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Abstract

Thrombin and other inflammatory mediators may induce vascular permeability through the

disruption of adherens junctions between adjacent endothelial cells. If uncontrolled, hyper-

permeability leads to an impaired barrier, fluid leakage and edema, which can contribute to

multi-organ failure and death. RhoGTPases control cytoskeletal dynamics, adhesion and

migration and are known regulators of endothelial integrity. Knowledge of the precise role of

each RhoGTPase, and their associated regulatory and effector genes, in endothelial integ-

rity is incomplete. Using a combination of a RNAi screen with electrical impedance measure-

ments, we quantified the effect of individually silencing 270 Rho-associated genes on the

barrier function of thrombin-activated, primary endothelial cells. Known and novel RhoGT-

Pase-associated regulators that modulate the response to thrombin were identified (RTKN,

TIAM2, MLC1, ARPC1B, SEPT2, SLC9A3R1, RACGAP1, RAPGEF2, RHOD, PREX1,

ARHGEF7, PLXNB2, ARHGAP45, SRGAP2, ARHGEF5). In conclusion, with this siRNA

screen, we confirmed the roles of known regulators of endothelial integrity but also identified

new, potential key players in thrombin-induced endothelial signaling.

Introduction

Endothelial cells (EC), which form the inner lining of blood vessels, regulate the functioning of

tissues through tight control of the extravasation of solutes, proteins and circulating cells. They

are connected by tight- and adherens junctions, which are intracellularly connected to the F-

actin cytoskeleton via protein complexes [1]. By rearrangement of cytoskeletal elements and

actomyosin-induced contraction, EC morphology is altered, which, together with altered

phosphorylation of junctional proteins, can cause either disassembly of junctions or restora-

tion of the barrier function [2]. Vasoactive agents, such as VEGF-A, thrombin and histamine,

can induce barrier dysfunction through the induction of intercellular gaps [3–6]. The conse-

quent vascular leakage is a hallmark of many diseases and despite its importance, no therapies
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are available to prevent or reduce it. As RhoGTPases play an important role in the regulation

of the cytoskeleton and endothelial permeability, their complex regulation may provide targets

for selective improvement of a compromised endothelial barrier.

RhoGTPases are directly involved in the regulation of cell morphology, adhesion and

migration and in the loss and restoration of endothelial barrier function [7, 8]. The activity of

most RhoGTPases is controlled by their nucleotide (i.e. GDP or GTP)-bound state which is

tightly controlled by a large number of regulatory proteins including: guanine nucleotide

exchange factors (GEFs)–which promote GTPase activation by stimulating exchange of GDP

for GTP; GTPase-activating proteins (GAPs)–which catalyze GTP hydrolysis; and guanine-

nucleotide dissociation inhibitors (GDIs)–cytosolic chaperones which bind the bulk of inactive

RhoGTPases. Atypical RhoGTPases such as RND1, RND2, RND3 [9, 10] and mitochondrial

RhoT1, T2 [11, 12] are exceptions to this general process of activation, since they are not regu-

lated by nucleotide exchange or have an extremely slow hydrolysis, keeping these GTPases

constitutively active (GTP-abound). Recently, it was shown that the once considered “normal”

RhoD is, in fact, also an atypical RhoGTPase [13, 14].

From the RhoGTPase family of about 20 members, Rac1 and RhoB are important regula-

tors of the basal endothelial barrier function [15, 16]. Furthermore, RhoA received much

attention, as it plays an essential role in a range of cellular processes [7, 17, 18] and in throm-

bin- and histamine-induced endothelial permeability [6, 19–21]. Once activated by GEFs (e.g.

p115RhoGEF [22], LARG [23, 24]), RhoA signals to its downstream effector proteins, in par-

ticular RhoKinase (ROCK) which decreases the de-phosphorylation of MLC (myosin light

chain) by MLC phosphatase [25]. This leads to an increase of phosphorylated MLC (phosphor-

ylated by Ca++/calmodulin-activated MLC kinase) and thus enhances actomyosin-based cell

contraction.

Thrombin-induced contraction and hyperpermeability are transient, and cells usually

recover within 1–2 hrs from its consequences (formation of intercellular gaps, disruption of

endothelial junctions) and reanneal their junctional complexes, restoring endothelial integrity.

Thrombin activation also leads to a decreased activity of barrier-protecting RhoGTPases, such

as Rac1 and Cdc42 [26]. FilGAP and ArhGAP22 activation by RhoA/ROCK have been sug-

gested to play a role in the RhoA/Rac1 antagonism of tumor cells [27, 28], but inactivation of

specific GEFs (p115RhoGEF, LARG, PDZ-RhoGEF) can also contribute to reduced Rac1 acti-

vation. Cdc42, on the other hand, is not inhibited but re-localized from the plasma membrane

to the cytosol which leads to a delayed activation [26, 29]. Rap1 activities also contribute to the

recovery phase and reannealing of junctions after thrombin-induced barrier loss [30]. Interest-

ingly, RhoGTPases can exert both positive and negative effects on EC. Recently, RhoA was

shown to be directly related to the closure of small gaps upon membrane remodeling [31] or

induced by transmigrating leukocytes [32]. It appears that both localized activation of individ-

ual RhoGTPases, as well as the state of the cell prior to stimulation, determines de outcome of

their signaling [33–35].

Here, we identify known and promising novel regulators of the thrombin response in endo-

thelial cells. Using a RNAi approach in conjunction with electrical impedance measurements

of the endothelial barrier, we analyzed the impact of silencing 270 genes (RhoGTPAses, Rho-

GEFs, RhoGAPs, GDIs, Effectors and Rho-Associated genes) on the response to thrombin.

Our results confirm known regulators such as the RhoA-GEFs LARG [24] and GEF-H1 [36],

the Gα protein GNA12 [37], the ROCK substrate Moesin [38, 39], and the GTPase RND3 [40].

Interestingly, our analysis also uncovers interesting, potentially novel regulators of the endo-

thelial barrier including the GTPase RhoD, and the GEFs TIAM2, ArhGEF5, ArhGEF7 and

PLXNB3.

RhoGTPases and thrombin-induced endothelial permeability
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Materials and methods

For the stimulation with inflammatory mediators: 1% Human Serum Albumin (Sanquin,

Amsterdam, The Netherlands) for 90 min and 1U/ml of Thrombin (Sigma Aldrich, Zwijn-

drecht, The Netherlands).

siRNA library and functional screen

The siRNA library and screening protocol was described in our previous work [16]. Briefly, a

custom ON-TARGETplus SMARTpool library (Dharmacon/GE Healthcare, Lafayette, CO)

targeting 270 human RhoGTPases and Rho-associated genes (S1 Table) was used on primary

human umbilical vein endothelial cells. The selection of siRNA targets was based on available

literature which resulted in a total of 270 targets that represent the 6 main classes of RhoGT-

Pases and their regulatory proteins: 82 RhoGEFs, 22 RhoGTPases, 66 RhoGAPs, 3 RhoGDIs,

21 Rho-associated proteins and 76 effector proteins. Subconfluent cells (passage 2) were seeded

on 1% gelatin-coated 96W10idf arrays (Applied Biophysics, Troy, NY) in complete M199

medium (as described below). Forward transfections were performed according to manufac-

turer’s instructions and using siRNAs at 25nM final concentration and 0.25%(v/v) of Dharma-

fect 1 transfection reagent (Dharmacon/GE Healthcare, Lafayette, CO) in 100μL total volume.

After 16h, medium was replaced by complete M199 medium. The screens (n = 3) were per-

formed on different pools of HUVECs of 12 different donors. At 72h post-transfection, cells

were pre-incubated with 1% Human Serum Albumin (HSA) for 90min and then stimulated

with 1U/ml thrombin (more details below). siRNAs against ABL2 (#D-003101-05-0002) and

OTP Non-targeting Control Pool (#D-001810-10-05) were used as positive and negative con-

trol respectively (all from Dharmacon/GE Healthcare, Lafayette, CO).

Prior to the screens, optimization experiments were carried out and transfection efficiencies

were calculated by measuring mRNA knockdown of control genes (>70%). During optimiza-

tion experiments the transfection efficiency of the different controls was, on average, highest at

72h post-transfection. We therefore selected this time-point for the siRNA screen.

Endothelial cell culture

Human umbilical vein endothelial cells (HUVEC) were freshly isolated from umbilical cords

of healthy donors, as previously described [3], and were obtained at the Amstelland Ziekenhuis

(Amstelveen, The Netherlands). Informed consent was obtained from all donors in accordance

with the institutional guidelines and the Declaration of Helsinki. The use of human tissue for

isolation of endothelial cells was reviewed and approved for this study by the Medical Ethical

Committee of the VU University Medical Center. After isolation, cells of different donors were

pooled and resuspended in M199 medium supplemented with 100 U/mL penicillin and

100 μg/mL streptomycin, 2mmol/L L-glutamine (all Lonza, Belgium), 10% heat-inactivated

human serum (Invitrogen, WI, USA), 10% heat-inactivated new-born calf serum (Lonza, Bel-

gium), 150μg/mL crude endothelial cell growth factor (prepared from bovine brains), 5U/mL

heparin (Leo Pharmaceutical Products, Breda, The Netherlands) and seeded on 1% gelatin

coated plates. Cells were cultured at 37˚C and 5%CO2 with change of medium every other day

and used up to passage 2.

Endothelial barrier function measurements

Endothelial barrier function was measured by Electrical Cell-substrate Impedance Sensing

(ECIS). Briefly, passage 2 cells (1x104cells/well) were seeded on 1% gelatin-coated 96w10idf

arrays connected to the ECIS1ZTheta Array Station (Applied Biophysics, Troy, NY) and

RhoGTPases and thrombin-induced endothelial permeability
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transfected as described above. Throughout the first 90h of the experiment (seeding, transfec-

tion and the following 72h), endothelial resistance data was collected by multifrequency read-

ings of: 1000Hz, 2000Hz, 4000Hz, 8000Hz, 16000Hz, 32000Hz and 64000Hz. Barrier function

assays were performed at 72h post-transfection.

For thrombin stimulation, cells were pre-incubated with M199 containing 1% HSA.

After 90min of incubation, thrombin was added to the wells (1U/ml). Electrical endothelial

resistance data was collected by single frequency readings of 4000Hz throughout 10h. The

time-point zero in endothelial resistance graphs corresponds to the end of the 90min pre-incu-

bation period. As control, we used NT siRNA and also silenced ABL2 gene (positive control

[41] (S1D and S1E Fig).

Area under the response curve (AUC)

Thrombin-induced responses were analyzed by real-time ECIS measurements. For each

siRNA (n = 3) and NT control siRNA (n = 18, in triplicate) a period of three hours was selected

for analysis that included 15min of pre-stimulation (baseline), the thrombin stimulation effect

itself (drop) and the respective response to stimulation (recovery phase). Data measured on

the ECIS corresponded to continuous and multiple time-point readings (~80 data-points/

hour). For comparison purposes, each target siRNA and NT control siRNA response curve

was standardized by dividing each value of the stimulation curve by the baseline value (15min

before thrombin). AUC was calculated by means of rectangles and incorporated the entire

response curve of 3h (S1A–S1C Fig; please note the color code: green = decreased AUC;

blue = control thrombin response; red = increased AUC). Raw response curves of each siRNA

identified as a hit can be found on supplemental data files (S2 and S3 Figs).

Statistical analysis

Electrical endothelial resistance data was read into R [42] (version 3.4.3) and data distribution

was considered to be acceptable. For a plausible comparison between different replicates

(n = 3) reading values were divided by the baseline value (15min before thrombin stimulation).

Comparison of each target siRNA (n = 3) and NT controls (n = 18, in triplicate) responses to

thrombin stimulation was performed by two different methods. The first analysis compared 3

critical time points of the response curve: 15min before thrombin, 5min after thrombin (drop)

and 2.45h after thrombin stimulation (recovery)(S1 and S2 Tables). The second approach ana-

lyzed of the complete response curve (from stimulation to recovery) by calculation of the AUC

(described above) (Table 1). For each comparison, a Student’s t-test was applied, generating a

single p-value for each of the 270 siRNAs, per test. The produced p-values were corrected for

multiple testing by using the Benjamini-Hochberg [43] false-discovery rate (FDR). Those siR-

NAs with FDR<0.05 were considered significantly different from the non-targeting controls.

The results presented in the manuscript are derived from the second approach, i.e. based on

the AUC, as it includes the complete response (Table 1). The results of the first analysis (3

time-point comparison) are shown on supplemental tables (S1 and S2 Tables). Data is pre-

sented as mean ± SD (standard deviation).

Results

A siRNA screen identifies known and novel regulators of the thrombin-

induced response in EC

To better understand the contribution of the different types of RhoGTPases to the regulation of

the endothelial barrier, we performed a comprehensive RNAi screen by inducing loss-of-

RhoGTPases and thrombin-induced endothelial permeability
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function of each of 270 Rho-associated genes in primary HUVEC [16] and then stimulated the

monolayers with thrombin. To measure the impact of silencing of each of these genes, we ana-

lyzed the endothelial electrical impedance before, during and after stimulation. To find relevant

hits, we normalized the ECIS data and determined the area under the response curve (AUC) of

the response for each siRNA (n = 3) and compared it to that of the non-targeting siRNA con-

trols (n = 18, in triplicate) (S1A–S1C Fig). Statistical analysis was performed by means of a Stu-

dent’s T-test with the multiple testing correction (False Discovery Rate—FDR) set at 5%. Besides

non-targeting siRNA controls, we included a siRNA targeting ABL2 as positive control (S1D

and S1E Fig). This analysis resulted in a list of 15 candidate genes that included both known and

novel mediators of the thrombin response in endothelial cells (Table 1). These hits are labeled

by the color red and by an asterisk in the different figures of this manuscript. We noticed that

the majority of these hits were genes that, at 72h post-transfection, interfered directly with the

recovery of barrier function which follows the thrombin-induced loss of integrity.

To provide more insights into the genes that showed an interesting and opposite effect on

the response to thrombin but did not reach statistical significance, we performed a supervised

analysis and highlighted these genes in green throughout the different figures. This second

analysis identified known regulators such as LARG, GEF-H1, the Gα protein GNA12, the

atypical RhoGTPase RND3, and the actin regulating protein Moesin (MSN) (see below). Inter-

estingly, this analysis also identified novel potential regulators such as the atypical RhoGTPase

RhoT2 and PLXNB3.

Silencing the atypical GTPase RhoD augments thrombin-induced

endothelial barrier disruption

Among all 22 known RhoGTPases analyzed (Fig 1A) which included RhoA, Rac1 and Cdc42,

loss of RhoD resulted in the strongest potentiation of thrombin-induced disruption of

Table 1. List of novel and known mediators of thrombin–induced endothelial response identified in the func-

tional siRNA screen.

siRNA Target AUC 2-tailed T-test p-value FDR

RTKN -1.267±0.04 0.00000457 0.000157

TIAM2 -1.017±0.05 0.0000116 0.001013

MLC1� -1.145±0.02 0.0000115 0.001013

ARPC1B -1.304±0.02 0.0000117 0.001013

SEPT2 -1.065±0.03 0.0000174 0.001097

SLC9A3R1 -0.972±0.05 0.0000191 0.001097

RACGAP1 -1.025±0.05 0.0000344 0.001686

RAPGEF2� -1.190±0.06 0.0000508 0.001945

RHOD -0.993±0.06 0.0001203 0.003765

PREX1� -0.815±0.04 0.0001493 0.004281

ARHGEF7� -1.041±0.08 0.0002136 0.004806

PLXNB2 -0.914±0.06 0.0001869 0.004806

ARHGAP45� -0.924±0.05 0.0002235 0.004806

SRGAP2 -0.902±0.04 0.0002055 0.004806

ARHGEF5 -0.942±0.10 0.0022917 0.039419

Overview of the genes identified in the siRNA screen as significant hits and ranked by False Discovery Rate (FDR)

values. Area under the response curve (AUC) determined upon stimulation with 1U/ml of thrombin (n = 3 ±SD) and

T-test p-values.

�Known genes identified in this screen related to thrombin-induced signaling in endothelial cells.

https://doi.org/10.1371/journal.pone.0201231.t001

RhoGTPases and thrombin-induced endothelial permeability
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endothelial barrier integrity (Fig 1B). The AUC of the thrombin response of EC lacking RhoD

is almost double that of NT control siRNA transfected cells. Moreover, we observed that

silencing RhoD in HUVECs decreased slightly the basal endothelial barrier resistance (~30%)

when compared to NT control siRNA transfected cells (S2A Fig). Finally, RhoD is required for

the recovery after thrombin-treatment. This suggests an additional function for RhoD in the

regulation of endothelial integrity.

The atypical RhoGTPase RND3 and mitochondrial RhoGTPase2 (RhoT2)

differentially modulate the response to thrombin

HUVECs transfected with either siRhoT2 and siRND3 show an increased basal endothelial

barrier resistance when compared to NT control siRNA transfected cells (Fig 1C and 1D; S2B

and S2C Fig). Interestingly, upon stimulation with thrombin, loss of RhoT2 improves the

recovery but does not affect maximal thrombin-induced contraction and loss of barrier integ-

rity, consistent with the notion that these are discrete phases with differential regulation [44].

Loss of RND3, on the other hand, attenuates and improves the thrombin-induced decrease of

barrier integrity (Fig 1A and 1D), possibly related to its ability to induce stress fibers in endo-

thelial cells through RhoB [45].

Downregulation of TIAM2, RAPGEF2, PREX-1, ArhGEF7 and ArhGEF5

negatively affect the endothelial barrier after thrombin stimulation

GEFs are crucial activators and regulators of RhoGTPase activity. However, not all GEFs are

involved in the response to vaso-active mediators such as thrombin (Fig 2A). Silencing these

five GEFs: ArhGEF5, ArhGEF7, PREX-1, RAPGEF2 and TIAM2, caused a significant increase

in the thrombin-induced contraction and delay of subsequent recovery (Fig 2B–2G). Knock-

down of TIAM2, ArhGEF5 and ArhGEF7 induced a 2-fold, significant increase in AUC

Fig 1. RhoGTPases and thrombin stimulation. A—Quantification of the area under the response curve (AUC) of HUVECs transfected with 22 different RhoGTPase-

targeting siRNAs and stimulated with 1U/ml of thrombin for 3h at 72h post-transfection (n = 3±SD). In blue, left, NT control siRNA (n = 18, in triplicate), in red, siRhoD

significantly different AUC compared to NT control siRNA and in green, two potentially relevant genes: siRhoT2 and siRND3. (Color code refers to the change in AUC,

see S1A–S1C Fig) ���P<0.001 in two-tailed Student’s T-test and FDR<0.05; B-D—Normalized endothelial resistance of HUVECs transfected with indicated siRNAs and

stimulated with 1U/ml of thrombin for 3h at 72h post-transfection (n = 3±SD). Arrow indicates the time point at which thrombin was added.

https://doi.org/10.1371/journal.pone.0201231.g001

RhoGTPases and thrombin-induced endothelial permeability
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Fig 2. Contribution of RhoGEFs and associated proteins to the response to thrombin. A—Quantification of the area under the response curve (AUC) of HUVECs

transfected with 99 different siRNAs targeting RhoGEFs (and associated genes) and stimulated with 1U/ml of thrombin for 3h at 72h post-transfection (n = 3±SD). In

blue, on the left, NT control siRNA (n = 18, in triplicate), in red, RhoGEFs significantly different AUC compared to NT control siRNA and in green: siLARG, siGEF-H1,

siGNA12 and siPLXNB3. (Color code refers to the change in AUC, see S1A–S1C Fig) ����P<0.0001 in two-tailed Student’s T-test and FDR<0.05; ���P<0.001 in two-

tailed Student’s T-test and FDR<0.05; ��P<0.01 in two-tailed Student’s T-test and FDR<0.05; �P<0.05 in two-tailed Student’s T-test and FDR<0.05; B-K, Normalized

RhoGTPases and thrombin-induced endothelial permeability
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compared to NT control siRNA. Interestingly, however, knock-down of ArhGEF5 did not

affect basal endothelial resistance (S2D Fig) whereas lack of ArhGEF7 and PREX1 in primary

endothelial cells promoted an increase in basal endothelial barrier resistance (~25% and ~20%

respectively) (S2F and S2G Fig). Absence of RAPGEF2 (also known as PDZGEF2) induced the

most striking impact on the response to thrombin (Fig 2F), including a steep drop of resistance

followed by a blunt delay in recovery after thrombin stimulation. No effects on basal endothe-

lial resistance were observed (S2H Fig). Thus, these GEFs all play a positive role in the control

of endothelial barrier function, albeit that for some, this only becomes apparent during the

recovery phase following stimulus-induced barrier loss.

Loss of the GEFs LARG (Fig 2G) and GEF-H1 (Fig 2H), despite not reaching statistically

significant effects, did show a marked attenuation of the response to thrombin. This is well in

line with the fact that both are RhoA regulators [23, 46] and the notion that loss of RhoA sig-

naling impairs the thrombin-induced barrier loss [20, 36]. The same appears to hold for the

GNA12 protein, (Fig 2I) albeit to a lesser extent. Loss of GEF-H1 did not affect the basal endo-

thelial resistance (S2I Fig) while loss of LARG (S2J Fig) and of GNA12 (S2K Fig) induced a

small increase in basal endothelial resistance.

PLXNB3 is a novel regulator of the thrombin-mediated response in EC

Plexins are known receptors for semaphorins which control RhoGTPase signaling [47]. Silenc-

ing PLXNB2 in HUVECs and stimulating them with thrombin induced a significant increase

in the AUC which correlates directly with an impaired recovery (Fig 2J). In marked contrast,

loss of its homolog PLXNB3 attenuated considerably the thrombin-induced response and

induced a faster recovery (Fig 2K) despite not reaching statistical significance. Silencing

PLXNB2 also increased significantly basal barrier resistance (S2L Fig) when compared to NT

control siRNA whereas lack of PLXNB3 did not affect basal endothelial resistance (S2M Fig).

These opposing results hint towards differential substrate specificity among these Plexin

isoforms.

ArhGAP45, RacGAP1 and SRGAP2 play an important role during the

recovery phase

RhoGAPs are key regulators of GTPase activities. Out of the 71 GAPs analyzed in our screen,

three showed significant effects on the thrombin-induced effects on the endothelium (Fig 3A).

Upon thrombin stimulation, lack of these genes (ArhGAP45, RacGAP1 and SRGAP2) affected

both the reduction in electrical resistance and the subsequent recovery (Fig 3B–3D). Silencing

ArhGAP45, RacGAP1 and SRGAP2 also increased basal barrier resistance in HUVECs

(~25%) when compared to NT control siRNA transfected cells (S2N, S2O and S3A Figs). In

contrast to our findings for the GEFs, we did not find GAPs of which their loss promotes endo-

thelial barrier function. Clearly, ArhGAP45, RacGAP1 and SRGAP2 appear all required for a

full recovery after thrombin-induced loss of integrity.

Loss of the effector proteins RTKN, ARPC1B, MLC1, SETP2 and

SLC9A3R1 potentiates the thrombin response

Out of 81 Rho-effector proteins and other Rho-associated genes analyzed, five showed signifi-

cant effects on endothelial barrier integrity (Fig 4A). Silencing the effector proteins Rhotekin

endothelial resistance of HUVECs transfected with the indicated siRNAs and stimulated with 1U/ml of thrombin for 3h at 72h post-transfection (n = 3±SD); Arrow

indicates the time point at which thrombin was added.

https://doi.org/10.1371/journal.pone.0201231.g002
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(RTKN) and Actin Related Protein 2/3 Complex Subunit 1B (ARPC1B) increased basal endo-

thelial barrier resistance (S3B and S3C Fig) although it also increased, in an opposite way, the

AUC almost 3-fold (Fig 4B and 4C). This is due to an increase in the loss of electrical resistance

upon stimulation with thrombin, followed by a slow and inefficient recovery phase. This phe-

notype can also be observed by downregulation of myosin light-chain 1 (MLC1) or Septin2

(SEPT2), albeit to a lesser extent (Fig 4D and 4E). No changes in basal endothelial barrier resis-

tance were observed for MLC1 or SEPT2 (S3D and S3E Fig). Silencing Solute Carrier Family 9

Isoform A3 Regulatory Factor 1 (SLC9A3R1) increased the basal endothelial barrier resistance

(S3F Fig) and induced a significant (2-fold) increase in the AUC when compared to the NT

siRNA controls (Fig 4F).

Silencing the effector protein Moesin (MSN) showed an attenuation of the thrombin-

induced drop in resistance followed by a steeper and faster recovery (Fig 4G) and no impact

on basal endothelial barrier resistance (S3G Fig). Thus, of these effector proteins, only Moesin

appears to play a role in barrier disruption.

Fig 3. Contribution of RhoGAPs and associated proteins to the response to thrombin. A—Quantification of the area under the response curve (AUC) of HUVECs

transfected with 71 different siRNAs targeting RhoGAPs (and associated genes) and stimulated with 1U/ml of thrombin for 3h at 72h post-transfection (n = 3±SD). In

blue, on the left, NT control siRNA (n = 18, in triplicate), in red, RhoGAPs significantly different AUC compared to NT control. (Color code refers to the change in AUC,

see S1A–S1C Fig) ����P<0.0001 in two-tailed Student’s T-test and FDR<0.05; ���P<0.001 in two-tailed Student’s T-test and FDR<0.05; B-D—Normalized endothelial

resistance of HUVECs transfected with the indicated siRNAs and stimulated with 1U/ml of thrombin for 3h at 72h post-transfection (n = 3±SD); Arrow indicates the

time point at which thrombin was added.

https://doi.org/10.1371/journal.pone.0201231.g003
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Discussion

The functional connection between endothelial activators and control of vascular permeability

has been widely studied over the past decades but remains incompletely understood. Activa-

tion of the RhoGTPase RhoA became a central event in studies of thrombin-induced perme-

ability and the associated signaling pathway was characterized in considerable detail [3, 20,

48–51]. However, the RhoGTPases and their regulators have not been analyzed simultaneously

in a comprehensive screen. The current study aimed to improve our understanding of the

Fig 4. Contribution of Rho effector proteins and associated proteins to the response to thrombin. A—Quantification of the area under the response curve (AUC) of

HUVECs transfected with 80 different siRNAs targeting Rho-effector proteins (and associated genes) stimulated with 1U/ml of thrombin for 3h at 72h post-transfection

(n = 3±SD). In blue, on the left, NT control siRNA (n = 18, in triplicate), in red Rho-effector proteins with a significantly different AUC compared to NT control siRNA

and in green, siMLC1. (Color code refers to the change in AUC, see S1A–S1C Fig) ����P<0.0001 in two-tailed Student’s T-test and FDR<0.05; B-G—Normalized

endothelial resistance of HUVECs transfected with the indicated siRNAs and stimulated with 1U/ml of thrombin for 3h at 72h post-transfection (n = 3±SD); Arrow

indicates the moment at which thrombin was added.

https://doi.org/10.1371/journal.pone.0201231.g004
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relevant mechanisms and to identify novel molecular players in the control of endothelial

integrity.

Recently, we published the first results of this screen, focusing on the control of basal endo-

thelial integrity [16]. We identified RhoB- (negative regulator) and Cdc42- (positive regulator)

associated signaling pathways which control the dynamics of endothelial integrity in resting

monolayers. Here, we extend this analysis, focusing on agonist-induced loss and recovery of

endothelial cell-cell contact, using the protease thrombin as a strong activator of the endothe-

lium. Under the described conditions and at 72h post siRNA transfection, our analysis identi-

fied 15 different proteins that play a role in the thrombin-induced response of endothelial cells

(RTKN, TIAM2, MLC1, ARPCB1, SEPT2, SLC9A3R1, RACGAP1, RAPGEF2, RHOD,

PREX1, ARHGEF7, PLXNB2, ARHGAP45, SRGAP2, ARHGEF5). Loss of these 15 genes

resulted in an increased contraction and delayed or impaired recovery phase post-thrombin

stimulation. Moreover, based on a supervised analysis of the response curves we identified

seven additional proteins with opposite effects to the ones just described, i.e., by being silenced,

these proteins attenuated contraction or improved recovery. Of these seven negative regula-

tors, two are new potential regulators (RhoT2 and PLXNB3) and five are previously described

permeability mediators (RND3, GEF-H1, LARG, GNA12 and MSN). In this discussion, we

focus on the most significant and new hits form this screen.

The current study has primarily identified proteins, the loss of which augments thrombin-

induced decrease of barrier function and subsequent recovery. This suggests that endothelial

cells express more barrier-protective than barrier-disruptive RhoGTPase-related proteins.

This is physiologically relevant, as the endothelial barrier is essential for the circulation and for

normal functioning of tissues and organs. Thus, loss of integrity should be carefully regulated

and sufficiently limited to prevent edema, inflammation and tissue damage. Although this

notion would predict considerable redundancy, we were able to identify a sizeable number of

key regulatory proteins suggesting that these play unique roles in barrier-regulating signaling

pathways. So, although endothelial integrity is protected by many proteins at different levels, it

is also vulnerable, since the associated redundancy appears limited. Moreover, protein turn-

over and expression levels in HUVECs must be taken into consideration. Like with any siRNA

screen, the chosen time points are based on average knock-down efficiency of controls usually

determined during optimization experiments and not on individual siRNAs includes in the

screen. Thus, we cannot exclude that some of the targeted proteins have already partially

restored expression in the course of the experiment.

Thrombin activates the PAR-1 receptor which, through various G-proteins (Gα11/Q,

Gα12/13 and Gαi), will lead to activation of RhoA. Our screen confirms that the Gα12 subunit

plays a crucial, protective role because lack of this gene attenuates thrombin-induced perme-

ability [37]. Downstream of Gα12, the RhoGEFs LARG and GEF-H1 control endothelial integ-

rity, as demonstrated previously [24, 36, 52]. According to our analysis, no other tested GEFs

have similar effects, although perhaps not all of these GEFs are expressed in ECs [53].

Our findings further show that loss of RAPGEF2 (aka PDZGEF-1) or ArhGEF5 (aka TIM)

does not affect the integrity of the barrier under basal conditions but both enhance the maxi-

mal barrier-disruptive effect of thrombin and reduce the subsequent recovery. ArhGEF5/TIM

can activate RhoA and RhoB in HEK293 cells [54] but also Rac1 and Cdc42 [55], making its

precise function in endothelium as yet unclear. Interestingly, RAPGEF2/PDZ-GEF1 is a

Rap1-specific GEF which positively controls endothelial junctions in conjunction with EPAC1

[56]. This suggests that in primary endothelial cells, PDZGEF-1 and ArhGEF5 most probably

act as GEFs for barrier-enhancing GTPases such as Rac1, Cdc42 or Rap1. PREX-1 and Arh-

GEF7 (aka betaPIX) were other GEFs identified in our screen that induced significant differ-

ences in the response to thrombin. Both GEFs are claimed to be specific for RAC1 [57, 58] and
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our data shows that loss of these GEFs leads to a delayed recovery of the endothelial barrier,

supporting the notion that these are Rac1-activating GEFs.

Unexpectedly, loss of RhoA, Rac1 or Cdc42 did not induce significant differences in the

response to thrombin when AUC was analyzed. In line with a recent study from our group

[44] we showed that loss of RhoA increases expression of RhoC and, slightly, of RhoB, suggest-

ing that a shift in balance among RhoGTPases influences their contribution to thrombin-

induced barrier loss. Moreover, we also showed recently that thrombin can activate RhoA,

RhoB as well as RhoC with similar kinetics [59]. Surprisingly, the atypical GTPase RhoD

appears to play a barrier-protective role. This is in line with recent data showing that RhoD sta-

bilizes the actin cytoskeleton [13] and inhibits RhoC-ROCK-dependent cell contraction [60].

Once activated, RhoGTPases can interact with several downstream effectors which are

directly and indirectly associated with (regulators of) cytoskeletal elements and junctional pro-

teins. Interestingly, most of the ‘effector’ hits identified in our screen play a barrier-protective

role, in particular during the recovery phase following thrombin stimulation. For ARPCB1

this is in line with its role in the Arp2/3 complex, which is activated by Rac1 and is required

for membrane protrusion and formation of cell-cell contacts [61]. MLC1 on the other hand

would be expected to be barrier disruptive due to its role in contractility, similar to the

GTPase-binding protein SEPT2 which was previously implicated in cell division and associ-

ated with actin fibers [62]. Apparently, MLC1 in EC also plays a role in barrier restoration,

possibly by formation of contractile actin bundles, parallel to cell-cell contacts. Similarly,

SLC9A3R1, also known as ERM binding protein 50 (EBP50) or NHERF1 (Na+/H+ exchange

regulatory factor) is a PDZ-domain containing scaffolding protein that is implicated in cancer,

cell polarity and actin regulation [63, 64]. In the vasculature, SLC9A3R1 promotes neointima

formation following arterial injury while in vascular smooth muscle cells, and promotes focal

adhesion turnover and migration [65]. Intriguingly, SLC9A3R1 binds to β-catenin and was

found to stabilize β-catenin-E-cadherin complexes [66], which is in line with our findings

regarding its positive role in endothelial integrity.

Plexins are important cell-surface receptors for semaphorins and are involved in RhoGT-

Pase signaling, acting as GAPs [47, 67, 68]. Our findings show that silencing PLXNB2 pro-

motes both a significant increase of basal barrier resistance [16] and a significantly augmented

response to thrombin. PlexinB2 negatively regulates Rac1 and Cdc42 [69] which is in line with

our findings but is in contrast to the effects of PLXNB3. Recently, it was shown that all three

plexin-B proteins interact with RAP1 and that PLXNB2 interacts with RND3 [70, 71]. Our

data support the possibility that PLXNB3 acts as a GAP for RAP1 as loss of this gene promotes

enhanced recovery post-thrombin, while our findings suggest that PLXNB2 may have GAP

activity towards barrier promoter RhoGTPases such as Rac1 and Cdc42.

Several other RhoGAPs have previously been implicated in endothelial cell functions, such

as p190RhoGAP, ArhGAP22 and FilGAP. However, downregulation of these GAPs did not

significantly alter the response to thrombin in our screen. We did identify ArhGAP45, aka

HMHA1 [72], RACGAP1 and SRGAP2 which were not previously linked to thrombin-

induced permeability but are clearly required for barrier restoration. Downregulation of these

GAP proteins increases endothelial basal barrier resistance which is line with other studies

linking them to Rac1 activity, including our work on ArhGAP45. Surprisingly, loss of any of

these GAPs impairs contraction or enhances barrier restoration following thrombin stimula-

tion despite the Rac1 inactivation being absent. The mechanistic explanation for this is

unknown, although our previous work indicated that the imbalance between Rac1 vs RhoA-

induced signaling, which results from GAP-mediated downregulation of GTPase activity, may

impair restoration of cell-cell contacts. However, this phenomenon requires additional study.
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In summary, under the conditions described in this manuscript, we identified potential

novel regulators of thrombin-regulated endothelial permeability, the majority of which appear

to be barrier-protective. Out of 270 genes analyzed, loss of 15 induced a significant change to

the effect of thrombin, comprising transient contraction and full barrier restoration. Our find-

ings provide new insights on previously unidentified regulators that play a key role in throm-

bin-induced contraction or the subsequent junctional recovery phase. Future research may

reveal if any of the identified proteins represents potentially new targets for treatments aimed

at preserving vascular integrity.
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