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Abstract: A micromechanical simulation approach in a Multi-Scale Modeling (MSM) framework with
the ability to consider manufacturing defects is proposed. The study includes a case study where
the framework is implemented exploring a cross-ply laminate. The proposed framework highlights
the importance of correct input regarding micromechanical geometry and void characteristics. A
Representative Volume Element (RVE) model is developed utilizing true micromechanical geometry
extracted from micrographs. Voids, based on statistical experimental data, are implemented in
the RVE model, and the effects on the fiber distribution and effective macromechanical properties
are evaluated. The RVE algorithm is robust and maintains a good surrounding fiber distribution
around the implemented void. The local void fraction, void size, and void shape affect the effective
micromechanical properties, and it is important to consider the phenomena of the effective mechanical
properties with regard to the overall void fraction of an RVE and the actual laminate. The proposed
framework has a good prediction of the macromechanical properties and shows great potential to
be used in an industrial implementation. For an industrial implementation, weak spots and critical
areas for a laminate on a macro-level are found through combining local RVEs.

Keywords: CFRP; porosity; multi-scale modeling; representative volume elements; microstructure

1. Introduction

The commercial vehicle industry’s pursuit for lightweight vehicles is intensifying with
the advances of Battery Electric Vehicles (BEVs). Apart from reducing fuel consumption
and CO2 emissions, a lighter structure leaves room for more batteries, increasing the driving
range of BEVs [1]. Optimized lightweighting can be achieved through the introduction of
Carbon Fiber Reinforced Plastics (CFRP). CFRP has a high strength-to-weight ratio and
superior mechanical properties. However, due to its composition of different constituents,
a CFRP material exhibits a more complex failure behavior compared to traditional metallic
materials and needs to be described by several different failure and damage mechanisms
simultaneously. For a CFRP component, the failure events at the micromechanical scale
advance and initiate failure events at higher scales (meso- and macro-scale), preferably
modeled using multi-scale models [2].

Multi-Scale Modeling (MSM) passes information between different length scales, and
the interest in MSM methods has grown in the last few decades [3], especially in the au-
tomotive industry, where fast product development times and low-cost margins promote
the need for simulation-driven design approaches. Saving time and cost, minimizing
experimental techniques, the simulation methods used in a design process are indispens-
able. MSM is mature and highly valuable when implemented and could provide the extra
information needed for a reliable and efficient detailed analysis of more complex materials,
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such as CFRP. The MSM methodology is successfully implemented in many areas of appli-
cation, e.g., fiber- and braid-reinforced coil spring [4], wind turbine blades [5], and virtual
testing of composites [6].

Simulations should be used as a driver to guide the designers early in the design
process. More detailed and complex models would require increased computational
time, and when introducing new materials and new methods, it is important to weigh
between complexity and cost, cost in terms of time and money [7]. Yuan and Fish [8]
introduced a framework to promote the use of computational homogenization in the
industry. Okereke et al. [9] followed the trend by developing a virtual framework focusing
on the prediction of the elastic properties of Unidirectional (UD) composites. In a recent
study, Sun et al. [10] integrated an MSM method in a full framework, providing design
guidance for failure events of woven and chopped Sheet Molding Compound (SMC) carbon
fiber composites. A challenge with the MSM methods is to find an appropriate framework
that supports the continuous use of the method. The requested framework needs to be
broad and have the possibility to cover multiple areas, such as failure and fatigue. However,
for the framework to be continuously used, there is a need for a good enough simulation
approach that is accessible with the possibility for a more detailed analysis.

Adding to the complexity, component geometry, different manufacturing approaches,
and different stages of automation give rise to different manufacturing defects, and produc-
ing a defect-free composite is highly expensive. For the modern manufacturing techniques
that target lower production costs and time, it is inevitable to avoid defects and void
formation [11]. The paradigm of Defect Damage Mechanics aims to quantify the produc-
tion process to minimize cost, while still fulfilling the mechanical requirements [12]. Defects
can have detrimental effects on the damage behavior of a composite, and attempting to cap-
ture the true micromechanical geometry and behavior, defect assessment will be essential
for an industrial application.

Researchers have worked with the effects of voids, both experimentally and theo-
retically. Since voids are arbitrary and difficult to induce intentionally, statistical and
numerical models are commonly implemented. Many studies simplify the true shape of
voids [13–15], while other researchers highlight the importance of the void shape [16,17].
Statistical void data are essential to consider trying to capture the true behavior of the ma-
terial modeled [18]. Most studies have a numerical approach when analyzing the effects of
voids. However, more work considering actual experimental data is needed to understand
what is important and how to apply it in an industrial simulation framework.

In order to design for life, efficient computational methods that can evaluate failure
envelopes considering the choice of manufacture are needed. For commercial vehicles, the
design lead times are decreasing, and there is a great need for early-stage models that can
quickly assess the failure behavior of a composite structure and find weak spots and critical
areas. To meet the needs of the expanding design guidelines of the commercial vehicle
industry, a new modeling framework is presented, referred to as EMMMA; an Experimental
Micromechanical Multi-scale Approach. Within the research frame on MSM methods for
CFRP applications, it is important to develop a simplified approach with qualitatively good
accuracy to be industrially applicable. This motivates the work reported within this study.
The MSM framework focuses on the micromechanics utilizing Representative Volume
Elements (RVEs) based on experimental statistical data to extract effective macromechanical
properties. The framework is built on a modular approach where the material system and
manufacturing method can be exchanged by exchanging the experimental input data with
new experimental data from other material systems.

The MSM framework meets the need for a framework that employs the possibility to
also model defects, i.e., voids. The study investigates the interaction of void shape, size,
fraction, and distribution connected to an RVE model and a composite laminate. The study
employs the concept of the RVE to bring results from a detailed microscale model into an
efficient engineering macro-level approach, bridging the gap between manufacturability
and microscopic simulations for an industrial implementation. The modeling of voids is
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based on experimental data and the local void fraction. Identifying weak spots and critical
areas in a macro-model would be conducted by using a combination of RVEs varying
the local void fraction. In this study, the material system used is a UD CFRP prepreg
manufactured with heat compression molding and stacked with a cross-ply layup.

2. Methodology

The developed framework, EMMMA, presented in this study covers the microme-
chanical approach of an MSM process. The micromechanical modeling of MSM methods
is often based on the concept of RVEs [19], similar to the framework in the current study.
Utilizing an RVE model, the macromechanical properties of a material can be estimated [20].
Kanit et al. [21] emphasize the importance of a sufficiently large RVE that is statistically
representative of the composite such that it includes enough information on the material’s
micromechanical structure. However, the RVE must still be small enough to be considered
a volume element of the continuum and comply with the separation of the different scales.

The workflow of the framework is presented in Figure 1. The framework consists
of three main steps: the first step is the Micrograph Data Extraction, where micrographs
from the material of interest are analyzed with image processing techniques to extract
data on the matrix, fiber, and voids, used for the RVE generation. The second step is
the RVE Generation, where data from micrographs are used in an algorithm to produce a
periodic statistical RVE comparable to a real micromechanical structure of a UD composite
material. The third and final step is the Numerical Analysis, where the Finite Element
(FE) model is created and the macromechanical properties are computed using first-order
computational homogenization.

The following sections will describe the different steps of the framework more thor-
oughly, and then, EMMMA will be applied to a real case.

2.1. Micrograph Data Extraction

The framework uses a periodic statistical RVE that is generated based on fiber dis-
tribution data extracted from actual micrographs of a UD CFRP material. This technique
was introduced by Vaughan et al. [22], and EMMMA’s RVE generation algorithm applies
the same methodology. The data extracted from the micrographs and used in the RVE
algorithm are the first and second Nearest Neighbor (NN) distance distributions and the
fiber diameter (∅ f ) distribution. Volume fractions for the fibers (Vf ), matrix (Vm), and voids
(Vv) are also data that are extracted from the micrographs. The data are extracted from mi-
crographs looking only in the fiber direction. Alternative approaches for microscopy are out
of the scope for this study. Microscopy was selected due to its simplicity and accessibility.

2.1.1. Image Processing

The micrographs are the foundation of the data used in the RVE generation algorithm.
The constituent fractions are determined using quantitative optical microscopy, determining
the area fractions in the micrographs. The area fractions are calculated from random
selections of material sections and, therefore, also represent the constituents’ volume
fractions [23]. The fiber distribution data are extracted utilizing different image processing
techniques, and the micrographs are filtered to optimize the retrieved data depending
on the sought data. The micrographs are first enhanced and converted to a black and
white image, and then, in the case of retrieving constituent contents fractions, Vf and Vm,
the filtering consists of firstly enhancing the image contrasts in the micrograph using a
Contrast-Limited Adaptive Histogram Equalization (CLAHE). Then follows a cleaning of
noise surrounding the transitional edges between fiber and matrix using morphological
dilation with an appropriate kernel size [24]. In the case of retrieving the fiber data, NN
and ∅ f , the filtering consists of first removing fiber matrix noise, in the same process as
that performed when retrieving constituent content fractions, and then, maximizing the
image saturation. The image process is illustrated in Figure 2.
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Figure 1. The workflow for the micromechanical simulation approach in a multi-scale modeling
framework, referred to as EMMMA.
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Figure 2. The imaging process workflow.

2.1.2. Matrix, Fiber, and Void Data

Extracting the representative volume fractions of the constituents fiber and matrix
is dependent on the quality of the micrographs. There are two techniques that can be
used for this. The first is a K-means clustering technique [25,26], where the extraction is
conducted on the enhanced and filtered micrographs. K-means clustering is a fast and
simple algorithm to apply and, assuming appropriate filtering, returns representative
fractional values of each constituent through clusters. The optimal number of clusters for a
micrograph varies depending on the quality of the image; however, it is recommended to
have between 3 and 7 clusters.

The K-means clustering technique is highly dependent on the quality of the micro-
graphs, and an alternative method to extract fractions and, in particular, Vv, is to analyze
the micrographs with a raster graphics editor [27]. The raster graphics editor is more
time-consuming, but can also be used to extract void data, i.e., shape, size, and distribution
of voids. With the help of the raster graphics editor, pixels representing a void can be
selected and colored, and then further analyzed.

2.1.3. Fiber Diameter and Nearest Neighbor Distributions

Extracting the fiber distribution data for the first and second NN, and ∅ f , the fiber
tows in the micrographs are identified by utilizing a so-called Blob Detection Algorithm
(BDA). The BDA utilizes a Laplacian of Gaussian (LoG) method [25,28,29], and the ∅ f
of each identified fiber tow, or blob, is calculated as a function of the standard deviation
of the LoG function, σ, according to r =

√
2σ. The first and second NN distances are

retrieved from the same identified fiber tows through unsupervised NN learning, using a
ball tree structure [30].

The data from the micrographs are compared to different distribution functions [31].
A selection of different distribution functions that are tested for the first and second NN
can be seen in Figure 3. The best distribution function is decided based on a best fit from
the Sum of Squares Error (SSE).
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Figure 3. A selection of distribution functions fit to the extracted micrograph data. (a) First NN.
(b) Second NN.

2.2. RVE Generation

Given the anisotropic nature of CFRP, the simplest form of RVE; with a regular pe-
riodic fiber arrangement, is often insufficient [32]. This type of fiber arrangement could
underestimate, e.g., damage initiation or matrix failure [33]. Theoretical RVE algorithms
generating a random fiber arrangement most often attempt to imitate the actual fiber
distribution [34,35]. RVE modeling can also be based on copying the micromechanical
characteristics found with, e.g., X-ray CT [36], which is more advanced and requires more
expensive equipment compared to microscopy. Therefore, an experimentally based RVE
generation algorithm, generating accurate fiber distributions based on data from the true
micromechanical geometry extracted using 2D microscopy (Section 2.1), was used [22].

The RVE generation algorithm was implemented in Python, and the algorithm dis-
tributes the fibers periodically within a 2D area of LxL (Figure 4), where L is the RVE side
length. For the RVE to represent a continuous body of a UD composite material, it needs to
be repeatable in all directions, i.e., periodic. The RVE was only extended by 10 µm in the
fiber direction since the undulations of fibers [37] were not considered in this study.

The addition of a void to the RVE was implemented in the RVE algorithm (Figure 4).
The importance of the parameters void shape and void size and how they affect the
mechanical properties have been highlighted in the literature [16,17]. True void shape
could be implemented to find local initiation points [38]. However, since no void has the
same shape, this could be time-consuming if needed to model all voids. Therefore, in this
study, the voids were idealized with a circular or an elliptical shape and implemented based
on a varying local void fraction, Vv, which is based on the extracted void data. The elliptical
voids were angled 0◦ and 45◦. The voids were located in the center of the RVE and extruded
in the fiber direction.

(a) (b) (c) (d)

Figure 4. Periodic RVEs generated with the algorithm (a) without a void, (b) with a circular void, (c)
with an elliptical void angled 0◦, and (d) with an elliptical void angled 45◦.
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2.2.1. Characterization of RVEs

Introducing defects, e.g., voids, in an RVE comes with trade-offs for the distribution of
the fibers. A methodology by Pyrz [39,40] was utilized to analyze the RVE and characterize
the pattern of fibers and the local interaction between fibers. All fiber centers in the
composite material were considered as a spatial point pattern. Two statistical descriptors
were utilized, and the first, a second-order intensity function, K(r), originally proposed by
Ripley [41], is given by Equation (1).

K(r) =
A

N2

N

∑
k=1

w−1
k lk(r) (1)

where A is the observation area, i.e., the area of the RVE, N the number of fibers in the
observation area, lk(r) is the number of points within the radial distance r of the given fiber,
and wk is a correction factor accounting for edge effects when the radial distance reaches
outside of the observation area. wk is defined as the ratio of the circumference within the
observation area to the whole circumference (2πr). The function is defined as the number
of points expected to lie within the radial distance, r, of an arbitrary point (a fiber center),
divided by the number of points per unit area, Na.

The second statistical descriptor is the radial distribution function, describing the
interaction between fibers locally. The radial distribution function is given by Equation (2).

G(r) =
A

2πrN
dK(r)

dr
(2)

where dK(r) is the average number of points within a circle with inner radius r and outer
radius dr.

While the radial distribution function, G(r), characterizes the occurrence intensity of
inter-inclusion distances, the second-order intensity function, K(r), reflects quantitatively
over the spatial arrangement as a function of distance from a fiber. Important for the
modeling is the consideration of the voids in the correction factor, wk. Two approaches are
modeled analyzing the voids. In the first approach, the void is assumed to be part of the
observation area, so it is disregarded in wk. This is conducted for both elliptical and circular
voids. In the second approach, conducted for only circular voids, the void is assumed
not to be part of the observation area, and the circumference within the observation area
is calculated with regard to the void. The circumference within the observation area is
calculated according to the following criteria:

• if: rvoid > r—remove the circumference within the void;
• if: rvoid < r—remove the circumference of the void within the observation area.

The second-order intensity function, K(r), is compared to a pattern of Complete Spatial
Randomness (CSR) (Equation (3)).

Kr(r) = πr2 (3)

This statistical analysis is not necessarily a part of EMMMA. The analysis was per-
formed to see how voids might affect the fiber distribution of the RVE generation algorithm.
This analysis was conducted in the case study for the generated RVEs.

2.3. Numerical Analysis

The numerical analysis was conducted in a commercial software used for finite-
element analysis to solve the stresses and strains for the RVE. There is not yet a best practice
on how to run an MSM approach, and it can be time-consuming to learn the process of
new software, while the software might not be adapted to fit your specific needs [42].
There are available MSM techniques implemented in commercial software (e.g., Altair®

Multiscale Designer and Digimat from e-Xtreme Engineering); however, they are still
maturing. Tchalla et al. [43] developed an ABAQUS toolbox that uses ABAQUS to execute
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an MSM analysis, showing that putting together your own framework streamlines the
simulations and gives control of the different parts of the process. A part of the process is the
RVE generation, and creating an RVE can be performed in many different ways [44], both
using commercial software or developed plug-ins [45,46]. Spoonire et al. [47] highlight the
importance of using large volumes and a sufficient number of fibers for the RVEs to obtain
accurate results. Commercial software limits flexibility, and developing your own approach
increases the options and control. Without a best practice, this study implemented its own
FE approach and RVE generation because of the necessity to consider the experimental
input based on the true micromechanical geometry.

2.3.1. FE Modeling

The finite size of an RVE is important. As a starting point for the RVE size, L, a criterion
from the study performed by Trias et al. [48], can be used as a guideline. Trias et al. defined
a dimensionless variable δ relating to the RVE length, L, and to the fiber radius, R, as:
δ = L

R . For a typical CFRP material, the value of δ is said to be equal to 50. Using the
mean value of the fiber radius extracted from the micrographs, a value of L can be obtained.
In the case study, a sensitivity analysis for the size of the RVE is presented.

2.3.2. Periodic Boundary Conditions

A Periodic Boundary Condition (PBC) was applied to the RVE model to fulfill the
periodicity requirement. The displacements at the boundaries between adjacent elements
need to be connected properly to avoid interpenetration or discontinuities. Confirming that
the mesh for the FE RVE model is periodic, the equation for the displacements between
two nodes on opposite surfaces of an RVE (i+, i−) is given by Equation (4) [49].

ui+
j − ui−

j = ε0
ijli (i, j = x, y, z) (4)

where ε0
ij is the macro strain tensor and li is the length of the RVE. If the length of an RVE

is constant, ε0
ijli can be exchanged with the displacement ûi

j. A relative formulation was
used, a decision based on the study by Garoz et al. [49], which emphasized the saved
CPU time using the relative formulation instead of the absolute formulation. The PBCs
were implemented using *EQUATION in ABAQUS and were connected to dummy nodes
controlling the displacement difference between the two nodes, ûi

j, where i, j = x, y, z.
The PBCs were applied to the RVE model using a Python script run through ABAQUS.

2.3.3. Computational Homogenization

Homogenization methods were employed to pass information in the multi-scale
chain. It was assumed that the average mechanical properties of an RVE are equal to the
average properties of the particular composite lamina. The framework developed utilizes a
first-order computational homogenization scheme to find the effective macromechanical
properties of the composite material [50]. The constitutive equation to be solved in matrix
notation [51] can be seen in Equation (5).

σ̄ = Cε̄ (5)

where C is the stiffness matrix and σ̄ and ε̄ are the average global stress and strain val-
ues. The stress field of the RVE was determined through Finite-Element Analysis (FEA).
From the FE simulation results, the average global values were computed as the volume
average of the local stresses and strains of the RVE (Equation (6)).

ε̄ij =
1
V

∫
V

εijdV σ̄ij =
1
V

∫
V

σijdV (6)

where σij and εij are the local strain and stress values of the RVE and V is the volume of
the RVE.
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Assuming the laminate is orthotropic, there are 9 unknown elastic constants to solve.
These elastic constants are Young’s moduli Ex, Ey, Ez, Poisson’s ratios νxy, νyz, νxz, and the
three shear moduli Gxy, Gyz, Gxz. These can be solved through the compliance matrix, S,
which is the inverse of the stiffness matrix (S = C−1). Solving all nine unknown elastic
constants for the material means applying six different load cases. The PBCs applied to
the RVE model were altered applying a set of global strains such that ε0

ij = εij. The RVE
length is constant, and therefore, the strain can be implemented as a displacement on the
dummy nodes connected to the PBC. This constitutes a Boundary Value Problem (BVP) to
be solved [3]. The computation was performed with a Python script run through ABAQUS.
The full description of the matrix calculations is found in Appendix A.

3. Case Study

The framework, EMMMA, was implemented and verified on a real case based on a
commercial composite material. In the case study, each step of the framework is presented.

3.1. Material System

The material used in the case study was a UD CFRP prepreg. The UD tape has an
epoxy matrix system 2300 from Toray [52]. It is a so-called “snap cure” matrix system
with a cure time of 120 s in 130 ◦C. According to the datasheet, the prepreg contains Toray
T700S carbon fibers and has a Vf of 0.58. The thickness of the UD tape in its uncured state
is 0.22 mm. The investigated material system was prepared using heated compression
molding with a pressure of 0.7 MPa. The material was manufactured as a plate with a size
of 345× 345 mm and a cross-ply layup sequence [0◦3/90◦3 ]S. In Figure 5, a micrograph of the
material is presented, showing a complete cross-section of the material. It can be observed
that the voids were mainly elongated along the fiber direction (90◦-layer). The length of the
voids varied between 100 µm and up to 1000 µm. This supports the idealization of the void
as a cylinder when added to the RVE models.

Figure 5. Full cross-section cut micrograph of the manufactured plate.

3.2. Micrograph Data Extraction

Four microscopy specimens were prepared from varying positions of the manufac-
tured plate. The micrograph samples were cut with a diamond blade to minimize surface
damage and then polished with up to P4000 grit silicon carbide abrasive papers to reach an
undamaged surface. To make a representative selection, two of the specimens were taken
from the center of the plate and two were taken from an edge position of the plate. These
positions represent two extreme positions regarding air evacuation during the manufac-
turing process. The micrographs were taken looking in the fiber direction. For each of the
four micrograph samples, a series of four images were used, meaning 16 micrographs were
used to generate the statistical data for the RVE generation algorithm. The micrographs
covered areas with different and varying micromechanical geometry. The micrographs
were acquired with an Olympus BX53 optical microscope with up to 50×magnification.
The micrographs were taken with 5×, 20×, and 50×magnification.
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3.2.1. Matrix, Fiber, and Void Data

The volume fractions of the manufactured plate are presented in Table 1. A micrograph
sample had an area of approximately 20 mm2 in the fiber direction. A micrograph taken
with 50× and 20×magnification covers approximately 0.05 mm2, respectively 0.22 mm2.
This means we would need 400, respectively 100 micrographs, to cover the complete surface
of a micrograph sample. To determine the material’s void fraction, a cross-section of at
least 80 % of the sample should be analyzed to have an error below 15 % [53]. Therefore,
the void fraction, Vv, was decided only using the 5×magnification micrographs covering
the complete surface of each sample. The fiber data for the RVE algorithm and the void
data were extracted with 50× or 20×magnification micrographs.

Table 1. Average volume fractions for fiber (Vf ), matrix (Vm), and void (Vv) of the manufactured plate.

Magnification Avg. Vf (-) Avg. Vm (-) Avg. Vv (-)

5 N/A N/A 0.0062
20 0.5808 0.4192 N/A
50 0.5963 0.4037 N/A

The value of the 50× magnification micrographs is the average value of over
100 micrographs. The volume fractions for the 20×micrographs were calculated using the
K-means algorithm, where the optimal amount of clusters were five. The quality of the
micrographs were limited because of limited lighting in the microscope; therefore, voids in
micrographs were clustered as matrix in the K-means algorithm, and the sum of Vm and Vf

equaled 1. Vv was calculated using a raster graphics editor, Photoshop®, together with the
micrographs with 5×magnification.

To have a better understanding of the effects of voids, it is of interest to evaluate
their actual characteristics. The voids in the RVEs were based on actual extracted data
from the micrographs of the CFRP material. The void data were extracted analyzing the
micrographs with 50× magnification in a raster graphics editor. The shape of voids is
almost never perfect. The shape varies in geometry and has local notches that could affect
a crack formation scenario. Simplifying the void for an RVE model and extracting effective
macromechanical properties, the overall shape that is suitable seems to be a circle or an
ellipse. Figure 6 presents three different void shapes from a micrograph. The voids were
slightly curved, elongated, or round. The circle and ellipse centers are located in the Center
of Gravity (CoG) of the void. The elliptical shape is based on an assumption of equal
normalized second central moments of the void and the ellipse. The circle is adapted
based on the assumption that the circle has the same area as the void. After the shape
fit, the ellipse covered the void better in most cases and was adapted when the void was
shaped more like a circle.

Figure 6. Comparing true voids from micrographs to a circular and an elliptical shape.

The shape comparison was conducted for a great number of voids based on extracted
void data from the 50×magnification micrographs. In Figure 7, histograms of the predicted
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circle and ellipse geometries are presented. The fitted circle had a mean void radius
of 6.7 µm, and the largest voids were represented by a radius of up to 20 µm. The same data
for the ellipse fit are presented looking at the major and minor axes lengths. The average
ratio of the major and minor axes was 1.7, meaning most of the voids were elliptical and
not circular. The average length of the major and minor axes was 9.5 µm resp. 5.6 µm.
However, for an ellipse, the largest major axis was 50 µm. This would represent a void with
a total length of 100 µm, which was more than twice as large as the largest radius for a fitted
circular void. The average values were used in this study to represent typical scenarios.

Figure 7. Extracted void data for the manufactured plate looking at shape parameters for a fitted
circular and elliptical void shape.

Using an RVE size of 200 µm, it was also of interest to see how close the voids were
located to each other and if it was reasonable to model only one void within an RVE. First,
second, and third neighboring voids were located, and the average distances were 784 µm,
1106 µm resp. 1332 µm (Figure 8). It was seen that some voids were located more closely
than the chosen RVE size of 200 µm; however, using the average values to represent typical
scenarios, modeling more than one void was not within the scope of this study. Only one
void was investigated, which fit well with the mean values of the NN for the voids.

Figure 8. Presenting the first, second, and third NN distances between voids for the manufac-
tured plate.

3.2.2. Fiber Diameter and Nearest Neighbor Distributions

The micrographs were analyzed with the BDA, and the best distribution functions
for first and second NN were decided. The distribution functions extracted from the
micrographs can be seen in Figure 9. The main difference between the magnifications, 50×
and 20×, was the amount of data. The average amount of fibers in a micrograph with 50×
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magnification was approximately 800, compared to 3400 fibers for the 20×magnification
micrographs. Even though there were more data for the 20×magnification micrographs,
the data from the 50× magnification micrographs were preferred and used. Looking at the
difference in the 20× and 50× magnification micrographs, the blob analysis was clearer
for the 50× magnification micrographs (Figure 10). The blob analysis was not optimal
for generating a distribution for ∅ f , and instead, a manual measurement of 50 fibers was
conducted. The manual measurement showed that ∅ f varied between 6.1 µm and 7.6 µm
and the average size was 6.9 µm. These manually measured data were used in the RVE
algorithm. The distribution functions and process parameters were calibrated such that
these results corresponded correctly.
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Figure 9. The best distribution functions of (a) first NN and (b) second NN, comparing the data from
micrographs with 20× and 50×magnification.

(a) (b)

Figure 10. Blob analysis for (a) 20×magnification, and (b) 50×magnification micrographs.

3.3. RVE Generation

The finite RVE size, L, is an important parameter. Following the rule of thumb given
by Trias et al. [48], choosing the RVE size, L, according to δ = L

R , where δ equals 50, and R,
the average fiber radius, 3.45 µm, the formula gave a value of 172.5 µm as L.

To verify the choice of L, a sensitivity analysis was conducted. Ten RVEs each were
generated for different sizes of L, and the average Vf was extracted (Figure 11). Vf con-
verged with an increasing L, and was matched towards the true value of Vf from Table 1
(Vf = 0.5963, for the 50× micrographs). The value of Vf from the generated RVEs corre-
sponded well at L = 200 µm towards the true fiber volume fraction of the plate. The max
and min values converged at higher RVE sizes, and the standard deviation decreased,
meaning that the local varieties in the RVE did not matter as much for larger RVEs because
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the size of the RVE compensated for the overall fraction. However, the size of the RVE shall
represents the micro-scale and should then be limited by the thickness of a lamina (220 µm).
This fits well with the converged value of L = 200 µm.

The RVE size will depend on what you want to investigate, and local effects could be
significant. The RVE algorithm was rather good at imitating and capturing some real events
from the micrographs. In Figure 12, some events in an actual micrograph are compared
with the generated RVE fiber distribution. It was also seen that sparsely scattered fibers,
which could occur between plies, were not captured. Moving forward in the case study an
RVE length, L, of 200 µm was used to represent the material.
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f
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]
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Plate Avg. RVE Max RVE Min RVE

Figure 11. The fiber volume fraction, Vf , as a function of RVE side length, L.

1 2 3

Figure 12. Comparison of actual microstructure and the generated RVE fiber distribution. The differ-
ent images show (1) how smaller-matrix-dominating areas are captured, (2) how areas with tightly
packed fibers are captured, and (3) how sparsely scattered fibers are difficult to capture.

Analyzing the voids of the manufactured plate, both circular and elliptical voids were
generated in the RVEs varying the local void fraction. The area was kept constant between
the circular and the elliptical void to be able to compare the results. For each void type,
nine different void areas, VA, and RVEs were generated. The ratio of the elliptical void
axes was set to the mean value from Figure 7, which was 1.7. The sizes of the voids were
determined and rounded to match the given area as well as possible. Vv and Vf for each
generated RVE are summarized in Tables 2–4. Vf is presented in two ways, where the first
calculation considered the void, Vv + Vf + Vm = 100%, and the second did not consider
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the void, Vf + Vm = 100%. Two different calculations of Vf were used to analyze how the
void affected the surrounding fiber distribution.

Table 2. Vv of the RVEs with a circular void and the resulting Vf .

Vv (-) ∅v (µm) Area (µm2) Vf (-) Vf (-)
(w.o. Void)

0.2498 112.8 10,000 0.4341 0.5787
0.2003 101.0 8000 0.4757 0.5949
0.1500 87.4 6000 0.4943 0.5815
0.1001 71.4 4000 0.5300 0.5890
0.0499 50.4 2000 0.5656 0.5953
0.0249 35.6 1000 0.5751 0.5898
0.0125 25.2 500 0.5852 0.5925
0.0062 17.8 250 0.5880 0.5917
0.0025 11.2 100 0.5958 0.5972

Table 3. Vv of the RVEs with an elliptical void angled 0◦ and the resulting Vf .

Vv [-] Major Axis,
a (µm)

Minor Axis,
b (µm) Area (µm2) Vf (-) Vf (-)

(w.o. Void)

0.2503 73.6 43.3 10,000 0.4420 0.5896
0.2000 65.8 38.7 8000 0.4675 0.5844
0.1500 57.0 33.5 6000 0.4945 0.5818
0.1001 46.5 27.4 4000 0.5273 0.5859
0.0501 32.9 19.4 2000 0.5657 0.5956
0.0251 23.3 13.7 1000 0.5767 0.5915
0.0125 16.4 9.7 500 0.5870 0.5945
0.0062 11.6 6.8 250 0.5912 0.5949
0.0025 7.4 4.3 100 0.5938 0.5953

Table 4. Vv of the RVEs with an elliptical void angled 45◦ and the resulting Vf .

Vv (-) Major Axis,
a (µm)

Minor Axis,
b (µm) Area (µm2) Vf (-) Vf (-)

(w.o. Void)

0.2503 73.6 43.3 10,000 0.4383 0.5847
0.2000 65.8 38.7 8000 0.4583 0.5728
0.1500 57.0 33.5 6000 0.4899 0.5763
0.1001 46.5 27.4 4000 0.5305 0.5895
0.0501 32.9 19.4 2000 0.5692 0.5993
0.0251 23.3 13.7 1000 0.5850 0.6000
0.0125 16.4 9.7 500 0.5830 0.5903
0.0062 11.6 6.8 250 0.5959 0.5996
0.0025 7.4 4.3 100 0.5868 0.5882

Statistical Characterization of RVEs

The RVEs generated with a circular and elliptical void angled in 0◦ were analyzed with
the statistical descriptors K(r) and G(r), to characterize the spatial point patterns of the
fiber distributions. K(r) for RVEs with voids is presented in Figure 13a,c,e. In Figure 13a,c,
the voids were not considered in the correction factor wk (Section 2.2.1), and in Figure 13e,
the circular void was considered in the correction factor wk. If the void was not considered
in the correction factor wk, the small voids had slightly reduced values and the result tended
to move together with an increased value for r. Comparing the point fields to a CSR pattern,
all curves moved away from the CSR pattern function, indicating long-range clustering.
A reduced Vf should have a higher K(r) [35], and this was supported by the results for
K(r) since a larger void decreased Vf , and the K(r) curves for larger void diverged slightly
more than for the smaller voids. The same trend, but intensified, was observed for the
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approach where the void was part of the observation area. The same goes for the RVE size,
L (Figure 14a). The smaller the RVE, the more Vf is reduced (Figure 11). The curves for
K(r) are very smooth, for both void size and RVE size, which indicated that the generated
algorithm avoids regular positioning.
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Figure 13. Second-order intensity function K(r) and the radial distribution function G(r) for RVEs
with different VA. (a) K(r) with the void as a part of the observation area for circular voids, (b) G(r)
with the void as a part of the observation area for circular voids (c) K(r) with the void as a part of
the observation area for elliptical voids angled 0◦, (d) G(r) with the void as a part of the observation
area for elliptical voids angled 0◦, (e) K(r) with the void not as a part of the observation area and
adjusting the correction factor wk accordingly for circular voids, and (f) G(r) with the void not as a
part of the observation area for circular voids.
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Figure 14. Second-order intensity function K(r) and the radial distribution function G(r) for different
RVEs with side length L and no voids, (a) K(r) and (b) G(r).

The radial distribution function, Figures 13b,d,f and 14b, had a clear peak for all cases at
approximately r = 7, which correlated to the first NN distance (Figure 9a). The fluctuations
of the function converged to a unity of 1. The larger fluctuations were connected to the
lower Vf . Relating the first peak of the radial distribution and the height of the first peak
to Vf , a higher peak had a reduced Vf . For the radial distribution function, the limitation
was the size of the RVE, and the function would not converge to unity if the radial distance
from a fiber was outside the observation area; therefore, when the radial distance was too
large, it was no longer within the observation area, and the function G(r) became zero
(Figure 14b).

3.4. FE Modeling

The stress and strain analysis of the RVE models was conducted using the FE software
ABAQUS 2019 [54], and the FE modeling was conducted in the pre-processor software
ANSA [55]. The RVEs were modeled as plates (Figure 15) with linear elastic and isotropic
material for the matrix and transverse isotropic properties for the fibers [56]. Typical
material constants for carbon fibers were considered together with the properties reported
by the datasheet of the material [52]. For the transverse isotropic properties of the carbon
fibers, the longitudinal elastic modulus was 230 GPa, the transverse elastic modulus was
12.0 GPa, the in-plane Poisson ratio was 0.17, the out-of-plane Poisson ratio was 0.3, the in-
plane shear modulus was 9.85 GPa, and the out-of-plane shear modulus was 4.62 GPa.
The isotropic matrix’s elastic modulus and Poisson’s ratio were, respectively, 4.40 GPa,
and 0.3. The interface between fiber and matrix was implemented as a perfect bond.
The RVE was modeled in 3D with C3D8I (cube) elements and adjusted with C3D6 (wedge)
elements to stay true to the geometry. The distance between two fibers was set to a
minimum of 0.2 µm, which is approximately 6% of the fiber radius. References refer to this
distance being somewhere in between 2 and 7 % of the fiber radius [35,57]. The minimum
distance was needed such that it was still possible to model the space in the FE model with
a couple of elements. The mesh size was set to 0.75 µm, giving a reasonable computational
time, and it was ensured that the computational homogenization results for the given
mesh size converged. The voids were modeled with 3D elements and implemented with a
stiffness value of 10−6 MPa and a density value of 10−20 kg

m3 .
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Figure 15. Illustrating the FE RVE models with no void or circular or elliptical voids.

3.5. Results of the Case Study
3.5.1. Prediction of Macromechanical Properties

Utilizing the first-order computational homogenization scheme, the effective macrome-
chanical properties were calculated. In Table 5, the macromechanical properties are
presented for the RVE simulation, without a void, and with an RVE size of 200 µm.
The macromechanical properties for an RVE with a void and as a function of Vv are
presented in Figures 16–18.
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Figure 16. The effective macromechanical properties: (a) Ex, (b) Ey, and (c) Ez, as a function of void
area, Vv, for a 200 µm RVE.

The drop in stiffness and shear stiffness was evident with an increasing Vv
(Figures 16 and 17), and this could also be related to a decreasing Vf for the RVEs
(Tables 2–4). Ex seems not to have been affected by the shape of the void and behaved
equally with an increasing Vv. Ey and Ez were the same for circular voids and elliptical
voids angled 45◦. The elliptical void angled 0◦, had a higher stiffness in the same direction
as the major axis. The shear stiffness was not affected if the void was circular or elliptical
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angled 45◦. Only the Poisson ratios νyz and νyz were affected when adding a void. The voids
decreased the ratio of change in width and change in length, more or less so for an elliptical
void angled 0◦, depending on if the direction of the major axis was orthogonal or coincided
with the loading direction.

Table 5. Average effective macromechanical properties for an RVE without a void.

Property Avg. Value

Ex 136,395 MPa
Ey 7900 MPa
Ez 7904 MPa

Gxy 4235 MPa
Gyz 2908 MPa
Gxz 4244 MPa
νxy 0.22
νyx 0.01
νxz 0.22
νzx 0.01
νyz 0.36
νzy 0.36
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Figure 17. The effective macromechanical properties: (a) Gxy, (b) Gyz, and (c) Gzx, as a function of
void area, Vv, for a 200 µm RVE.
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Figure 18. The effective macromechanical properties: (a) νyz and (b) νzy, as a function of void area,
Vv, for a 200 µm RVE.

In the numerical model, the void shape was limited and idealized using two shapes,
circular and elliptical. The void was centrally located, and only one void in an RVE was
implemented. The model covers elongated voids, and if one was to analyze spherical voids,
a full 3D RVE model needs to be modeled. This implementation was simplified to suit an
industrial implementation, but with a modular approach, each part is possible to develop
even further.

3.5.2. Verification with Static Testing

A static tensile test was performed for two specimens of the manufactured cross-ply
plate to determine the Ultimate Tensile Strength (UTS) and stiffness. The test was performed
according to ASTM D3039/D3039M-17 [58] on a static testing machine, Instron 4505, with a
calibrated 100 kN load cell. The displacement rate was set to 2 mm/min. The strain was
measured using a Digital Image Correlation (DIC) system, GOM Aramis 5M LT, with a
50 mm lens. The Aramis system recorded the strain field on one surface of the specimens
during testing, and the results were used for calculating the stiffness. The specimen geom-
etry was inspired by [59] for manufacturing purposes, and glass fiber tabs (50 mm long)
were used. The tabs had a rough surface for better gripping. The specimen geometry was
adjusted and manufactured in accordance with ASTM D3039/D3039M-17 [58]. The ten-
sile test results are presented in Table 6. The framework extracted the macromechanical
properties for a UD laminae; therefore, the static test results for the cross-ply laminate were
compared to Ex and Gxy calculated analytically with Classical Lamination Theory (CLT).
The input for the CLT calculation was the extracted macromechanical properties from the
computational homogenization procedure (Figures 16–18). The properties Ex and Gxy as
a function of void area, Vv, for a cross-ply were calculated and are presented in Table 7.
The results were in the same order of magnitude as the testing results.

Table 6. Static tensile test results of the manufactured cross-ply plate with Vf = 0.5963 and
Vv = 0.0062.

UTS (MPa) Stiffness (MPa)

1377 68,519
1268 67,368
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Table 7. Analytical results calculated with CLT for a cross-ply laminate based on the RVE results.

Vv (-)
Circular

Void
Circular

Void
Elliptical
Void 0◦

Elliptical
Void 0◦

Elliptical
Void 45◦

Elliptical
Void 45◦

Ex (MPa) Gxy (MPa) Ex (MPa) Gxy (MPa) Ex (MPa) Gxy (MPa)

0.25 52,352 2485 52,677 1956 52,687 2374
0.20 57,087 2825 55,909 2339 55,490 2649
0.15 59,858 3085 59,624 2768 59,495 3007
0.10 64,753 3467 63,790 3224 64,265 3403
0.05 68,734 3835 68,528 3733 69,320 3850

0.025 70,567 4078 69,933 3948 71,309 4081
0.0125 71,573 4149 71,585 4118 71,200 4119
0.006 71,806 4191 72,287 4217 72,419 4236
0.0025 72,580 4239 72,960 4294 71,912 4207

0 72,308 4235 72,308 4235 72,308 4235

4. Discussion and Conclusions

A framework covering the micromechanical approach of an MSM process was devel-
oped, answering the need to add manufacturing defects, i.e., voids, and their true statistical
variability. The framework showed good predictions of the macromechanical properties,
compared and verified with static testing. The macromechanical properties, weak spots,
and critical areas can be determined by using several RVEs with a varying local void
fraction in a full-scale macro-model. The framework is also flexible with the possibility to
exchange the analyzed material with another by adjusting the input data. Without adding
too many details, the simulation cost was reasonable and the approach showed an excellent
possibility of identifying critical areas of a composite structure if connected to a complete
MSM approach. There is also the possibility to expand the analysis by looking further into
the micromechanics and specific damage modes.

4.1. RVE Generation

Capturing the typical micromechanical geometry of a CFRP material is essential. This
is supported by the experimental approach used in this study, showing that the size of
the RVE mattered if the aim was to capture a true Vf , which, in turn, highly affects the
macromechanical properties. If voids were included in the analysis, varying the local void
fraction, Vv, the fiber fraction, Vf , was slightly reduced, but not to such an extent that
the fiber distribution would no longer be valid. Even the large voids still generated an
approved surrounding fiber distribution for the chosen RVE size (Tables 2–4).

The appropriate size of an RVE, generated with the algorithm in this study, was clearly
seen analyzing Vf (Figure 11). The guideline introduced by Trias et al. [48] corresponded
well to the true Vf ; however, a sensitivity analysis would be recommended to find the
perfect fit. The chosen RVE represented well the material that was analyzed. The RVE
generation algorithm captured the fiber distribution also corresponding to a true fiber
distribution compared to real micrographs. The rule of thumb from Trias et al. might not
be valid if voids are present in the RVE; however, to address this, the micromechanical
model needs to be connected to a macro-scale model. Then, an evaluation of the effect the
size of an RVE with voids might have on the macromechanical response can be conducted.
It would be essential to consider the actual statistical void data regarding the shape, size,
distribution, and fraction of the voids.

4.2. Implementation of Voids

After finding a representative size of the RVE, the local void fraction was varied,
including the extracted experimental void data. If one RVE were to represent the material
maintaining the true void volume fraction, Vv = 0.0062, the RVE size would need to be
incredibly large to represent the largest void size. No material has only one void size.
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A large RVE will increase the computational time, and the RVE would be too large to
represent the micromechanical scale of the material.

Illustrating the issue, doubling the RVE size and maintaining a void volume fraction
of Vv = 0.0062, the RVE size would now represent the thickness of two laminae, moving
away from the micro-scale representation. The RVE was modeled with a circular void
(∅v = 35.6 µm) and an elliptical void angled 0◦ (major axis, a = 23.2 µm, minor axis,
b = 13.6 µm). These voids represent the larger voids found in the material, but the numerical
results for the effective macromechanical properties showed a very small difference. Table 8
presents the percentual difference from a baseline simulation (200 µm RVE without a void)
for two different sizes of RVE using a void volume fraction of 0.0062, and the maximum
difference was below 3%. This difference could represent a numerical error or be connected
to the variation in fiber volume fraction from the random RVE generation. To find local
varieties in the material properties, the local void volume fraction needs to be considered.
The RVE needs to be utilized, not only as an overall representation of the material, but also
for a local variation of the material properties. The local void fraction varies throughout a
material and depends on geometry and manufacturing techniques.

When varying the local void volume fraction and the size of the voids in an RVE,
the size is an important factor. The void fraction of the manufactured plate studied was
0.0062, which corresponded to a void area of 250 µm2. For this particular void fraction,
the void size for the circular void (radius of 8.9 µm) and the elliptical void (major axes of
11.6× 6.8 µm) was still larger than the average values of the extracted void data (Figure 7).
However, the macromechanical properties were slightly affected by these small voids in
the RVE (Figures 16–18) and the laminate (Table 7). The largest void simulated (Vv = 0.25)
reduced the elastic properties in the RVE by approximately 25% for E1, up to 59% for E2
and up to 48% for E3. The larger voids might not frequently occur in the true laminate;
however, the results show that it is important to consider the void statistics of the true
material when moving to the macromechanical modeling, not missing the effects of a local
void fraction and the effect that large voids might have on the material properties.

Table 8. Comparison of the average effective macromechanical properties maintaining the void
volume fraction. The 200 µm RVE without a void is considered as the baseline. Only Young’s
modulus and the shear modulus are presented; due to a very low variation, Poisson’s ratio is
not included.

Property
RVE 200 µm

No Void
(Baseline)

RVE 200 µm
Circ. Void

RVE 400 µm
Circ. Void

RVE 200 µm
Ellip. Void

RVE 400 µm
Ellip. Void

Vv (-) 0 0.0062 0.0062 0.0062 0.0062

Void size - ∅v = 17.8 µm ∅v = 35.6 µm a = 11.6 µm
b = 6.8 µm

a = 23.2 µm
b = 13.6 µm

Vf (-) 0.5902 0.5880 (incl. void) 0.5965 (incl. void) 0.5912 (incl. void) 0.5920 (incl. void)
Ex (MPa) 136,395 −0.61% +0.83% +0.10% −0.48%
Ey (MPa) 7900 −2.11% −1.09% −2.24% −2.59%
Ez (MPa) 7904 −2.02% −1.23% −1.13% −1.35%

Gxy (MPa) 4235 −1.04% 0.50% −0.43% −1.02%
Gyz (MPa) 2908 −1.65% −0.89% −1.51% −1.62%
Gxz (MPa) 4244 −1.32% +0.02% −0.57% −0.94%

Purslow [60] ranks composite material quality based on the void fraction. A composite
material with Vv > 5, % is ranked as having very poor quality. For VA = 2000 µm2, the nu-
merical results for the laminate corresponded well to the static testing results (Table 7),
and the corresponding local Vv was 5.59%; thus, the quality of the composite would have
been ranked as very poor. For an elliptical void shape, the corresponding void size for the
void fraction of 5.59% was 32.9 µm × 19.4 µm, and this void size existed in a laminate with
a Vv of 0.62% (Figure 7). However, the laminate with a void fraction of 0.62%, would be
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graded as having good quality (0.5% < Vv ≤ 1%). This phenomenon needs to be considered
if implemented in an MSM approach, for example using a statistical description of the
size, shape, distribution, and fraction of the voids. Keep in mind that the test results and
numerical results include measurement errors that limit a direct comparison; however,
the comparison can highlight important aspects.

The void shape was important if connected to the size of the voids. A representative
circular void area will have a much smaller radius than the void’s actual size, which
corresponds better to the elliptical shape. Depending on what damage you might want to
consider in your model, the void shape will matter [38]. The study did not consider the
correlation between the void’s diameter and length since the RVE would need to be even
larger to keep a similar correlation for the fibers.
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Appendix A. Computational Homogenization

This Appendix covers the expansion of the matrix notation for the first-order compu-
tational homogenization scheme presented in the study. The constitutive equation to be
solved in full matrix notation [51] can be seen in Equation (A1).

σ̄11
σ̄22
σ̄33
τ̄12
τ̄23
τ̄13

 =



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66





ε̄11
ε̄22
ε̄33
γ̄12
γ̄23
γ̄13

 (A1)

where C is the stiffness matrix and σ̄ij and ε̄ij are the average global stress and strain values.
Assuming the laminate is orthotropic, there are nine unknown elastic constants to solve.
They can be solved through the compliance matrix, S (Equation (A2)), which is the inverse
of the stiffness matrix (S = C−1).

S =



S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

 =



1
Ex

− vyx
Ey
− vzx

Ez
0 0 0

− vxy
Ex

1
Ey

− vzy
Ez

0 0 0

− vxz
Ex

− vyz
Ey

1
Ez

0 0 0

0 0 0 1
Gxy

0 0

0 0 0 0 1
Gyz

0

0 0 0 0 0 1
Gxz


(A2)

For the compliance matrix, S, the following applies: νxy
Ex

=
νyx
Ey

, νyz
Ey

=
νzy
Ez

, and νxz
Ex

= νzx
Ez

.
This means that for the nine unknowns in the stiffness matrix, only six load cases needs to
be applied.
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