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Responsiveness of Inhaled Epoprostenol
in Respiratory Failure due to COVID-19
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Abstract
Background: Inhaled pulmonary vasodilators are used as adjunctive therapies for the treatment of refractory hypoxemia.
Available evidence suggest they improve oxygenation in a subset of patients without changing long-term trajectory. Given the
differences in respiratory failure due to COVID-19 and “traditional” ARDS, we sought to identify their physiologic impact.
Methods: This is a retrospective observational study of patients mechanically ventilated for COVID-19, from the ICUs of
2 tertiary care centers, who received inhaled epoprostenol (iEpo) for the management of hypoxemia. The primary outcome is
change in PaO2/FiO2. Additionally, we measured several patient level features to predict iEpo responsiveness (or lack thereof).
Results: Eighty patients with laboratory confirmed SARS-CoV2 received iEpo while mechanically ventilated and had PaO2/FiO2

measured before and after. The median PaO2/FiO2 prior to receiving iEpo was 92 mmHg and interquartile range (74 – 122). The
median change in PaO2/FiO2 was 9 mmHg (-9 – 37) corresponding to a 10% improvement (-8 – 41). Fifty-percent (40 / 80) met our
a priori definition of a clinically significant improvement in PaO2/FiO2 (increase in 10% from the baseline value). Prone position and
lower PaO2/FiO2 when iEpo was started predicted a more robust response, which held after multivariate adjustment. For proned
individuals, improvement in PaO2/FiO2 was 14 mmHg (-6 to 45) vs. 3 mmHg (-11 – 20), p ¼ 0.04 for supine individuals; for those
with severe ARDS (PaO2/FiO2 < 100, n ¼ 49) the median improvement was 16 mmHg (-2 – 46). Conclusion: Fifty percent of
patients have a clinically significant improvement in PaO2/FiO2 after the initiation of iEpo. This suggests it is worth trying as a
rescue therapy; although generally the benefit was modest with a wide variability. Those who were prone and had lower
PaO2/FiO2 were more likely to respond.
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Background

Inhaled pulmonary vasodilators, nitric oxide (iNO) and epo-

prostenol (iEpo), are used for refractory hypoxemia of the acute

respiratory distress syndrome (ARDS). There is attractive phy-

siologic rationale: the vasodilators are delivered to the diseased

lung from the airways, leading to increased perfusion of

well-ventilated lung units thereby improving shunt fraction.1

Available evidence suggests these therapies do not improve

mortality,2,3 but do improve oxygenation in a subset of

patients.4-7 Inhaled epoprostenol is thought to be equally effi-

cacious but is less expensive than iNO.8,9

High quality data demonstrating benefits of iEpo other than

a short-term improvement in oxygenation are limited; there-

fore, a recent Cochrane review did not recommend for or

against its use, instead suggesting the need for additional stud-

ies.10 In practice, patients are often trialed on iEpo alongside

other proven therapies, such as lung protective ventilation,11

prone positioning,12 conservative fluid management,13 and the

use of neuromuscular blockade14,15 in select cases. In a recent

landmark multicenter trial focused on the efficacy of extracor-

poreal membrane oxygenation (ECMO), 83% of patients who

did not receive ECMO (and 60% who did) were trialed on iNO

or iEpo.16

Despite limitations of inhaled pulmonary vasodilators in

ARDS in general, there is some reason to believe they may

be specifically beneficial in respiratory failure due to

COVID-19. Though the precise pathophysiology remains

unclear, it appears that at least a subset of those with

COVID-19 have hypoxemia out of proportion to imaging find-

ings with preserved lung mechanics,17 a pattern characteristic

of pulmonary vascular disease. In addition, autopsy studies

(limited by small numbers) show vascular changes along with
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the presence of microthrombi.18,19 Transthoracic echocardio-

graphy studies demonstrate a tendency for increased right ven-

tricular strain, which has been correlated with prognosis.20,21

Even outside the lung, there is emerging evidence that

SARS-CoV-2 is a diffusely vasculotropic virus.22 In addition

to being vasodilatory, prostaglandins may have pleotropic

anti-inflammatory and anti-platelet effects.1

Professional societies currently recommend against the rou-

tine use of inhaled vasodilators in COVID-19 respiratory fail-

ure, based on weak evidence.23,24 Therefore, we sought to

identify the physiologic response (as measured by PaO2/FiO2)

to iEpo in patients with severe respiratory failure due to

COVID-19. We additionally attempted to determine if there

were patient level factors that predicted responsiveness (or lack

thereof) given the emphasis on deliberate resource utilization

with scarcities brought about by the pandemic.

Methods

This is a retrospective study involving 2 tertiary care centers

in a single heath system in Washington DC: Medstar George-

town University Hospital and Medstar Washington Hospital

Center. All consecutive patients from 3/1/2020 to 5/22/2020

were included if diagnosed with laboratory confirmed

SARS-CoV2, were mechanically ventilated for hypoxemic

respiratory failure and received inhaled epoprostenol (iEpo).

The hospitals share a single set of clinical guidelines for the

care of COVID patients; however, this does not address iEpo.

Therefore, it was used at the treating clinician’s discretion.

Dosing was started at 50 nanograms per kilogram of ideal

body weight per minute, delivered via a syringe through an

infusion pump attached to the inspiratory limb of the venti-

lator tubing. The primary outcome is change in the ratio of

arterial oxygen pressure to the fraction of inhaled oxygen

delivered by the ventilator, PaO2/FiO2, measured before and

after the initiation of iEpo.

In order to isolate the specific impact of iEpo we excluded

patients if there were changes in the ventilator mode, positive

end-expiratory pressure (PEEP), FiO2, patient position (from

prone to supine or vice versa) or initiation / removal of neuro-

muscular blockade between PaO2/FiO2 measurements. Up to

24 hours were allowed between arterial blood gas measure-

ments and the iEpo initiation (before and after) if these criteria

were met. Changes in tidal volume (Vt) and respiratory rate

(RR) were permitted. We defined a clinically significant

improvement in PaO2/FiO2 as a 10% increase (“iEpo

responders”), based on our perception of a reasonable, clini-

cally useful change and a definition that has been previously

used.25 Patients on extracorporeal membrane oxygenation

(ECMO) were excluded.

In order to determine if there were patient features that

predicted improvement, we recorded variables potentially

related to iEpo responsiveness based on biologic plausibility

and prior data4,7; demographics, past medical history, severity

of illness as measured by the sequential organ failure assess-

ment (SOFA) score26 ventilator parameters (mode, FiO2,

PEEP, Vt, RR, plateau pressure, driving pressure [plateau

pressure – PEEP], static compliance [Vt / driving pressure]),

prone position, net fluid balance, use of specific medications

(neuromuscular blockade, therapeutic anticoagulation, ster-

oids) and laboratory data (C-reactive protein, D-dimer, Il-6).

Prone position was defined as the patient being physically

proned at the time of iEpo administration. Neuromuscular

blockade was defined as a continuous infusion of cisatricurium

or having received vecuronium within 2 hours of iEpo initia-

tion. Steroid use was defined as the administration of at least

40 mg of methylprednisolone (or equivalent) within 24 hours.

Anticoagulation referred to therapeutic dosing of heparin or

enoxaparin (at the time of iEpo administration). Laboratory

data were values most proximate to iEpo initiation.

Data was obtained directly from the health system’s clinical

data warehouse and supplemented with direct review of patient

records when needed. Summary statistics describe the fre-

quency of each categorical variable and either mean (for nor-

mally distributed) or median (for non-normally distributed) of

continuous variables. In a comparison between responders and

non-responders to iEpo, continuous data were compared via the

student t-test and Wilcoxon rank sum test for normally and

non-normally distributed data respectively. Categorical data

were analyzed with a Chi-Square test or Fisher’s Exact test

as appropriate. We included variables with statistically signif-

icant univariate associations along with others that were clini-

cally relevant as candidates in regression models with change

in PaO2/FiO2 as the dependent variable of interest, developed

in a stepwise fashion with a stopping rule based on minimum

Bayesian Information Criterion (BIC). Data extraction, clean-

ing and pre-processing were performed in R, and analysis using

JMP 15 Pro (Cary, NC). This study was approved by the Insti-

tutional Review Board of Georgetown University.

Results

Patient Characteristics

During the study period, 80 patients invasively mechanically

ventilated (iMV) for respiratory failure due to COVID-19

received iEpo and met inclusion criteria. Demographic features

and past medical history are described in Table 1. The median

age was 59, 59% were male, 56% Black; the majority had at

least one co-morbidity including diabetes mellitus (40%) and

morbid obesity (18%). The time between intubation and the

initiation of iEpo was highly variable with a median of 17 hours

and interquartile range (8 – 74). The total time on iMV was a

median of 13 days (7 – 21) and 48 patients (60%) died while

hospitalized (the remainder were discharged alive).

At the time of iEpo administration, median PaO2/FiO2 was 92

(74 – 122). The ventilator mode for the majority of the patients

(70 / 80, 88%) was assist control with volume cycling (AC/VC)

and the others were on airway pressure release ventilation

(APRV). Median FiO2 was 90 (70 – 100), and for the individuals

on AC/VC, median PEEP was 12 cm H20 (10 – 15) (Table 2).
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Change in Oxygenation

PaO2/FiO2 measurements were calculated from the arterial

blood gases closest in time to the initiation of iEpo (before and

after): a median of 2.9 hours (1.5 – 5.0) before iEpo was started

and 2.9 hours (1.3 – 4.9) after. The median change in PaO2/

FiO2 post-iEpo was 9 mmHg (-9 – 37) (Figure 1) corresponding

to a 10% improvement (-8 – 41). Fifty-percent (40 / 80) met our

a priori definition of a clinically significant improvement in

PaO2/FiO2 (increase in 10% from the baseline value). The

demographic and clinical characteristics of the “responders”

and “non-responders” are described in Tables 1 and 2. There

was no association between the time on iEpo and PaO2/FiO2.

Static compliance did not vary between responders and

non-responders (Table 2) and there was no linear association

between static compliance and change in PaO2/FiO2

(p ¼ 0.81).

The 2 variables associated with iEpo responsiveness were

prone position and lower PaO2/FiO2 when iEpo was started

(Table 2). For the 46 proned patients (56% of total), the median

improvement in PaO2/FiO2 was 14 mmHg (-6 to 45)

(vs. 3 mmHg [-11 – 20], p ¼ 0.04 for supine individuals)

corresponding to a 16% (-6 – 51) change from baseline

(vs. 4% [-11 – 25], p ¼ 0.05). Those with severe ARDS (as

defined by PaO2/FiO2 < 100, n ¼ 49) were more likely to have

a 10% improvement in post-iEpo PaO2/FiO2 (59% vs. 35%,

p ¼ 0.03) with a median improvement of 16 mmHg (-2 – 46)

corresponding to a 17% change (-2 – 59).

Predicting Responsiveness

To further explore these univariate observations, we gener-

ated 2 multivariate regression models: a logistic model using

a 10% improvement in PaO2/FiO2 as the outcome, and a

linear model with continuous change in PaO2/FiO2 as the

outcome. We included FiO2, PEEP level, time between mea-

surements, the use of neuromuscular blockade and static

compliance as additional covariates, despite the lack of sta-

tistically significant univariate associations, given their clin-

ical relevancy to oxygenation. After this multivariate

adjustment, lower PaO2/FiO2 at the time of iEpo initiation

(adjusted OR 0.88 [95% CI 0.78 – 0.98] p ¼ 0.04 for each

10 mmHg decrement in logistic model; coefficient -2.95

[-5.5 – -1.1] p ¼ 0.03 in the linear model) and prone position

(adjusted OR 2.5 [1.1 – 6.2] p ¼ 0.05, coefficient 4.9

[0.9 – 7.8] p ¼ 0.05) remain the only independent predictors

of iEpo responsiveness in both cases. Of note, PaO2/FiO2 at the

time of iEpo initiation did not vary among those who were prone

vs. supine (92 mmHg [72 – 119] vs. 92 [79 – 143], p ¼ 0.56);

correspondingly, prone position was not more likely in those

with severe ARDS (59% vs 54%, p ¼ 0.70).

There was no difference in PaO2/FiO2 change based on ven-

tilator mode. Median improvement was 7 mmHg (-9 – 27) for

those on APRV and 9 (-9 – 43) for the remainder (p ¼ 0.48).

A subset of patients had marked changes (in both directions)

after iEpo: 38% (n¼ 30) had a 25% improvement in PaO2/FiO2

over pre-iEpo values, and 16% (n ¼ 13) had a 25% decrease.

Individuals with a 25% improvement similarly had lower PaO2/

FiO2 (85 mmHg [69 – 104] vs. 97 [84 – 125], p ¼ 0.01) with a

trend toward greater likelihood of prone positioning not meeting

statistical significance (67% vs. 48%, p ¼ 0.10).

Discussion

The defining clinical characteristic of the SARS-COV2

epidemic has been respiratory failure, with profound hypoxe-

mia leading to mechanical ventilation and overwhelmed inten-

sive care units.27 While patients typically present meeting

Table 1. Patient Characteristics.

Total (n ¼ 80) iEpo responder (n ¼ 40) iEpo non-responder (n ¼ 40) p-value

Age, median (IQR) 59 (48 – 67) 60 (49 – 69) 59 (46 – 66) 0.44
Male, n (%) 47 (59) 26 (65) 21 (53) 0.25
BMI, median (IQR) 30 (27 – 38) 31 (28 – 39) 30 (28 – 37) 0.42
Morbidly obese (BMI > 40), n (%) 14 (18) 7 (18) 7 (18) 0.99
Race, n (%) 0.94

Black or African American 45 (56) 22 (55) 23 (58)
White 7 (9) 4 (10) 3 (8)
Other 23 (29) 12 (30) 11 (28)
Unknown 5 (6) 2 (5) 3 (8)

Comorbidities, n (%)
Hypertension 50 (63) 25 (63) 25 (63) 0.99
Diabetes Mellitus 32 (40) 12 (20) 20 (50) 0.07
Chronic Kidney Disease 20 (25) 11 (28) 9 (23) 0.61
Coronary Artery Disease 11 (14) 4 (10) 7 (18) 0.33
Cancer 11 (14) 4 (10) 7 (18) 0.33
Cirrhosis 2 (3) 2 (5) 0 (0) 0.49
Organ Transplant 4 (5) 1 (3) 3 (8) 0.62
HIV 1 (1) 1 (3) 0 (0) 0.99

Characteristics of included individuals. iEpo “responder” is defined as an improvement in PaO2 / FiO2 of 10%.
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criteria for acute respiratory distress syndrome (ARDS),

COVID-19 respiratory failure appears to be distinct in so far

as it is steroid responsive,28 venous thromboembolism is com-

mon29,30 the course is protracted31 and there may be distinct

phenotypes characterized by differing lung compliance.17,32

While clinicians have been advised to manage COVID-19

patients based on the existing paradigm for ARDS,23 these

differences point to a different disease process, and the need

to re-evaluate treatment strategies that are both established for

ARDS and those that may be less frequently used as rescue

therapies.33

An example is inhaled epoprostenol (iEpo), used as an

adjunct therapy in the management of refractory hypoxemia.

We identified 80 mechanically ventilated patients who

received iEpo spanning 2 tertiary referral centers. Half had a

clinically significant improvement in PaO2/FiO2 (�10% over

the baseline value); however, generally the benefit was modest

(median improvement of 9 mmHg) with large variability

(IQR -9 – 37), including a substantial number that had a marked

responses in both directions. Prior studies of iEpo responsive-

ness in ARDS (before COVID-19) differ by dosing protocol,

time between measurements, disease severity and lack unifor-

mity in ventilator settings.4-7,9,34 Considering that, the median

PaO2/FiO2 difference we observed is in the same direction but

appears to be lower than previously published reports. It is

notable that a significant worsening in oxygenation can occur.

Perhaps in certain individuals iEpo aberrantly decouples the

normal hypoxic vasoconstriction of pulmonary blood flow at

a macro-level – but this is purely conjecture. If possible, clin-

icians should isolate the initiation of iEpo from other interven-

tions to carefully assess its efficacy or lack thereof.

PaO2/FiO2 as an outcome has limitations. It fluctuates in the

normal course of a patient’s illness35 and is dependent on FiO2,

airway pressure and peripheral oxygen extraction.36 However,

it is one of the primary measurements used by clinicians in the

bedside care of mechanically ventilated patients, is correlated

with mortality37,38 and is widely used as a factor in considering

a patient’s eligibility for and response to therapeutic interven-

tions. In the design of this study, we purposely excluded

patients with FiO2 or PEEP changes between PaO2/FiO2 mea-

surements to carefully examine the specific impact of iEpo.

The timeframe after iEpo was administered before PaO2/FiO2

was checked was a median of 2.9 hours (1.3 – 4.9), after which

a therapeutic response, if one exists, should be observed.39

The significance of the specific benefit for individuals who

are prone or have a lower PaO2/FiO2 is not clear. It is possible

that these observations are artefactual due to multiple compar-

isons; however, the associations remain significant after multi-

variate adjustment lending credence to the findings. Prior

analyses of variables predicting outcomes with the use of iEpo

either did not record prone position4 or excluded those individ-

uals altogether.7 In the prone position, ventilation is more

homogenously distributed throughout the lung whereas perfu-

sion is relatively unaffected,40 generally improving

ventilation-perfusion matching.41 This may lead to more

balanced, efficient delivery of iEpo throughout the lung,

Table 2. Clinical Features of iEpo Responders.

Total (n ¼ 80) iEpo responder (n ¼ 40) iEpo non-responder (n ¼ 40) p-value

SOFA score, median (IQR)* 12 (11 – 15) 12 (10 – 14) 13 (11 – 15) 0.29
Prone, n (%) 46 (58) 28 (70) 18 (46) 0.02
Fluid balance / day mL, median (IQR)** 900 (120 – 2920) 860 (-320 – 2050) 1080 (370 – 3120) 0.29
Respiratory parameters, median (IQR)

FiO2 90 (70 – 100) 100 (70 – 100) 80 (60 – 100) 0.19
PaO2 / FiO2, mmHg

Before 92 (74 – 122) 86 (69 – 104) 102 (87 – 138) <0.01
After 105 (81 – 145) 133 (98 – 171) 85 (64 – 109)

PaCO2 45 (41 – 54) 45 (41 – 56) 47 (42 – 52) 0.98
Ventilator parameters, median (IQR)

PEEP, cm H20 12 (10 – 15) 12 (10 – 14) 12 (10 – 15) 0.34
Tidal Volume, mL 420 (360 – 490) 450 (360 – 490) 400 (360 – 500) 0.33
Respiratory Rate 22 (20 – 26) 20 (20 – 26) 22 (18 – 28) 0.43
Plateau Pressure, cm H20 28 (25 – 30) 28 (26 – 30) 29 (25 – 31) 0.48
Driving Pressure, cm H20 15 (13 – 19) 15 (13 – 17) 16 (14 – 19) 0.50
Static Compliance, mL / cm H20 27 (22 – 33) 28 (22 – 34) 26 (22 – 33) 0.65

Therapeutics, n (%)
Neuromuscular Blockade 12 (15) 3 (8) 9 (23) 0.11
Anticoagulation 14 (18) 5 (13) 9 (23) 0.37
Steroids 6 (8) 1 (3) 5 (13) 0.20

Laboratory Data, median (IQR)
C-reactive protein, mg/L 169 (96 – 249) 162 (83 – 210) 171 (96 – 287) 0.27
D-dimer, mg/L 3.5 (1.3-8.5) 2.9 (1.6-8.3) 4.3 (2.1-8.9) 0.53
IL-6 pg/mL 43 (12-120) 55 (10-247) 42 (13-98) 0.63

*SOFA score calculated for the 24 hours around iEpo administration
**Fluid balance / day since intubation
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thereby augmenting its efficacy. This is speculative, however,

and the impact of this physiologic observation on patient out-

comes is uncertain. That those with lower PaO2/FiO2 and

severe ARDS (PaO2/FiO2 < 100) are more likely to have

improved oxygenation and a robust response (>25% improve-

ment) with iEpo may be informative for clinicians, but these

are individuals in who iEpo would likely be trialed anyways.

While the mechanism of this observation is not explained by

the variables we collected, it is not driven by prone positioning

(which was relatively equally distributed across PaO2/FiO2

strata). Notably, this is the opposite pattern to what one prior

observational study previously described.7

This is the first analysis regarding the use of inhaled pul-

monary vasodilators for COVID-19 that we are aware of. There

are numerous limitations, however. It is retrospective, so mea-

surements were made in the routine care of patients rather than

accordance with a protocol. We attempted to mitigate the

impact of a lack of a specific protocol by narrowing the cohort

to those who did not have significant changes to their care

during the study timeframe other than receipt of iEpo. Addi-

tionally, we did not track subsequent PaO2/FiO2 measurements

while on iEpo. This was intentional: as time passes, the natural

course of disease, ventilator manipulations, and other therapeu-

tics (such as diuretics or steroids) likely play a large role in

changes in oxygenation, limiting our ability to attribute differ-

ences to iEpo. Moreover, prior data suggests the benefit of iEpo

may be lost over time.34 Gattinoni et al. popularized a theory

differentiating phenotypes of COVID-19 on the basis of lung

compliance,17 but we did not observe an impact of static com-

pliance on iEpo responsiveness. However, other elements of

these phenotypes, such as recruitability and specific imaging

findings, were not explored. We did not address the role of iEpo

in patients who are not mechanically ventilated or the impact

on right ventricular afterload (given that invasive hemody-

namic assessments were infrequently performed). Lastly, there

was a relatively low rate of neuromuscular blockade – this was

driven by recent data regarding is utility15 and drug shortages

related to the pandemic.

Conclusions

For individuals mechanically ventilated for COVID-19, we

found evidence of early benefit to iEpo in 50% of patients,

suggesting it may be useful as a rescue strategy. There is a

large variability in responsiveness, however, including the

potential for worsening oxygenation that clinicians should be

aware of. Further research will be needed to establish any

impact on long term outcomes.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to

the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, author-

ship, and/or publication of this article.

ORCID iD

Rajiv Sonti https://orcid.org/0000-0002-3564-6720

References

1. Griffiths MJD, Evans TW. Inhaled nitric oxide therapy in adults.

N Engl J Med. 2005;353:2683-2695.

2. Adhikari NK, Dellinger RP, Lundin S, et al. Inhaled nitric oxide

does not reduce mortality in patients with acute respiratory

Figure 1. Change in PaO2/FiO2 after inhaled epoprostenol.

Sonti et al 331

https://orcid.org/0000-0002-3564-6720
https://orcid.org/0000-0002-3564-6720
https://orcid.org/0000-0002-3564-6720


distress syndrome regardless of severity: systematic review and

meta-analysis. Crit Care Med. 2014;42(2):404-412.

3. Adhikari NK, Burns KE, Friedrich JO, Granton JT, Cook DJ,

Meade MO. Effect of nitric oxide on oxygenation and mortality

in acute lung injury: systematic review and meta-analysis. BMJ.

2007;334(7597):779.

4. Pacheco J, Arnold H, Skrupky L, Watts P, Micek ST, Kollef MH.

Predictors of outcome in 216 subjects with ARDS treated with

inhaled epoprostenol. Respir Care. 2014;59(8):1178-1185. doi:

10.4187/respcare.02939

5. Fuller BM, Mohr NM, Skrupky L, Fowler S, Kollef MH, Carpen-

ter CR. The use of inhaled prostaglandins in patients with ARDS:

a systematic review and meta-analysis. Chest. 2015;147(6):

1510-1522. doi:10.1378/chest.14-3161

6. Tabrizi MB, Schinco MA, Tepas JJ 3rd, Hwang J, Spiwak E,

Kerwin AJ. Inhaled epoprostenol improves oxygenation in severe

hypoxemia [published correction appears in J Trauma Acute Care

Surg. 2012 Nov;73(5):1354]. J Trauma Acute Care Surg. 2012;

73(2):503-506.

7. Kallet RH, Burns G, Zhuo H, et al. Severity of hypoxemia and

other factors that influence the response to aerosolized prostacy-

clin in ARDS. Respir Care. 2017;62(8):1014-1022.

8. Buckley MS, Agarwal SK, Garcia-Orr R, Saggar R, MacLaren R.

Comparison of fixed-dose inhaled epoprostenol and inhaled nitric

oxide for acute respiratory distress syndrome in critically ill adults

[published online ahead of print March 5, 2020]. J Intensive Care

Med. 2020.

9. Ammar MA, Bauer SR, Bass SN, Sasidhar M, Mullin R, Lam SW.

Noninferiority of inhaled epoprostenol to inhaled nitric oxide for

the treatment of ARDS. Ann Pharmacother. 2015;49(10):

1105-1112.

10. Afshari A, Bastholm Bille A, Allingstrup M. Aerosolized prosta-

cyclins for acute respiratory distress syndrome (ARDS) [pub-

lished online ahead of print July 24, 2017]. Cochrane Database

Syst Rev. 2017;7(7):CD007733.

11. Acute Respiratory Distress Syndrome Network; Brower RG, Mat-

thay MA, et al. Ventilation with lower tidal volumes as compared

with traditional tidal volumes for acute lung injury and the acute

respiratory distress syndrome. N Engl J Med. 2000;342(18):

1301-1308.
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