
provisions of 80%with inclusion of fewer variants, indicating that
smaller SNV panels could potentially be used. Nevertheless, we
decided to keep all 155 SNVs, so that we could evaluate the
importance of each SNVand also retain the highest test accuracy
possible.

Overall, the SVM was proven to be the most effective
algorithm. Other studies had obtained similar results comparing
different methods and found superior outcomes with SVM;
However, the accuracy of a previous work was 62.5% in
predicting asthma using SNVs.15We observed that adding impor-
tant features to the model, such as spirometry, can lead to better
predictive accuracies using this algorithm. In this regard, it is
important to emphasize that the high accuracy found in predicting
asthma does not directly imply its heritability. The classification
model can predict asthma according to the variables imputed in
the construction of the model, and certainly unable to detect all
possible disease determinants of a patient at once, considering
asthma a complex disease where the environment, along with ge-
netics, plays a role.

http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org


FIG 2. ROC curves of the genetic panel predictions. Compared with other algorithms, the ROC curve and

AUC generated by the SVM model were superior. AUC, Area under the curve; KNN, K-nearest neighbor;

ROC, receiver-operating characteristic.
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The search for new predictive methodologies is not recent. The
use of machine learning to assess SNVs associated with asthma
was previously explored by Tomita et al19 in 2004 and 24 poly-
morphisms in genes of interest in the Japanese population,
achieving a model evaluation accuracy of 74.4%.

Recent studies, such as Gaudillo et al,15 have demonstrated
how the sequential addition of genetic markers behaves in pre-
dicting a complex trait. In this work, it was observed that there
is a plateau of optimal accuracy when selecting up to 310 SNVs
for SVMmodels and up to 400 SNVs for RFmodels. In our study,
we were able to reduce and optimize these numbers to 155
through prior selection via Boruta.

In fact, the search for genetic associations with diseases using
machine learning has grown exponentially and is not limited to
asthma research.9,10 Lim et al20 also tested different algorithms
and achieved predictions above 90% for rheumatoid arthritis.
The selection method they used was the recursive feature elimina-
tion with cross-validation algorithm implemented with an RF
(indicating similarities with our methodology), which selected 9
of 76,713 SNVs. These diverse approaches help us to explore a
universe of possibilities, moving beyond conventional regression
methods to uncover refined associations that may have gone un-
noticed before.

In our panel, more than half the SNVs were intronic variants,
and a considerable part were intergenic variants. The 7 missense
variants belonged to the NOD1, DSG1, LOC728743,
LOC105370777/LOC124903467, IGH, DST, and UFL1-AS1
genes.
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NOD1 is well reported in the literature regarding its associa-
tion with asthma. This gene encodes a member of the
nucleotide-binding oligomerization domain (NOD)-like recep-
tors, which is important in the host response to infection and
may be involved in TH2 immune responses and could be critical
in TH2-related conditions such as asthma and atopy.21 The
DSG1 gene encodes the desmoglein 1 protein, a transmembrane
glycoprotein that forms desmosomes. In addition to being asso-
ciated with autoimmune diseases, it is associated with skin dis-
eases and asthma.22 The expression of LOC728743 (a
pseudogene) is positively associated with the number of B cells,
CD41 T cells, macrophages, and neutrophils in patients with
esophageal carcinoma.23

The SNV rs115699578 is an undescribed missense marker in
the IGH gene, a region that encodes the heavy chain of anti-
bodies.24 rs79225819, a missense SNV in the DST gene,25 has
not been specifically tied to asthma, although DST has.26 DST
encodes dystonin, a cytoskeleton-binding and cell junction
protein whose overexpression is a marker of severity in lung
diseases such as pulmonary fibrosis and emphysema.26 The
missense SNV rs4590278 occurs in the long noncoding RNA
gene UFL1-AS1, which is related to transcriptional regulation
but has no known association with asthma.27 Many other
genetic markers in the panel are undescribed, and thorough
investigation of these will provide an interesting avenue for
follow-up studies.

Our panel also showed protein-protein clusters based on
STRING analysis, including some suggesting association with
respiratory diseases and regulation of intracellular signal trans-
duction. Thus, interference in the physiological functioning of
these proteins by SNVs located in promoter and intronic regions
may be the key to understanding the susceptibility to possibly
undiscovered asthma endotypes. Therefore, our panel is not
restricted to prediction of asthma susceptibility but could
contribute to the identification of new candidate genes on asthma,
including new pathways never explored before linked to the
pathophysiology of this disease.

We describe a predictive genetic panel for asthma built using a
hybrid machine learning method. SVM, the best algorithm, was
able to classify asthma and nonasthma with high accuracy (91%),
sensitivity (93%), and specificity (90%) in our population. In a
near future, this panel (or a panel like this) could be useful for
detecting an individual’s genetic susceptibility to asthma, as some
of the markers studied here confirm old associations and shed
light on others. The primary function of our machine learning
model is to classify the core aspects of the asthmatic disease,
without evaluating its phenotypes at this time. This represents the
initial step toward contributing to the early diagnosis of the
disease.
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