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Abstract

The methyltransferase enzyme (MTase), which catalyzes the transfer of a methyl group from S-adenosyl-methionine
(AdoMet) to viral RNA, and generates S-adenosyl-homocysteine (AdoHcy) as a by-product, is essential for the life
cycle of many significant human pathogen flaviviruses. Here we investigated inhibition of the flavivirus MTase by
several AdoHcy-derivatives. Unexpectedly we found that AdoHcy itself barely inhibits the flavivirus MTase activities,
even at high concentrations. AdoHcy was also shown to not inhibit virus growth in cell-culture. Binding studies
confirmed that AdoHcy has a much lower binding affinity for the MTase than either the AdoMet co-factor, or the
natural AdoMet analog inhibitor sinefungin (SIN). While AdoMet is a positively charged molecule, SIN is similar to
AdoHcy in being uncharged, and only has an additional amine group that can make extra electrostatic contacts with
the MTase. Molecular Mechanics Poisson-Boltzmann Sovation Area analysis on AdoHcy and SIN binding to the
MTase suggests that the stronger binding of SIN may not be directly due to interactions of this amine group, but due
to distributed differences in SIN binding resulting from its presence. The results suggest that better MTase inhibitors
could be designed by using SIN as a scaffold rather than AdoHcy.
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Introduction

Members of the Flavivirus genus, such as Dengue virus
(DENV), Yellow Fever virus (YFV), West Nile virus (WNV),
Tick-borne encephalitis virus (TBEV), and Japanese
encephalitis virus (JEV) are ss-RNA (+) arthropod-borne
viruses that can cause serious human disease, including
meningitis, myelitis, encephalitis, and hemorrhagic fever [1–3].
Flavivirus infections are endemic to all continents except
Antarctica. These viruses infect more than 200 million people
and result in more than 100,000 fatalities per year [3]. Although
effective vaccines exist for YFV, JEV, and TBEV [3] the
difficulty of vaccinating large at-risk populations and the danger
of adverse vaccination effects highlight the importance of
developing antiviral therapeutics for treatment of severe
flavivirus infections.

The flavivirus methyltransferase (MTase) has become an
attractive target for such therapeutic interventions [4–16]. The
flavivirus MTase, encoded by the NS5 gene, functions similarly
to many other MTases to transfer a methyl group from its
cellular cofactor molecule, S-adenosyl-methionine (AdoMet),
first to the guanine-N-7 and then the ribose 2’-O of the
flavivirus mRNA cap, with S-adenosyl homocysteine (AdoHcy)
formed as a by-product in both steps [17–21]. Recently, the
flavivirus MTase was also found to catalyze additional 2’-O
methylations of internal adenosine of the viral RNA [22]. The
first methylation of the viral mRNA cap is an obligate step in the
virus life-cycle; and defects in N-7 methylation are lethal to
DENV, WNV, YFV, and Kunjin virus replication
[18,19,21,23–26]. Our laboratory recently identified an AdoMet
analogue, sinefungin (SIN) that inhibits the MTase activity and
replication among a broad spectrum of flaviviruses [4,23]. We
also observed an additional pocket adjacent to the
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AdoMet/SIN/AdoHcy binding site; this pocket is specific to and
conserved among flavivirus MTase but not found in human
MTases [23].

A series of highly selective AdoHcy-based inhibitors of the
flavivirus Mtase, that did not inhibit human Mtases, were
recently reported to target this pocket, although the antiviral
efficacy of the compounds was characterized [15]. To
investigate whether more potent and selective inhibitors of the
flavivirus MTase could be identified, we designed and
synthesized four new AdoHcy derivatives. Unfortunately, these
derivatives did not show improved activity towards the viral
MTase activity. Upon examination of the intrinsic inhibitory
ability of AdoHcy, we unexpectedly found that AdoHcy barely
inhibits the N-7 and 2’-O activities of the flavivirus MTase, even
at high concentrations. We further observed that AdoHcy also
does not inhibit virus growth in cell-culture. Binding studies
showed that AdoHcy has a much lower binding affinity than
AdoMet and SIN. This result is consistent with computational
Molecular Mechanics Poisson-Boltzmann surface Area (MM-
PBSA) analysis indicating that SIN has a more favorable
binding free energy with the MTase than AdoHcy. Our results
indicated that SIN might be a better scaffold to design new
inhibitors as compared to AdoHcy.

Results

Synthesis of AdoMet analogs
We have previously found a natural product, sinefungin

(SIN), and several nucleoside analogs inhibited both the
MTase activities in vitro, as well as virus growth in cell culture
[4,16,23]. The AdoHcy by-product of the MTase reaction and a
number of its derivatives were also found to be potent MTase
inhibitors in several studies [8,14,15]. In order to obtain more
specific and potent inhibitors against flavivirus MTase, we
designed and synthesized four AdoHcy derivatives (Figure 1).

These analogs were chosen rationally, based upon the
inhibitor-bound MTase structures [15,23]. In particular, we plan
to fill in the conserved hydrophobic pocket present in flavivirus
MTases [15,23] and to stabilize the sugar and amino parts of
the analog (Figure 1 and Figure S1).

Used the WNV MTase as a model, we first measured the
N-7 MTase activity of the WNV MTase in the presence of the
four compounds at both 20 µM and 75 µM concentrations. We
added SIN as a positive control. As shown in Figure 2, the
positive control inhibitor SIN efficiently inhibited (~80%) the N-7
activity of both DENV2 and WNV MTases at 20 µM
concentration. Increasing the concentration of SIN to 75 µM
almost completely abolished the N-7 activity of the WNV
MTase. This dose-dependent inhibition by SIN validated the
effectiveness of our assay. As shown in Figure 2, the four
AdoHcy-derivatives barely showed any inhibition of the N-7
MTase activity of the WNV MTase at 20 µM concentration. For
the DENV2 MTase, these compounds even enhanced the N-7
MTase activity, due to unknown reasons. On increasing the
concentration of compounds to 75 µM, they reduced the WNV
N-7 MTase activity by less than 20% (Figure 2). The only
exception was compound GRL-001-12, which reduced the
WNV N-7 MTase activity by about 44% at this higher
concentration.

AdoHcy does not inhibit the N-7 and 2’-O MTase
activities of flavivirus MTases

The lack of inhibitory activity in these analogs was quite
surprising, particularly because these compounds are very
close derivatives of AdoHcy, which showed high potency in
inhibition of the MTase activities in a number of studies
[8,14,15,27]. These results prompted us to investigate whether
AdoHcy is an effective inhibitor for flavivirus MTase. We
performed the MTase inhibition assay for a series of
concentrations of AdoHcy. Our results showed that, even at a

Figure 1.  Chemical structures of AdoHcy and its four derivatives synthesized.  Groups of AdoHcy that were modified were in
red color.
doi: 10.1371/journal.pone.0076900.g001
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high concentration of 75 µM, AdoHcy did not inhibit the N-7
activity of the WNV MTase (Fig. 3A), and only inhibited 52% of
the 2’-O activity of the WNV MTase (Fig. 3B). For the 2’-O
reactions, in contrast to our previous observations
[4,18,19,23,24,28], the methylated product migrated to a
position higher than the mono-methylated m7GpppA. The
material migrating to the higher position was confirmed to be
double methylated m7GpppAm, since the double methylated
m7GpppAm product converted from m7GpppA by a control cap-
dependent 2’-O MTase VP39 migrated to the same position
(Fig. 3D). As reported in a recent study [29], this change might
have been caused by the use of nuclease P1 from SIGMA-
Aldrich, instead of the nuclease P1 from US Biological used in
all our previous experiments. Nevertheless, the results
indicated that AdoHcy, the by-product of the MTase reactions,
is not an inhibitor for the N-7 activity of the WNV MTase and
only a weak inhibitor for the 2’-O MTase activity.

To determine whether other flavivirus MTases can be
inhibited by AdoHcy, we expressed and purified the YFV
MTase as described previously [19,28]. We also cloned,
expressed, and purified the DENV2 and DENV3 MTase
domains in bacteria, either as a His-tag fusion protein (DENV2)
or as a GST-tag fusion protein (DENV3). The tag-free DENV3
MTase was purified by removal of the GST-tag through
PreScission protease digestion, followed by gel filtration
chromatography. We used the WNV RNA, containing the 5’-
terminal 90 nucleotides of the genome, to assay for methylation
activities of the four MTases. The substrate was known to react
with MTases from other flaviviruses such as DENV, YFV, and
Powassan virus [19,28]. As expected, in the absence of
inhibitors, MTases from DENV2, DENV3, or YFV could

Figure 2.  Inhibition of the N-7 activities of the WNV and
DENV2 MTases by synthesized derivatives at 20 µM or 75
µM concentrations.  The methylation activity without
compounds was set at 100%. Details were described in the
legend for Figure 3.
doi: 10.1371/journal.pone.0076900.g002

efficiently methylate the WNV G*pppA-RNA at the N-7 position,
reaching 53 to 116% of the WNV MTase activity (Figure 3C).
For the 2’-O MTase activity in the absence of inhibitors, both
DENV2 and DENV3 MTases could effectively methylate more
than 95% of the WNV m7G*pppA-RNA substrate to
m7G*pppAm-RNA (Figure 3D), whereas the YFV MTase failed
to methylate the WNV substrate at the 2’-O position. These
negative results for 2’-O methylation by the YFV MTase are not
shown, but similar results have been reported previously
[19,28]. Since flavivirus MTase is known to require distinct RNA
elements for methylations [28], it is possible that the WNV RNA
substrate used is not optimal for 2’-O methylation by the YFV
MTase.

To simplify the calculations, we set the MTase activity to
100% for each MTase in the absence of inhibitors, and then
calculated the relative activity for each MTase in the presence
of inhibitor as percentage to that without inhibitor. As expected,
in the presence of 150 µM concentration of SIN, the N-7
activities of all four MTases were almost completely abolished
(Figure 3C), and the 2’-O activities were significantly inhibited
by 70%, 46%, and 61% for the WNV, DENV2, and DENV3
MTases, respectively (Figure 3D). In contrast, in the presence
of 150 µM of AdoHcy, the WNV, DENV2, DENV3, and YFV
MTases could still respectively methylate 91%, 75%, 150%,
and 62% of the G*pppA-RNA substrate at the N-7 position;
similarly the m7G*pppA-RNA substrate could be methylated to
78%, 90%, and 88% at the 2’-O position by the WNV, DENV2,
and DENV3 MTases, respectively. These results indicated that
AdoHcy either does not or only very weakly inhibits the N-7 and
2’-O MTase activities of flavivirus MTases.

Cytotoxicity and antiviral analyses
Although AdoHcy does not inhibit the flavivirus MTase

activity in vitro, it may inhibit virus growth in vivo. To rule out
this possibility, we performed cell-based assays to evaluate the
biological activities of AdoHcy. We first used a MTT cell
proliferation assay to measure the cytotoxicity of AdoHcy to a
human A549 cell line (Figure 4A). Our results indicated that
AdoHcy did not show cytotoxicity at 0.5 mM concentration.
Even at 1 mM concentration of AdoHcy, the cells remained
65% viability.

We next performed viral titer reduction assay to evaluate the
compound antiviral efficacy. As shown in Figure 4, AdoHcy did
not inhibit the growth of DENV2 virus and only inhibited about
50% of the WNV growth at 100 µM concentration. At 200 µM
concentration, AdoHcy could effectively inhibit the growth of
DENV2 (Figure 4C) and only reduced the viral titer of WNV by
approximately one log order (Figure 4B). Therefore, the EC50

values of AdoHcy for DENV2 and WNV were estimated to be
over 100 µM (EC50, effective concentration of a compound
required to inhibit 50% of virus growth). Overall, our results
indicated that AdoHcy only inhibited virus growth at very high
concentration.

AdoHcy has lower binding affinity for flavivirus MTase
In order to understand why SIN but not AdoHcy can inhibit

the MTase activities, we developed an AdoMet-binding assay.
For this assay, biotinylation of the WNV and DENV3 MTases
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was required. Upon biotinylation, the WNV MTase became
insoluble and precipitated from solution, while the DENV3
MTase remained soluble. We therefore mixed the biotinylated
DENV3 MTase with streptavidin-coated SPA beads
(PerkinElmer). Binding of [µH] AdoMet to the biotinylated-

MTase attached to the beads triggered the beads to emit light
which was monitored by a Microbeta2 plate counter.

We examined the ability of the compounds to compete
against 3H-labeled AdoMet-MTase complex formation (Figure
5). Our data showed that AdoMet binds the DENV3 MTase with
a high affinity with a Kd of 1.05 µM. SIN binds the MTase with

Figure 3.  Inhibition of the N-7 and 2’-O methylation activities of the flavivirus MTases by AdoHcy.  (A) TLC analysis of
inhibition of the N-7 methylation activity of the WNV MTase by AdoHcy was analyzed on TLC plates. The spots representing
different cap structures on TLC plates were quantified by a PhosphorImager. The N-7 methylation was measured by conversion of
G*pppA-RNA→m7G*pppA-RNA (e.g., the specific activity (%) = Intensity (m7G*pppA)/(Intensity (G*pppA) +Intensity (m7G*pppA))
*100) (Here and after, the asterisk indicates that the following phosphate is 32P labeled; the RNA represents the first 90 nucleotides
of the WNV genome). The relative methylation activity without AdoHcy was set at 100%, and the relative methylation activity with a
particular compound was defined as specific activity (compound)/specific activity (no compound) * 100. (B) TLC analysis of
inhibition of the 2’-O methylation activity of the WNV MTase by AdoHcy. The 2’-O methylation was measured by conversion of
m7G*pppA-RNA→m7G*pppAm-RNA (e.g., the specific activity (%) = Intensity (m7G*pppAm)/(Intensity (m7G*pppA) +Intensity
(m7G*pppAm)) *100). The methylation activity without AdoHcy was set at 100%, and the relative 2’-O methylation activity with
compounds was defined the same way as in panel A. The migration positions of the G*pppA and m7G*pppA molecules are labeled
on the side of the TLC images. (C-D) TLC analysis of inhibition of the N-7 (C) and 2’-O (D) methylation activities of flavivirus
MTases in the presence or absence of 150 µM SIN or 150 µM AdoHcy. The methylation activity for each MTase without compound
was set at 100%. The relative methylation activity for each MTase with compound (SIN or AdoHcy) was calculated as percentage to
the activity without any compound. The migration positions of the G*pppA, m7G*pppA, and m7G*pppAm molecules are labeled on
the side of the TLC images. VP39 was included in Panel D as a positional control for the 2’-O methylation reaction.
doi: 10.1371/journal.pone.0076900.g003
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an affinity of 1.64 µM, which is comparable to that of AdoMet.
In contrast, AdoHcy binds the MTase with a much lower
binding affinity (Kd = 28.9 µM) than do AdoMet and SIN. The
affinity of AdoHcy for the MTase is 28-fold and 18-fold lower
than those of AdoMet and SIN, respectively. Overall, this data
indicated that AdoHcy has a much weaker binding affinity for
flavivirus MTase.

MM-PBSA analysis of AdoHcy and SIN binding to the
WNV MTase

To better understand the detailed differences between
AdoHcy and SIN binding to the flavivirus MTase, we performed
MM-PBSA analysis of MD simulations of the two compounds
bound to the WNV MTase. The WNV MTase was chosen since
crystal structures for both AdoHcy and SIN bound to the WNV
MTase are available at high resolution [19,23], and a crystal
structure of the DENV3 MTase in complex with SIN has not
been determined. The crystal structures of the flavivirus
MTases are highly conserved, especially at the AdoMet-binding
site [23,30], so the present analysis might be generally
applicable to all other flavivirus MTases.

The SIN and AdoHcy molecules are especially comparable
to one another since they differ by only a few atoms, and both
bind in near identical orientations to the WNV MTase with the
protein structure around them also remaining very similar (PDB
codes: 2OY0 and 3LKZ [19,23]). Both ligands are also
uncharged in solution, and the atoms that are chemically
different between them are solvent-exposed in their complexes
with the WNV MTase. This suggests that the difference in
binding energy between the two ligands may not arise from a
structural difference in the way they are bound, but from an
underlying energetic reason. To assess this possibility, we
performed explicit solvent simulations of both ligands bound to
the WNV MTase, and assessed their absolute binding free

energies using MM-PBSA analysis. The results of this analysis
are shown in Table 1. While both ligands were predicted to
bind strongly to the WNV MTase in the conformation
corresponding to the crystal structure, the binding energy of
SIN was estimated to be 6.8 kcal/mol more favorable than that
of AdoHcy. The breakdown of this binding energy difference
into vacuum interaction (-12.3 kcal/mol), electrostatic solvation
(+8.9 kcal/mol), non-polar solvation (-0.7 kcal/mol), and solute
entropic components (-2.7 kcal/mol) suggests that more
favorable electrostatic and van der Waal’s interactions between
SIN and the WNV MTase atoms are primarily responsible for
differences in binding.

The SIN and AdoHcy molecules are especially comparable
to one another since they both bind in a very similar orientation
to the WNV MTase (PDB codes: 2OY0 and 3LKZ [19,23]),
differ by only a few atoms, and are both expected to be neutral
in physiological conditions. The decomposition of the vacuum
interaction energies into contributions from individual atoms in
the AdoHcy and SIN ligands (Table S1), illustrated in Figure 6,
shows that the overall average difference of about -12 kcal/mol
is not directly due to the chemically different atoms between
AdoHcy and SIN. Although, the nitrogen in the extra NH2 group
in SIN has highly attractive interactions with the protein (-152.4
kcal/mol), these are effectively cancelled by the repulsive
interactions with its neighboring carbon and hydrogens (+152.2
kcal/mol). Instead, the interactions with the other chemically
identical atoms in the two ligands are cumulatively biased
towards a greater overall attractive interaction between SIN
and the protein, possibly due to subtle alterations in the protein
and ligand geometries in the presence of the NH2 group in
SIN.

Figure 4.  Cytotoxicity and antiviral analyses for AdoHcy.  (A) Cytotoxicity of AdoHcy. A549 cells were incubated with various
concentrations of AdoHcy and then assayed for viability at 42 h postincubation. (B) Inhibition of the WNV replication by AdoHcy. (C)
Inhibition of the DENV2 replication by AdoHcy. A549 cells were infected with WNV or DENV2 at an multiplicity of infection of 0.1, in
the presence or absence of AdoHcy. At 42 h post-infection, viral titers in culture fluids were quantified by plaque assays on Vero
cells.
doi: 10.1371/journal.pone.0076900.g004
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Discussion

Many flaviviruses cause significant human disease.
Unfortunately, specific antiviral therapy does not exist to date.
Recently, flavivirus MTase became an attractive drug target
due to its essential N-7 MTase function in viral replication
[4–6,8–15,18,19,21,23,25,26,30]. AdoHcy, the by-product of
the methyl transfer reaction, has been shown to inhibit both N-7
and 2’-O MTase activities for WNV, DENV2 and DENV3

[8,14,15,27]. The IC50 values for inhibition of the WNV and
DENV3 MTase activities by AdoHcy were estimated to be in
low micromolar or even nanomolar range (from 0.34 µM to 3.19
µM) (IC50: compound concentration required to inhibit enzyme
activity by 50%). In contrast, our results showed that AdoHcy
and its derivatives do not significantly inhibit both the N-7 and
2’-O activities for MTases from four different viruses (WNV,
DENV2, DENV3, and YFV), even at very high concentrations
(150 µM). Although there are some differences in assay

Figure 5.  AdoHcy binds the DENV3 MTase with a much weaker affinity than do AdoMet and SIN.  (A) Dose response of
inhibition of the [3H]-SAM-MTase complex formation by AdoMet (black), AdoHcy (red), and SIN (green). The biotinylated DENV3
MTase and 3H-labeled SAM were incubated with or without compounds AdoMet, AdoHcy, and SIN. A two-fold dilution series was
shown for each compound. The reaction mixtures were mixed with the streptavidin-coated SPA beads and quantified using a
Microbeta2 scintillation counter. (B). Superposition of the crystal structures of the MTase-SIN complex (green) [23] and the MTase-
SAH complex (yellow) [19]. SAH and SIN are shown in stick representation. Atomic color coding is as follows (unless otherwise
specified): carbon in yellow/green, oxygen in red, nitrogen in blue, and sulfur in orange. Potential hydrogen bonds are depicted in
red dashed lines.
doi: 10.1371/journal.pone.0076900.g005

Table 1. Energetic analysis for AdoHcy and SIN binding to WNV MTase.

Binding AdoHcy (kcal/mol)  SIN (kcal/mol)  Difference
Energy Complex Protein Ligand ΔGb  Complex Protein Ligand ΔGb  ΔΔGb (SIN-SAH)
MMVE -1851.8 -1764.4 35.9 -123.3  -1752.0 -1627.5 11.1 -135.6  -12.3
PB -1023.5 -1029.4 -10.1 16.0  -1032.0 -1047.2 -9.7 24.9  8.9
SA 81.3 81.9 4.3 -4.9  81.3 82.5 4.4 -5.6  -0.7
-TΔS -223.2 -222.9 -24.0 23.7  -222.8 -222.5 -21.3 21.0  -2.7
Total -3017.2 -2934.8 6.1 -88.5  -2925.5 -2814.7 -15.5 -95.2  -6.8

All values are in kcal/mol. The energetic components labels are as follows: MMVE: Molecular Mechanics vacuum energy; PB: Poisson-Boltzmann electrostatic solvation
energy; SA: Surface Area based non-polar solvation energy; - TΔS: entropic contribution to total free energy based on quasi-harmonic estimation of solute entropy; ΔGb:
binding energy component (Complex - Protein - Ligand).
doi: 10.1371/journal.pone.0076900.t001
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conditions such as buffers, pH, substrates, and constructs of
enzymes used, it is hard to believe that they will account for the
large discrepancies. As shown in Figure 3, in the absence of
the positive control SIN inhibitor, all enzymes could efficiently
carry out the N-7 and 2’-O MTase reactions in our experiments.
Under the same conditions as for AdoHcy, SIN could efficiently
abolish the MTase activities of all MTases from the four
viruses, which is consistent with our previous results showing
that SIN inhibited both MTase activities of the WNV MTase with
IC50 about 14 µM using the TLC method [4]. In contrast,
AdoHcy under the same conditions failed to inhibit the
enzymatic activities (Figure 3).

The discrepancies may more reasonably be attributed to the
different methods used to monitor the reactions. We monitored
the reaction product, m7G*pppA and double methylated
m7G*pppAm (32P labeled phosphate following the asterisk is),
using the TLC method [16,18,19,23]. Although this method is

low throughput, its advantage is the ability to directly “visualize”
and quantify the reaction product. Alternative higher throughput
monitoring methods could possibly quantify non-specific
binding of radiolabeled materials and/or signals arising from
incorporation of radio-labeled materials to other positions of
RNA. Previous studies employed the SPA-based scintillation
assay in which [3H]-AdoMet was used as a co-factor and
activity was monitored by scintillation counting of the transfer of
[3H]-labeled methyl group to the viral RNA [8,14,15,27]. Non-
specific binding of radio-labeled materials or incorporation of
radio-labeled materials to positions other than N-7 and 2’-O of
the RNA could affect the activity reported by this assay. It was
reported that N-7 and 2’-O reactions might only account for
one-third of the total signals and that a large fraction of signals
were unresolved when using the SPA method [27]. In
particular, the flavivirus MTase was reported to also carry out
2’-O methylation of internal adenosines in the viral RNA [22].

Figure 6.  Atomic decomposition of the vacuum interaction energy between the AdoHcy and SIN ligands and the WNV
MTase.  Color coded projection onto the individual ligand atoms of the interaction energy between AdoHcy (panel A), SIN (panel B),
and the difference (SIN-AdoHcy projected on SIN, panel C), and the WNV MTase. Panel D shows the numerical value of the
interaction energy difference between the two ligands with the chemically different atoms bounded by a green box. The chemical
difference is localized to atoms 13-17: atom 13 is a sulfur in AdoHcy, while atoms 13-17 are CHNH2 in SIN. The atoms numbers are
indicated by green labels in panel C. All values are in kcal/mol.
doi: 10.1371/journal.pone.0076900.g006
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The unresolved signals therefore could be from methylations of
internal adenosines of the RNA. The presence of these
unresolved signals may thus affect how the results from
inhibition studies using the SPA method were interpreted. It is
possible that AdoHcy might mainly inhibit the internal
methylation activity of flavivirus MTase, for which the
hypothesis requires further investigation.

The weak inhibition of the N-7 and 2’-O activities of flavivirus
by AdoHcy are consistent with functional analysis indicating
that it does not suppress viral growth till a high concentration
(200 µM) is reached (Figure 4). In contrast, SIN inhibits both
N-7 and 2’-O activities of the WNV MTase with IC50 of 14 µM in
vitro [4], and can also efficiently inhibit the growth of WNV with
an EC50 of 27 µM [4]. The ineffectiveness of AdoHcy in virus
growth inhibition is also consistent with results from a number
of studies showing that the circulating blood levels of AdoHcy
are as high as 0.77 µM [31–35], and the levels of AdoMet are
as high as 2.6 µM [31–35]. The binding affinity of AdoHcy for
the DENV3 MTase was also shown to be much lower than
those of AdoMet and SIN. The low affinity of AdoHcy for the
MTase may facilitate the by-product release from the MTase
and replenishment with a fresh AdoMet for a new cycle of
methylation reaction.

Structural comparison also supports the results.
Superposition of the crystal structures of the WNV MTase-SIN
(PDB: 3LKZ) and MTase-AdoHcy (2OY0) complexes reveals
that SIN binds to the AdoMet pocket of the MTase in a
conformation similar to that of AdoHcy in the MTase-AdoHcy
complex (Figure 5B) [19,23]. However, the free amine NE of
the C-NH2 group of SIN, i.e., the group that replaces the S-
CH3 group of AdoMet, makes at least five additional contacts
with the MTase, which include a pair of potential hydrogen
bonds between the NE atom of SIN and the OD1 and O atoms
of the MTase catalytically essential residue D146 (Figure 5B).
The structural results correlate very well with MM-PBSA
analysis of binding of SIN and AdoHcy to the WNV MTase,
which showed that SIN binds the WNV MTase more favorably
than AdoHcy by 6.8 kcal/mol (Table 1), and that the NH2 group
of SIN alone makes the largest contribution (Tables 1 and S1,
Figure 6). The binding free energy difference can also be
estimated from the difference in binding constants for SIN and
AdoHcy binding to the MTase using the equation: ΔΔG=-
RT(InKd(SIN))-(-RT(InKd(AdoHcy)), where R is gas constant, T is
temperature in degree Kelvin, and Kd (AdoHcy) and Kd (SIN) are
binding constants for AdoHcy and SIN binding to the MTase,
respectively [36]. This binding free energy difference of -7.1
kcal/mol derived from experimental measurements is a very
good agreement with the MM-PBSA estimate of -6.8 kcal/mol
obtained from the MD simulations.

In summary, this study investigated the inhibition of an
essential flavivirus MTase by the reaction by-product AdoHcy,
its derivatives, and a natural inhibitor SIN. Our results
demonstrated that the AdoHcy only weakly inhibits flavivirus
MTases and had a much weaker binding affinity for flavivirus
MTase than SIN and the co-factor AdoMet. Most importantly,
the AdoHcy does not inhibit viral growth in cell culture until a
high concentration, whereas the natural inhibitor SIN inhibits
viral growth at much lower concentrations. Therefore, SIN

rather than AdoHcy should be considered as a good structural
scaffold for future development of inhibitors for MTases from
flavivirus families, or even more broadly for development of
AdoMet-based inhibitors for any AdoMet-utilizing enzymes, as
seen in a recent report [37].

Materials and Methods

Compounds
Four nucleoside analogs were designed and synthesized in

optically active form with defined stereochemistry (Figure S1).
The details will be published elsewhere.

SIN and AdoHcy were purchased from Sigma-Aldrich.
AdoMet was purchased from New England Biolabs. [3H]
AdoMet was purchased from PerkinElmer. [α-32P]GTP was
purchased from MP Biomedicals.

Cloning, expression, and purification of the NS5 MTase
from WNV, YFV, DENV2 and DENV3

Recombinant MTases from WNV, YFV, DENV2 and DENV3
contained the N-terminal 300, 266, 265, and 272 amino acids
of NS5 protein, respectively. The MTases from WNV, YFV, and
DENV2 had a His tag to facilitate purification: WNV MTase
contained an N-terminal His tag, whereas DENV2 and YFV
MTases had a C-terminal His tag. The DENV3 was produced
using a GST-tag. The WNV and YFV MTases were prepared
as described previously [18,19,28]. For cloning of DENV2
MTase, a DNA fragment representing the MTase domain
(amino acid (aa) 1-296) was PCR amplified from the New
Guinea C strain of DENV2 using a pair of primers
CGCGGATCCAACATAGGAGAGACGCTTGGAGA and
CCCAAGCTTCTATTGGTCATAGTGCCATGATGTTTC and
was inserted into the pQE30 vector (Qiagen) at the BamHI and
HindIII sites (underlined). To facilite stable crystallization, a
shorter version of the DENV2 MTase (aa 1-265) was cloned
into the the pET26b vector (EMD Biosciences) at the NdeI and
HindIII sites using a pair of primers
GCGGATCCCATATGACGGGAAACATAGGAGAGACGCTTG
GAGAG and
CCCAAGCTTCTAATGGTGGTGATGATGGTGTGAGCTTGAT
CCGATGTTGCGGGTTCCG (restriction sites were underlined).
The shorter DENV2 MTase (aa 1-265) contained additional C-
terminal SSSHHHHHH sequence according to the reported
crystal structure [38] and was used throughout this manuscript.

To clone the DENV3 MTase domain (aa 1-272), a pair of
primers CGCGGATCCGGAACGGGGTCACAAGGC and
ATAGTTTAGCGGCCGCCTAGTTGGGTGTTTCTGGTTCCGC
(restriction sites underlined) were used to PCR amplify the
DENV3 MTase fragment from a DENV3 isolate from the UTMB
virus collection. The PCR fragment was cloned into the
pGEX-6P-1 vector (GE HealthCare) at the BamHI and NotI
sites. The DENV2 and DENV3 MTases were expressed in
Escherichia coli strain Rosetta 2(DE3) (EMD Biosciences) and
purified through a nickel-nitrilotriacetic acid column (DENV2) or
a glutathione Sepharose 4B column (DENV3). The affinity-
purified DENV2 MTase was further purified by a gel filtration
16/60 Superdex column (GE HealthCare). The affinity-purified
DENV3 MTase-GST fusion protein was digested with the
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PreScission protease according to the manufactory protocol,
re-loaded to the glutathione column to remove the affinity GST-
tag and residue undigested fusion protein, and further purified
to homogeneity by a gel filtration 16/60 Superdex column (GE
HealthCare).

In vitro MTase inhibition assay
The 5’-end 32P-labeled substrates G*pppA-RNA and

m7G*pppA-RNA, representing the first 90 nucleotides of the
WNV genome (the asterisk indicates that the following
phosphate is 32P labeled), were prepared as described
previously [4,16,19]. The N-7 and 2'-O methylation inhibition
assays were performed as described previously [16,18,19].
The N-7 methylation was measured by conversion of G*pppA-
RNA→m7G* pppA-RNA. The 2’-O methylation was monitored
by conversion of m7G*pppA-RNA→m7G*pppAm-RNA. Both
methylation assays were performed with 1.5 µM WNV MTase
(or 1.5 µM DENV2 MTase or 3 µM DENV3 MTase or 3.2 µM
YFV MTase), 80 µM AdoMet, 0.36 µM G*pppA-RNA or
m7G*pppA-RNA substrate, and various concentrations of each
compound. The methylation reactions were digested with
nuclease P1 to release cap moieties (m7G*pppAm, m7G*pppA,
and G*pppA). The cap molecules were separated on a thin-
layer chromatograph (TLC), and quantified by a
PhosphorImager. The percentage of activity was determined
after quantification of m7G*pppA, m7G*pppAm, and G*pppA.

Biotinylation of MTase
Biotin was conjugated to the WNV and DENV3 MTase using

the EZ-Link NHS-biotin Kit (Pierce), according to manufactory
protocol. Specifically, the MTases of WNV (30 µM) and DENV3
(65 µM) were dialyzed into phosphate buffered saline (PBS),
and mixed with the biotin reagent at a final concentration of 1
mM at 23°C overnight. Unconjugated biotin was removed by
FPLC over an HiTrap desalting column (GE HealthCare), and
the ratio of conjugated biotin to the DENV3 MTase (13:1) was
determined using a Biotin Quantitation kit (Pierce).

AdoMet binding assay
Biotinylated DENV3 MTase (580 nM) was mixed with the

polyvinyltoluene (PVT) scintillation proximity assay (SPA)
beads (1.5 mg/ml, PerkinElmer) and the indicated
concentrations of AdoMet, AdoHcy, or SIN in the AdoMet
Binding Buffer (20 mM Tris pH 7.5, 50 mM NaCl, 10 mM KCl, 2
mM MgCl2, 2 mM MnCl2, 0.05% CHAPS) in a white 96-well
clear-bottom plate. The samples were mixed by gentle rocking
for 20 minutes at 23°C, followed by the addition of 1.65 µCi of
3H-AdoMet (425 nM) to a final sample volume of 50 µl. After
mixing for another 15 minutes at 23°C, samples were then
centrifuged for 2 minutes at 500g and analyzed on a Microbeta2

2450 plate counter (PerkinElmer) using the default 3H-
Scintillation Proximity Assay protocol within the manufactory
software. The competitive binding affinities (kd) were
determined by fitting of the dose–response curve using the
ORIGIN software package (OriginLab Corporation).

Cytotoxicity assay
Cytotoxicity was measured by a MTT cell proliferation assay

using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) method (ATCC). Approximately 2 x 104 human
A549 cells (ATCC) in 100 µl of media were seeded into 60
wells of a 96 well plate, the remaining wells held media. Plates
were held at room temperature for 1 hour and then incubated
for 20-24 hours. The media was removed and 100 µl of media
containing decreasing concentrations of antiviral compound in
1% DMSO were added to the wells. All determinations were
performed in triplicate. After 42 hours incubation at 37°C, 10 µl
of MTT was added to the wells and incubated another 2-4
hours. Detergent (100 µl) was placed in the wells and the plate
was incubated for at least 3 hours at room temperature in the
dark. A microtiter plate reader (Ely808, BioTek Instruments,
Inc.) with a 570 nm filter was used to record absorbance. All
determinations were performed in triplicate. After adjusting the
absorbance for background and comparing to untreated
controls, a dose-response curve was plotted and the cytotoxic
concentration CC50 (the concentration of inhibitor required to
reduce cell viability by 50%) was calculated using nonlinear
regression analysis in the ORIGIN software package
(OriginLab Corporation).

Antiviral assay
A viral titer reduction assay was used to determine the

compounds effect on WNV. Approximately 2 x 105 human A549
cells in 1.0 ml of media were seeded into each well of a 24 well
plate. At 24-30 hours after seeding, dilutions at 2X the desired
concentration of the compound were made in 2% DMSO media
and 50 µl was added to wells in triplicate. Immediately
following, 50 µl of media containing WNV (NY99) or DENV2
(New Guinea C) at a concentration to yield a multiplicity of
infection (MOI) 0.1 PFU/cell (PFU, plaque-forming unit), was
added to the wells. After one hour incubation at 37°C, 400 µl of
media containing the desired concentrations of the compound
was added to the each well. After 42 hours incubation at 37°C,
culture media was collected, and stored at -80°C for later
quantification using a plaque assay. For the plaque assay,
Vero cell monolayers in 6-well plates were seeded 3-4 days
prior to infection to achieve a confluent monolayer. Dilutions of
the viral samples were made and 100µl of each dilution were
inoculated into each of 2 wells, rocked gently to distribute virus,
and incubated for 1 hour at 37°C. Cells are then overlaid with a
nutrient medium containing 0.6% oxoid agar and incubated
at37°C. After 2-5 days, depending on the virus a second
overlay containing 2% neutral red is added to the cells and
then incubated overnight. Plaques are counted daily for 1-2
days until no significant increase is seen.

Computational Methods
The Molecular Mechanics (MM) program CHARMM [39,40]

was used for the explicit solvent molecular dynamics (MD)
simulations and their subsequent analysis. The CHARMM22
protein force field [41] with the CMAP correction [42] was used
for the protein, the TIP3P model for the water [43], and Beglov
and Roux parameters for the potassium and chloride ions [44].
Parameters for AdoHcy were obtained from a previous study
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[45], and parameters for SIN were generated using CGENFF
[46–48] (Table S2). These SIN parameters were adjusted to
ensure transfer from appropriate chemical contexts. The final
parameters used are provided in the supplementary material,
where their origin is also annotated.

The WNV MTase structure bound to SIN was used as the
starting point for the calculations (PDB ID: 3LKZ, chain A [23]).
It was solvated in an 80 Å dimension cubic water box with 38
potassium and 46 chloride ions, representing a 150 mM KCl
buffer. The final system consisted of 48487 atoms including
14722 waters. The full system was minimized using 1000 steps
of Steepest Descent (SD) and 500 steps of Adopted-Basis
Newton Raphson (ABNR) minimization with a convergence
cutoff of 0.001 kcal/mol. Long-range electrostatic interactions
were treated using the Particle Mesh Ewald (PME) approach
[49] with a B-spline order of 4 and a Fast Fourier Transform
grid of one point per Å and a real-space Gaussian width kappa
of 0.3 Å−1. Real space and Lennard-Jones (LJ) interaction
cutoffs of 12 Å were used with non-bond interaction lists
maintained and heuristically updated out to 16 Å. A constant
pressure and temperature (NPT) ensemble [50] was used for
the MD simulations.

The main purpose of these simulations was to understand
the energetic differences between the binding of the two
ligands AdoHcy and SIN to WNV MTase. An ancillary aim was
to achieve this analysis through relatively short explicit solvent
simulations that could be used as a way to refine binding
energy estimations for future inhibitor design. For this purpose,
the explicit solvent simulations were limited to a short 100 ps
duration, which required 36 CPU hours on a single 2.26 GHz
Intel Xeon processor. All protein and ligand non-hydrogen
atoms were harmonically restrained with a force constant of 10
kcal/mol/Å2 for the first 20 ps increment, 5 kcal/mol/Å2 for the
second 20 ps increment, 2 kcal/mol/Å2 for the third 20 ps
increment, 1 kcal/mol/Å2 for the fourth 20 ps increment, and
finally 0.5 kcal/mol/Å2 for the final 20 ps increment. The final
weak restraint was kept in place to ensure that the sampling
observed was close to the starting crystal structure, but still
allow for any necessary relaxation of ligand or protein atoms.
One hundred configurations saved every 0.2 ps from these
final 20 ps were used for the Molecular Mechanics Poisson-
Boltzmann Surface Area (MM-PBSA) analysis [51]. The MM

energies were calculated without any cutoff for the non-bonded
interactions. The surface area term was calculated using a
coefficient of 0.00542 kcal/mol/Å2 and a constant B term of
0.92 kcal/mol. For the Poisson-Boltzmann calculations, a grid
with spacing of 0.4 Å was overlaid on the solute which
extended at least 20 Å from the edges of the solute, and the
electrostatic solvation free energy was computed by solving the
Poisson-Boltzmann equation using the PBEQ module in
CHARMM. A solute dielectric of 4 and a solvent dielectric of 80
was used, and the solute-solvent boundary was estimated
using a reentrant surface assuming a water sphere radius of
1.4 Å. The solute entropy was calculated by quasi-harmonic
analysis of the 100 snapshots using the vibran module in
CHARMM.
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