

Journal of the Saudi Heart Association

Volume 36 | Issue 4

Article 1

2024

Comparative Efficacy and Safety of Transcatheter Versus Mitral-Valve Surgery in Elderly Patients with Mitral Regurgitation: A Systematic Review and Meta-Analysis

Follow this and additional works at: https://www.j-saudi-heart.com/jsha

Part of the Cardiology Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation

Almuzainy, Saif; Lemine, Mohamed; Aljubeh, Rayan; and Alsalem, Sami (2024) "Comparative Efficacy and Safety of Transcatheter Versus Mitral-Valve Surgery in Elderly Patients with Mitral Regurgitation: A Systematic Review and Meta-Analysis," *Journal of the Saudi Heart Association*: Vol. 36 : Iss. 4, Article 1. Available at: https://doi.org/10.37616/2212-5043.1399

This Review Article is brought to you for free and open access by Journal of the Saudi Heart Association. It has been accepted for inclusion in Journal of the Saudi Heart Association by an authorized editor of Journal of the Saudi Heart Association.

Comparative Efficacy and Safety of Transcatheter Mitral Valve Repair Versus Mitral-valve Surgery in Elderly Patients With Mitral Regurgitation: A Systematic Review and Meta-analysis

Saif Almuzainy^{*,#}, Mohamed Lemine[#], Rayan Aljubeh[#], Sami Alsalem

College of Medicine, University of Sharjah, Sharjah, United Arab Emirates

Abstract

Objectives: Mitral valve surgery is the reference treatment for severe symptomatic mitral regurgitation (MR). Percutaneous mitral valve interventions, such as the MitraClip procedure, offer an alternative, particularly for high-risk patients. The aim of this systematic review and meta-analysis was to analyze the safety and effectiveness of transcatheter mitral valve repair (TMVR) compared to surgical mitral valve repair or replacement (SMVR) in elderly patients with mitral regurgitation.

Methods: We searched PubMed, Scopus, Ovid, EBSCO, and ProQuest through July 2024. Eligible studies were randomized controlled trials and observational comparative studies of TMVR versus SMVR for patients with MR, reporting outcomes such as all-cause mortality, MR recurrence, stroke, myocardial infarction, and length of stay (LOS). Statistical analyses were performed using RevMan.

Results: Our search identified 3166 records, with 2756 screened and 21 studies included after review. The studies, comprising 20 retrospective cohorts and 1 randomized controlled trial with 20,900 patients, compared TMVR to SMVR. TMVR patients were significantly older than SMVR patients (MD 3.44 years; P < 0.00001). Mortality rates were similar at 30 days (relative risk (RR) 1.08; P = 0.79) and one year (RR 1.27; P = 0.18), but SMVR showed lower mortality at three years (RR 1.82; P = 0.006). SMVR also significantly reduced MR $\ge 3+$ recurrence at 30 days (RR 6.95; P < 0.00001), one year (RR 3.31; P = 0.0001), and three years (RR 4.37; P < 0.00001). TMVR was associated with higher myocardial infarction rates (RR 1.58; P = 0.02) but reduced LOS (MD -4.88 days; P < 0.00001). Sensitivity analysis showed consistent results for recurrence of MR $\ge 3+$ and variable outcomes for other metrics. Evidence of publication bias was noted for mortality at 30 days and LOS.

Conclusion: While TMVR with the MitraClip offers shorter hospital stays and is less invasive, SMVR provides better long-term survival and lower MR recurrence rates, emphasizing the need for a tailored approach based on patient risk profiles.

Keywords: Mitral regurgitation, MitraClip, Transcatheter mitral valve repair, Surgical mitral valve repair, Mortality, Recurrence

1. Introduction

M itral regurgitation (MR) is one of the most common valvular heart diseases, with its prevalence increasing with age, rising from 6.4% in patients aged 65–74 to >9% in those aged 75 and older [1].

Mitral valve surgery (MVS) is a recognized intervention for severe primary MR in symptomatic patients, as well as those with reduced left ventricular ejection fraction, dilated left ventricular end-systolic diameter, atrial fibrillation (AF), or elevated systolic pulmonary pressure, with surgical repair being preferred over replacement when possible [2,3].

* Corresponding author.

Received 16 August 2024; revised 16 October 2024; accepted 22 October 2024. Available online 15 November 2024

E-mail address: saif19882003@gmail.com (S. Almuzainy).

[#] These authors contributed equally to this work.

While MVS is effective for primary MR, its success has not extended to secondary MR, where treatment remains debated, making an unmet need for these patients and high-risk patients with severe MR [4,5].

Despite the high-risk nature of the patients treated, transcatheter mitral valve repair (TMVR) with the MitraClip System (Abbott Vascular, North Chicago, Illinois, USA) has demonstrated very good safety outcomes over the past ten years, though its reduction in MR is less than optimal [6–8].

MitraClip is now accepted as a treatment option for patients with severe symptoms who are at high risk or are not able to undergo surgery [2,9].

Results from the Everest II trial have shown that the procedure is safe and leads to improved clinical outcomes. Surgery still remains a well-established treatment, especially for patients with a EuroSCORE of less than 20% and preserved ejection fraction [10-12].

There is an existing systematic review on this topic [13]. However, the current review was considered necessary because it includes new studies published since the previous review that compare TMVR and MVS procedures. Additionally, this review examines more baseline characteristics such as gender and hypertension, allowing for a better understanding of factors influencing treatment outcomes. It also examined a broader range of outcomes, including the incidence of myocardial infarction (MI) and stroke, and length of hospital stay, providing a more complete evaluation of the benefits and risks of both procedures.

The purpose of this study was to perform a systematic review and meta-analysis comparing the outcomes of TMVR and surgical mitral valve repair or replacement (SMVR) approaches for elderly patients, aged over 60 years, with MR.

2. Methodology

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines (PRISMA) during the preparation of this systematic review in reporting our methodology and findings.

2.1. Criteria for considering studies for this review

For our systematic review and meta-analysis, we applied the following inclusion criteria: 1) observational comparative studies and randomized clinical trials (RCTs) that investigated TMVR using the MitraClip device as the intervention, compared to SMVR. 2) Patients with moderate to severe MR, including the following subtypes: primary MR,

Abbreviation

۸ Γ	
AF	Atrial Fibrillation
CAD	Coronary Artery Disease
CABG	Coronary Artery Bypass Grafting
CI	Confidence Interval
COPD	Chronic Obstructive Pulmonary Disease
CRF	Chronic Renal Failure
DM	Diabetes Mellites
HTN	Hypertension
LOS	Length of Stay
MD	Mean Difference
MI	Myocardial Infarction
MR	Mitral Regurgitation
MVS	Mitral Valve Surgery
NOS	Newcastle–Ottawa Scale
NYHA	New York Heart Association (classification)
PCI	Percutaneous Coronary Intervention
RCT	Randomized Controlled Trial
RR	Relative Risk
SD	Standard Deviation
SMVR	Surgical Mitral Valve Replacement or Repair
TMVR	Transcatheter Mitral Valve Repair

secondary MR, degenerative MR, functional MR. 3) High-surgical-risk patients, specifically those with comorbid conditions that significantly increase surgical risk. Examples of such patients include those with heart failure, left ventricular dysfunction, reduced left ventricular ejection fraction, or a dilated left ventricular end-systolic diameter. 4) Elderly patients aged over 60 years. The primary outcomes are mortality at 30 days, 1 year, and beyond 3 years; recurrence of mitral regurgitation at the same intervals. The secondary outcomes are the incidence of MI and the incidence of stroke as postoperative complications within the first year; and length of hospital stay. We excluded studies that did not meet these inclusion criteria, as well as animal studies, studies not written in English, case reports, case series, editorials, reviews, and theses without original data.

2.2. Search strategy

To identify relevant studies, we conducted comprehensive searches in several medical electronic databases through July 2024. The databases searched included: PubMed, Scopus, Ovid, EBSCO, and ProQuest, some studies were identified through searching the references of initially identified articles. The search strategy involved the use of specific keywords and Medical Subject Headings (MeSH) terms related to our study objectives. The search terms included: "Mitral Valve Insufficiency", "Mitral Regurgitation", "Mitral Insufficiency", "Transcatheter Mitral Valve Repair", "MitraClip", "Surgical Mitral Valve Repair", "Safety", "Effectiveness" Mortality", "Recurrence".

2.3. Selection of studies

Two authors independently (SA, RA) applied the selection criteria on all the records. Screening was performed in a two-step process: the first step was to screen titles and abstracts of the retrieved studies for relevance, and in the second step, full texts of potentially eligible studies were reviewed for inclusion. Disagreements were resolved through discussion.

2.4. Data extraction

Four authors extracted the data independently using an online data extraction form. The extracted data fell under the following categories: 1) study design and characteristics, 2) baseline characteristics of the population, 3) quality assessment using Newcastle–Ottawa scale (NOS) and Cochrane Risk of Bias (ROB 1) tool, 4) primary outcomes: mortality and recurrence of mitral regurgitation at 30 days, 1 year, and beyond 3 years, and 5) secondary outcomes: incidence of MI and stroke, and length of stay (LOS).

2.5. Quality assessment of the included studies

Four authors independently assessed the quality of the included cohort studies using the NOS. The EVEREST trial, the one RCT included in our review, was assessed using the Cochrane ROB 1 tool.

2.6. Dealing with missing data

When the mean and standard deviation (SD) were not provided, we calculated them using the median, first and third quartiles, range, and the sample size, following the method described by Wan et al. [14]. However, we did not conduct further assessment to eliminate risk of bias.

2.7. Data analysis and synthesis

Continuous variables are presented as mean \pm SD, while categorical variables are shown as n (%). Meta-analyses were performed using relative risk (RR) for categorical variables and mean differences (MD) for continuous variables. Variables reported by two or more studies were pooled. Statistical pooling was conducted using the Mantel-Haenszel method for categorical variables and the

inverse variance method for continuous variables. Heterogeneity was assessed through visual inspection of the forest plots and quantified using I-square and Chi-square tests. If significant heterogeneity was detected (Chi-square P < 0.10), sensitivity analyses were performed to address it. A random-effects model was applied when outcomes showed heterogeneity to account for potential variation in methodology and participant characteristics between studies; otherwise, a fixed-effects model was used. RR and MD with 95% confidence intervals (CIs) were computed using RevMan 5.3.

2.8. Publication bias

To assess publication bias, we generated funnel plots by plotting the pooled effect estimates against their standard errors using RevMan software. We performed Egger's and Begg's tests for continuous variables [15,16], while for categorical variables, we used the regression test to evaluate funnel plot asymmetry. The presence of publication bias was evaluated by examining the symmetry of the funnel plots and the results of the respective tests. Asymmetry in the funnel plots or significant test results indicated potential publication bias. Publication bias was assessed only when 10 or more studies were included.

3. Results

3.1. Search results

Our search yielded 3166 results (Fig. 1). After removal of duplicates, we screened 2756 records and reviewed 23 full-text reports of which 21 records were included. Two studies were excluded due to an inappropriate study design.

3.2. Characteristics of included studies and quality assessment

In total, the included studies had 22 samples, 20,900 Patients (10,471 TMVR and 10,429 SMVR), 20 retrospective cohorts and one RCT, eight studies involved secondary MR, three studies included primary MR patients, one study had both primary and secondary MR as separate samples, and nine studies did not specify a particular type of MR. In all the studies, TMVR was compared to SMVR. NOS was used for the quality assessment of the cohort studies, in which eight studies were of poor quality (0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome/ exposure domain), two studies were of fair quality (2

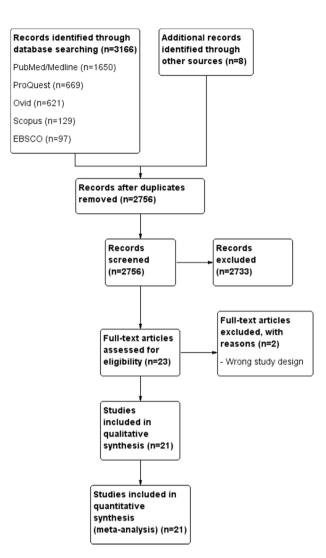


Fig. 1. PRISMA study flow diagram.

stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/ exposure domain) and ten studies were of good quality (3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/exposure domain), while the EVEREST trial, the one RCT included in our review, was assessed using the Cochrane ROB 1 tool and was found to have moderate quality. See Supplementary Table S1 for detailed quality assessment scoring (see Table 1 for study characteristics).

3.3. Characteristics of included patients

A pooled analysis of the mean age between the TMVR (75.54 years) and SMVR (73.56 years) groups showed that it was significantly higher in the TMVR group than the SMVR group (MD 3.44 years; 95% CI 2.10–4.77 years; P < 0.00001) (figure S1). Gender was

reported in all but one study. with pooled analysis showing that the percentage of males was equal between the two groups (RR 0.99, 95% CI 0.94 to 1.05, P < 0.76) (figure S2). The logistic EuroSCORE % was reported in 14 studies, where it ranged from as low as 1.8 to as high as 33.7. 14 studies reported the NYHA class III and class IV scores, with pooled results demonstrating a significantly higher percentage of combined NYHA class III/IV score in the TMVR group compared with SMVR group (RR 1.13, 95% CI 1.08 to 1.18, *P* < 0.00001) (figure S3). Regarding preexisting conditions, 13 studies reported hypertension, 15 studies reported diabetes, 20 studies reported AF, 18 studies reported chronic obstructive pulmonary disease (COPD), 15 reported coronary artery disease (CAD), 13 studies reported chronic renal failure (CRF). The presence of pre-existing conditions varied across studies for the two groups. In 17 studies, the TMVR group had a higher percentage of preexisting conditions compared to the SMVR group. Conversely, one study found that the SMVR group had a higher prevalence of these conditions. Additionally, three studies reported that the prevalence of preexisting conditions was approximately equal between the two groups. Previous cardiac conditions were reported in 12 studies for percutaneous coronary intervention (PCI) and 14 studies for coronary artery bypass grafting (CABG). In most of these studies, the TMVR group had a higher percentage of prior PCI and CABG compared to the SMVR group. For detailed baseline characteristics of the included patients, refer to Table 2.

3.4. Analysis of primary outcomes

The primary outcomes of mortality and recurrence for MR patients undergoing TMVR compared to SMVR are illustrated in Figs. 2 and 3. 12 studies reported mortality at 30 days, with pooled results showing no significant differences between the two groups (RR 1.08, 95% CI 0.63 to 1.83, P = 0.79). 14 studies reported mortality at one year, with pooled results showing a not statistically significant difference (RR 1.27, 95% CI 0.90 to 1.78, P = 0.18). Eight studies reported mortality at three years, with pooled results showing that SMVR significantly reduced mortality compared with TMVR (RR 1.82, 95% CI 1.19 to 2.79, P = 0.006). Overall, the pooled results showed that SMVR significantly reduced mortality compared to TMVR (RR 1.38, 95% CI 1.07 to 1.77, P = 0.01). All the above pooled results demonstrated high heterogeneity ($I^2 \ge 74$), except for mortality at 30 days, which did not show significant heterogeneity. Eight studies reported recurrence of $MR \ge 3+$ at 30 days, with pooled

Table 1. Study characteristics.

Study ID	Study design	Sample size	Population	Intervention	Comparator	Findings
Niikura 2020 [25]	Retrospective study	875 (249 TMVR, 626 SMVR)	Patients who underwent surgical or commercial transcatheter therapy for MR	MitraClip®	Open surgical mitral valve repair or replacement	Commercial transcatheter mitral valve repair may increase cardiac surgery rates and improve clinical outcomes for patients with diverse surgical risks.
Alozie 2017 [26]	Retrospective study	84 (42 TMVR, 42 SMVR)	Patients ≥80 years of age with moderate/severe symptomatic MR	MitraClip [®]	Surgical mitral valve repair or replacement	Acceptable acute outcomes with either mitral valve surgery or the MitraClip device. Treat- ment decisions should be based on cumulative surgical risk rather than age.
Kortlandt 2018 [27]	Retrospective study	741 (568 TMVR, 173 SMVR)	Symptomatic high-surgical-risk patients with MR	MitraClip®	Surgical mitral valve repair or replacement	MitraClip has lower mortality than those on conservative treatment and similar survival to surgical patients.
Feldman 2015 [28]	Randomized trial	258 (178 TMVR, 80 SMVR)	Patients with moderately severe or severe (grade 3+ or 4+) MR	MitraClip®	Conventional surgical mitral valve repair or replacement	Percutaneous repair is less effective at reducing mitral regurgitation than conven- tional surgery but offers better safety and comparable clinical outcomes.
Deharo 2024 [29]	Retrospective study	4320 (2160 TMVR, 2160 SMVR)	Patients with severe MR	MitraClip [®]	Isolated surgical mitral valve repair or replacement	MitraClip results in lower long-term cardio- vascular mortality and fewer instances of pacemaker implantation and stroke compared to mitral surgery.
Haberman 2021 [30]	Retrospective study	205 (99 TMVR, 106 SMVR)	Patients with secondary MR following acute MI	MitraClip [®]	Surgical mitral valve repair or replacement	Early intervention improves prognosis in post —MI MR patients. Percutaneous mitral valve repair is a viable alternative to surgery for high-risk patients.
Paranskaya 2013 [31]	Retrospective study	50 (24 TMVR, 26 SMVR)	Patients with EuroSCORE ≥20%, LVEF ≤45%, and grade 3/4 MR	MitraClip [®]	Surgical mitral valve repair	Surgical repair and MitraClip are valid treat- ments for severe MR when performed by experienced operators, with MitraClip reserved for nonsurgical patients.
Anwer 2019 [32]	Retrospective study	131 (56 TMVR, 75 SMVR)	Patients with severe MR due to degenerative MVP	MitraClip [®]	Open surgical mitral valve repair	Surgical repair is more durable than the percutaneous approach. While MitraClip use has increased, it still has higher rates of re- sidual or recurrent MR.
Swaans 2014 [33]	Retrospective study	193 (139 TMVR, 53 SMVR)	High-surgical-risk patients with symptomatic severe MR	MitraClip [®]	Surgical mitral valve repair or replacement	TMVR resulted in similar survival rates to surgical treatment and better survival than conservative treatment.
Taramasso 2012 [34]	Retrospective study	143 (52 TMVR, 91 SMVR)	Symptomatic patients with severe FMR and severe LV dysfunction due to idiopathic or post-ischemic dilated cardiomyopathy	MitraClip®	Surgical mitral valve repair	MitraClip therapy results in lower hospital mortality and shorter stays compared to sur- gery but has higher early and 1-year recurrent MR rates.
Amabile 2023 [35]	Retrospective study	1100 (550 TMVR, 550 SMVR)	Patients with secondary MR	MitraClip®	Surgical mitral valve repair	Surgical repair showed significantly better survival rates and lower reintervention rates at 1 and 3 years compared to TMVR.

Majmundar 2024 [36]	Retrospective study	4374 (2187 TMVR, 2187 SMVR) 4356 (2178 TMVR, 2178 SMVR)	Patients with primary MR and MR in HFrEF	MitraClip®	Surgical mitral valve repair	MitraClip showed better short-term outcomes, but had significantly higher medium-term MACE compared to SMVR in both cohorts.
De Bonis 2016 [37]	Retrospective study	120 (55 TMVR, 65 SMVR)	Patients with severe LV dysfunction and secondary MR	MitraClip®	Surgical edge-to-edge repair	MitraClip is safe for high-risk patients, but surgical repair is more effective post- operatively and at mid-term follow-up.
Buzzatti 2015 [7]	Retrospective study	60 (25 TMVR, 35 SMVR)	Octogenarian patients affected by isolated DMR	MitraClip [®]	Isolated surgical mitral valve repair or replacement	MitraClip patients had fewer postoperative complications despite being older and having more comorbidities. However, their two-year mortality was higher, likely due to comorbidities.
Gyoten 2020 [38]	Retrospective study	132 (85 TMVR, 47 SMVR)	Symptomatic patients with FMR and severe LV dysfunction (LVEF \leq 30%)	MitraClip [®]	Surgical mitral valve repair or replacement	MitraClip therapy resulted in lower perioper- ative complications and mortality than SMVR. Surgically treated patients had less residual MR, fewer re-hospitalizations for heart failure, and lower cardiac mortality.
Ondrus 2016 [39]	Retrospective study	72 (24 TMVR, 48 SMVR)	High-risk patients with significant FMR and severe heart failure	MitraClip®	Minimally invasive mitral valve repair	Despite differences in expertise and risk pro- files, both surgical and MitraClip groups had similar 30-day and long-term outcomes.
Malik 2020 [40]	Retrospective study	2910 (1455 TMVR, 1455 SMVR)	Patients ≥80 years of age	MitraClip®	Surgical mitral valve repair or replacement	SMVR had a 4-fold higher mortality compared to TMVR and resulted in more cardiac, vascular, hemorrhagic, and respiratory complications.
Okuno 2021 [41]	Retrospective study	202 (101 TMVR, 101 SMVR)	Patients with sec- ondary MR	MitraClip [®]	Surgical mitral valve repair	There was no significant difference in 2-year survival between TMVR and surgical repair. However, surgical repair resulted in greater and more durable SMR reduction and improved LVEF.
Buzzatti 2019 [42]	Retrospective study	306 (100 TMVR, 206 SMVR)	Low-intermediate risk elderly patients with DMR	MitraClip [®]	Isolated surgical mitral valve repair	MitraClip resulted in lower acute post- operative complications and better 1-year survival compared to surgery. However, it had greater MR recurrence and reduced survival beyond 1 year.
Conradi 2013 [43]	Retrospective study	171 (95 TMVR, 76 SMVR)	Patients with severe secondary MR	MitraClip®	Isolated surgical mitral valve repair	Surgery was more effective at reducing MR than MitraClip. However, many patients benefited from MitraClip.
Silaschi 2024 [44]	Retrospective study	98 (49 TMVR, 49 SMVR)	Elderly patients with MR	MitraClip®	Minimally invasive mitral valve repair	Patients undergoing TMVR had initially lower one-year survival compared to surgery, but this difference disappeared after matching. MR reduction was less effective.

Surgical mitral intervention (repair or replacement, SMVR); Secondary mitral regurgitation (SMR), Transcatheter mitral valve repair (TMVR), Mitral valve prolapse (MVP); Heart failure with reduced ejection fraction (HFrEF); Functional mitral regurgitation (FMR); Degenerative mitral regurgitation (DMR); Mitral regurgitation (MR); Left ventricular (LV); Left ventricular ejection fraction (LVEF); Major adverse cardiovascular events (MACE); Myocardial infarction (MI); EuroSCORE [European System for Cardiac Operative Risk Evaluation].

321

Table 2. Baseline clinical characteristics in TMVR versus. SMVR group.

Study ID	Group	Age	Male	European Score	NYHA III/IV	HTN	DM	AF	COPD	CAD	CRF	PCI	CABG
Niikura 2020 [25]	TMVR	82 ± 7.8	121 (48.6)			187 (75.1)	56 (22.5)	167 (67.1)	70 (28.1)	120 (48.2)		61 (24.5)	62 (24.9)
	SMVR	64.3 ± 12.4	388 (62)			346 (55.3)	97 (15.5)	181 (28.9)	71 (11.3)	195 (31.2)		68 (10.9)	29 (4.6)
Alozie 2017 [26]	TMVR	82.2 ± 1.65	24 (57.1)	11.3 ± 5.63	41 (89.3)		18 (42.9)	29 (69.0)	14 (33.3)	26 (61.9)	32 (76.2)	7 (16.7)	
	SMVR	81.7 ± 1.35	19 (45.2)	12.1 ± 10.6	34 (81)		14 (33.3)	23 (54.8)	10 (23.8)	31 (73.8)	26 (61.9)		16 (38)
Kortlandt 2018 [27]	TMVR	73.96 ± 10.45	321 (56.5)	8.03 ± 7.23	490 (86.3)	285 (50.2)	131 (23.1)	316 (55.6)	113 (19.9)	325 (57.2)	213 (38.4)	167 (29.5)	172 (30.3)
	SMVR	69.05 ± 9.84	95 (54.9)	4.36 ± 3.84	118 (68.2)	86 (50.0)	42 (24.3)	77 (44.5)	40 (23.1)	69 (39.9)	24 (16.3)	19 (11.0)	19 (11)
Feldman 2015 [28]	TMVR	67 ± 12.7	113 (63.5)		89 (50)	129 (72.5)	14 (7.9)	56 (32.9)	27 (15.3)	83 (46.9)		42 (23.7)	37 (20.8)
	SMVR	64.7 ± 12.6	53 (66.2)		40 (50)	66 (82.5)	1 (8.8)	29 (38.7)	11 (13.8)	35 (43.8)		13 (16.3)	13 (16.3)
Deharo 2024 [29]	TMVR	76.0 ± 8.5	1259 (58.3)	3.9 ± 1.2		1482 (68.6)	419 (19.4)	1566 (72.5)	303 (14.0)	1065 (49.3)	380 (17.6)	371 (17.2)	122 (5.7)
	SMVR	76.0 ± 8.5	1253 (58.0)	3.9 ± 1.2		1451 (67.2)	380 (17.6)	1568 (72.6)	285 (13.2)	1090 (50.5)	335 (15.5)	380 (17.6)	103 (4.8)
Haberman 2021 [30]		71 ± 10	48 (48.5)	12.7 ± 10.5	99 (100)	70 (71)	47 (47)		16 (16)	80 (81)	30 (30)	94 (94)	28 (27)
	SMVR	68 ± 10	78 (73.6)	10.3 ± 8.3	106 (100)	67 (63)	36 (34)		9 (8)	78 (74)	13 (12)	37 (35)	1 (<1)
Paranskaya 2013 [31]	TMVR	80 ± 5	10 (41.7)	12.3 ± 3.7	21 (87.5)	24 (100)	12 (15)	15 (62.5)	5 (20.8)	14 (58.3)	15 (62.5)	2 (8.3)	
-	SMVR	63 ± 12	17 (65.4)	3.9 ± 3.7	25 (96.2)	15 (57.7)	2 (7.7)	14 (53.8)	2 (7.7)	6 (23.1)	5 (19.2)	0 (0)	
Anwer 2019 [32]	TMVR	75.7 ± 8.6	45 (80.4)				43 (76.8)	40 (71.4)	32 (57.1)				51 (78.5)
	SMVR	68.6 ± 13.1	58 (77.3)				9 (12.0)	61 (81.3)	8 (10.6)				38 (50.7)
Swaans 2014 [33]	TMVR	74.6 ± 9.4	94 (67.6)	23.9 ± 16.0	123 (88.5)	74 (53.2)	32 (23)	74 (53.2)	31 (22.3)	89 (64.0)	55 (39.6)	41 (29.5)	59 (42.4)
	SMVR	70.2 ± 9.5	27 (50.9)	14.2 ± 8.9	47 (88.7)	28 (52.8)	10 (18.9)	27 (50.9)	15 (28.3)	28 (52.8)	9 (17.0)	5 (9.4)	9 (17)
Taramasso 2012 [34]	TMVR	68.4 ± 9.2	43 (82.7)	21.9 ± 4.8	44 (80.6)		14 (26.9)	37 (17.3)	11 (21.2)	37 (71.2)	30 (57.7)		12 (23.1)
		64.9 ± 9.8	70 (76.9)	10.2 ± 7.4	61 (67)		9 (9.9)	29 (32)	3 (3.3)	44 (48.3)	16 (17.6)		9 (9.9)
Amabile 2023 [35]		72.6 ± 10.1	366 (66.55)			455 (82.73)		324 (58.91)					
		72.1 ± 9.1	356 (64.73)			453 (82.36)		323 (58.73)					
Majmundar Primary MR		72.5 ± 12	1113 (50.9)			1712 (78.3)	398 (18.2)	980 (44.8)	521 (23.80	160 (7.3)	35 (1.6)	147 (6.7)	77 (3.5)
2024 [36]		72.3 ± 9.3	1089 (49.8)			1706 (78)	402 (18.4)	964 (44.1)	512 (23.40		35 (1.6)	168 (7.7)	107 (4.9)
MR in HFrEF		68.1 ± 13.2	1239 (56.9)			1734 (79.6)	. ,	980 (45)	•	255 (11.7)	35 (2.5)	209 (9.6)	107 (4.9)
		68 ± 9.8	1257 (57.7)			1727 (79.3)		969 (44.5)	584 (26.80	. ,	35 (3.1)	253 (11.6)	. ,
De Bonis 2016 [37]		68.3 ± 9.17	46 (83.6)	19.15 ± 3.82	45 (81.8)			19 (34.5)	(
		63.2 ± 10.05	45 (69.2)	11 ± 0.85	56 (86.1)			14 (21.5)					
Buzzatti 2015 [7]		84.5 ± 3.2		19.725 ± 4.5	. ,			10 (40)	6 (24)	7 (28)	19 (76)		3 (12)
		81.9 ± 2.0		8.475 ± 0.73				7 (20)	3 (9)	7 (20)	20 (57)		2 (6)
Gyoten 2020 [38]		71 ± 8.2	21 (70)	29 ± 16	84 (99)	29 (97)	15 (50)	13 (43)	5 (17)	- ()	36 (42)	10 (3.3)	- (*)
		71 ± 8.5	17 (61)	30 ± 24	46 (97)	27 (90)	7 (23)	20 (67)	5 (17)		12 (26)	6 (20)	13 (43)
Ondrus 2016 [39]	TMVR		18 (75)	18 ± 14	21 (88)	_, (30)	. (_0)	18 (75)	0 (17)		12 (20)	0 (20)	15 (63)
		76 ± 4	27 (56)	14 ± 11	44 (92)			33 (69)					15 (31)
Malik 2020 [40]		83.7 ± 2.8	665 (46.7)		()-)	1106 (76)	226 (15.5)	1000 (68.7)	460 (31.6)		402 (27)		10 (01)
		83.7 ± 2.5	714 (49.1)			1100 (75.6)	()	1005 (69.1)	. ,		340 (23.4)		
Okuno 2021 [41]		69.3 ± 12.03	64 (63.4)	8 ± 5.5	64 (63.4)	67 (66.3)	25 (24.8)	34 (33.7)	18 (17.8)	41 (42.6)	55 (54.5)	60 (59.4)	15 (14.9)
		69.7 ± 6.8	70 (69.3)	6.2 ± 4.9	68 (67.3)	74 (73.3)	33 (32.7)	30 (29.7)	-0 (17:0)	37 (36.6)	52 (51.5)	30 (29.7)	16 (15.8)
Buzzatti 2019 [42]		82.9 ± 3.5	55 (55)	J. =	66 (66)	. 1 (70.0)	00 (02.1)	33 (33)	19 (19)	28 (28)	5= (51.0)	50 ()	10 (10.0)
		78.8 ± 3.13	118 (57)		81 (39)			25 (12)	14 (6.8)	41 (20)			
Conradi 2013 [43]		72.4 ± 8.1	61 (64.2)	33.7 ± 18.7	93 (97.9)	73 (76.8%)	38 (40)	55 (57.9)	27 (28.7)	50 (52.6)	9 (9.9)		
		72.4 ± 0.1 64.5 ± 11.4	34 (44.7)	10.1 ± 8.7	67 (88.2)	56 (73.7%)	. ,	35 (37.9)	12 (15.8)	22 (29)	5 (6.6)		
Silaschi 2024 [44]		04.5 ± 11.4 71.7 ± 8.57	28 (57.1)	10.1 ± 0.7 2.3 ± 1.43	07 (00.2)	55 (15.7 /0)	17 (23)	34 (69.4)	12 (13.8)	7 (14.3)	5 (0.0)	17 (34.7)	
		71.7 ± 8.57 70.0 ± 7.5	28 (37.1) 24 (49)	2.3 ± 1.43 1.8 ± 1.43				20 (40.8)	6 (12.2)	4 (8.2)		3 (6.1)	
	JIVI V K	70.0 ± 7.5	47 (1 7)	1.0 ± 1.40				20 (40.0)	0 (12.2)	т (0.2)		5 (0.1)	

Data are n, mean ± SD, median (range), or n (%).

Study of Culture	TMV		SMV		Moinht	Risk Ratio	Risk Ratio
		rotal	Events	TOTAL	weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
.1.1 Mortality at 30 Day							
Nozie 2017	2	42	3	42	1.5%	0.67 [0.12, 3.79]	
Inwer 2019	2	56	2	75	1.3%	1.34 [0.19, 9.22]	
3uzzatti 2015	0	25	0	35		Not estimable	
Conradi 2013	4	95	2	76	1.6%	1.60 [0.30, 8.50]	
De Bonis 2015	0	55	2	65	0.6%	0.24 [0.01, 4.81]	• • • • • • • • • • • • • • • • • • • •
∋yoten 2020	1	85	3	47	1.0%	0.18 [0.02, 1.72]	
liikura 2020	10	249	14	626	3.6%	1.80 [0.81, 3.99]	+
Okuno 2021	7	101	4	101	2.5%	1.75 [0.53, 5.79]	
Ondrus 2016	1	24	6	48	1.2%	0.33 [0.04, 2.61]	
aranskaya 2013	0	24	0	26		Not estimable	
Silaschi 2024	3	49	2	49	1.5%	1.50 [0.26, 8.59]	<u> </u>
aramasso 2012	0	52	6	91	0.7%	0.13 [0.01, 2.32]	• · · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)	-	857	•	1281	15.7%	1.08 [0.63, 1.83]	•
otal events	30		44				T
leterogeneity: Tau ² = 0.0		i ² = 9.84		P = 0 3	6)· I ² = 99	6	
est for overall effect: Z =				, = 0.0	0),1 = 0 /	•	
estion overall ellect. Z -	0.27	(i = 0.7	3)				
.1.2 Mortality at 1 Year							
Nozie 2017	9	42	4	42	2.7%	2.25 [0.75, 6.74]	
mabile 2023	109	550	74	550	5.3%	1.47 [1.12, 1.93]	
Inwer 2019	13	56	13	75	4.0%		
Buzzatti 2019	3	100	9	206	2.3%	1.34 [0.67, 2.66]	
	-		-			0.69 [0.19, 2.48]	
eldman 2015	69	568	28	173	5.0%	0.75 [0.50, 1.13]	-
Syoten 2020	14	85	5	47	3.1%	1.55 [0.59, 4.03]	
laberman 2021	16	99	32	106	4.5%	0.54 [0.31, 0.91]	
Kortlandt 2018	69	568	28	173	5.0%	0.75 [0.50, 1.13]	
liikura 2020	47	249	37	626	5.0%	3.19 [2.13, 4.79]	
Ondrus 2016	7	24	10	48	3.5%	1.40 [0.61, 3.22]	_
Paranskaya 2013	2	24	0	26	0.6%	5.40 [0.27, 107.09]	
3ilaschi 2024	5	40	1	40	1.1%	5.00 [0.61, 40.91]	
Swaans 2014	20	139	8	53	3.8%	0.95 [0.45, 2.03]	
aramasso 2012	9	52	9	91	3.4%	1.75 [0.74, 4.13]	
Subtotal (95% CI)		2596		2256	49.4%	1.27 [0.90, 1.78]	◆
otal events	392		258				
Heterogeneity: Tau ² = 0.2	25; Chi	i ² = 49.1	84. df = 1	3 (P < 1	0.00001);	I ² = 74%	
est for overall effect: Z =	•						
			,				
.1.3 Mortality at 3 Years	s						
mabile 2023	222	550	114	550	5.5%	1.95 [1.61, 2.36]	+
Buzzatti 2015	3	25	1	35	1.1%	4.20 [0.46, 38.06]	
Buzzatti 2019	66	100	20	206	4.9%	6.80 [4.38, 10.55]	
	13	55	20	65	4.3%	0.77 [0.42, 1.40]	
e Bonis 2015		178	15	80	4.5%	0.96 [0.55, 1.67]	
De Bonis 2015 Jeldman 2015	32		15	173	5.3%	2.53 [1.92, 3.34]	-
eldman 2015	32		41			2.03 [1.82, 3.34]	
eldman 2015 Kortlandt 2018	341	568	41		1 50	1 53 10 00 3 601	
eldman 2015 Kortlandt 2018 Ondrus 2016	341 13	568 24	17	48	4.5%	1.53 [0.90, 2.60]	
Feldman 2015 Kortlandt 2018 Ondrus 2016 Swaans 2014	341	568 24 139		48 53	4.8%	1.19 [0.76, 1.86]	
eldman 2015 Korllandt 2018 Ondrus 2016 Gwaans 2014 Gubtotal (95% CI)	341 13 53	568 24	17 17	48			•
eldman 2015 Korllandt 2018 Ondrus 2016 Gwaans 2014 G ubtotal (95% CI) Total events	341 13 53 743	568 24 139 1639	17 17 245	48 53 1210	4.8% 34.9%	1.19 [0.76, 1.86] 1.82 [1.19, 2.79]	•
ieldman 2015 Kortlandt 2018 Ondrus 2016 Swaans 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.2	341 13 53 743 29; Chi	568 24 139 1639 i ² = 56.3	17 17 245 23, df = 7	48 53 1210	4.8% 34.9%	1.19 [0.76, 1.86] 1.82 [1.19, 2.79]	•
eldman 2015 Korllandt 2018 Ondrus 2016 Gwaans 2014 G ubtotal (95% CI) Total events	341 13 53 743 29; Chi	568 24 139 1639 i ² = 56.3	17 17 245 23, df = 7	48 53 1210	4.8% 34.9%	1.19 [0.76, 1.86] 1.82 [1.19, 2.79]	•
feldman 2015 Kortlandt 2018 Ondrus 2016 Swaans 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.2 Fest for overall effect: Z =	341 13 53 743 29; Chi	568 24 139 1639 i ² = 56.: (P = 0.0	17 17 245 23, df = 7	48 53 1210 (P < 0.	4.8% 34.9% 00001); l ^a	1.19 [0.76, 1.86] 1.82 [1.19, 2.79] *= 88%	•
ieldman 2015 Kortlandt 2018 Ondrus 2016 Swaans 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.2	341 13 53 743 29; Chi	568 24 139 1639 i ² = 56.3	17 17 245 23, df = 7 106)	48 53 1210 (P < 0.	4.8% 34.9%	1.19 [0.76, 1.86] 1.82 [1.19, 2.79]	•
ieldman 2015 Kortlandt 2018 Ondrus 2016 Swaans 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.2 Test for overall effect: Z = Total (95% CI)	341 13 53 743 29; Chi	568 24 139 1639 i ² = 56.: (P = 0.0	17 17 245 23, df = 7	48 53 1210 (P < 0.	4.8% 34.9% 00001); l ^a	1.19 [0.76, 1.86] 1.82 [1.19, 2.79] *= 88%	•
ieldman 2015 Kortlandt 2018 Ondrus 2016 Swaans 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.2 Test for overall effect: Z = Total (95% CI)	341 13 53 743 29; Chi : 2.74 (1165	568 24 139 1639 ² = 56.: (P = 0.0 5092	17 17 245 23, df = 7 106) 547	48 53 1210 (P < 0. 4747	4.8% 34.9% 00001); i ² 100.0%	1.19 (0.76, 1.86) 1.82 (1.19, 2.79) ?= 88% 1.38 (1.07, 1.77)	

Fig. 2. Forest plot of risk ratios of mortality for MitraClip versus surgical mitral valve repair or replacement at 30 days, 1 year and 3 years. CI = confidence interval; M-H = Mantel-Haenszel.

results showing that SMVR significantly reduced recurrence compared to TMVR (RR 6.95, 95% CI 3.42 to 14.14, P < 0.00001). Nine studies reported recurrence of $MR \ge 3+$ at one year, with pooled results showing significantly lower rates of recurrence of $MR \ge 3+$ with SMVR compared to TMVR (RR 3.31, 95% CI 1.80 to 6.06, P = 0.0001). Five studies reported recurrence of $MR \ge 3+$ at three years, with pooled results showing significantly lower rates of

recurrence of $MR \ge 3+$ with SMVR (RR 4.37, 95% CI 2.48 to 7.70, P < 0.00001). Overall, pooled results showed significantly lower rates of recurrence of $MR \ge 3+$ with SMVR (RR 4.09, 95% CI 2.74 to 6.10, P < 0.00001). All the pooled results for recurrence of MR $\ge 3 +$ were not heterogeneous, except for recurrence at one year and the overall results, which were highly heterogeneous (I² \ge 61). While high heterogeneity was observed in the pooled results for

324

	TMV	R	SMV	R		Risk Ratio	Risk Ratio
Study or Subgroup			Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Recurrent MR	≥3+ at 30	days					
Alozie 2017	1	42	0	42	1.4%	3.00 [0.13, 71.61]	
Anwer 2019	22	56	4	75	6.4%	7.37 [2.69, 20.17]	
Buzzatti 2015	3	25	1	26	2.5%	3.12 [0.35, 28.03]	
De Bonis 2015	5	55	0	65	1.6%	12.96 [0.73, 229.36]	
Gyoten 2020	2	30	0	30	1.5%	5.00 [0.25, 99.95]	
Ondrus 2016	4	24	1	47	2.6%	7.83 [0.93, 66.27]	
Paranskaya 2013	3	25	0	26	1.6%	7.27 [0.39, 133.95]	
Taramasso 2012 Subtotal (95% CI)	5	52 309	0	91 402	1.6% 19.4 %	19.09 [1.08, 338.54] 6.95 [3.42, 14.14]	•
Total events	45		6				
Heterogeneity: Tau² =	0.00; Ch	i² = 1.5	3, df = 7 (P = 0.9	8); I ² = 09	6	
Test for overall effect:	Z= 5.35 ((P < 0.0	0001)				
1.1.2 Recurrent MR	≥3+at1y	/ear					
Alozie 2017	7	42	0	42	1.7%	15.00 [0.88, 254.52]	
Amabile 2023	36	550	12	550	8.4%	3.00 [1.58, 5.70]	
Anwer 2019	37	56	25	75	9.8%	1.98 [1.37, 2.87]	-
Buzzatti 2015	8	25	0	35	1.7%	23.54 [1.42, 389.88]	
Buzzatti 2019	25	100	4	206	6.3%	12.88 [4.61, 35.99]	
Feldman 2015	37	178	16	80	9.0%	1.04 [0.62, 1.75]	+
Niikura 2020	22	249	11	626	8.0%	5.03 [2.48, 10.21]	
Paranskaya 2013	0	24	1	26	1.4%	0.36 [0.02, 8.43]	
Taramasso 2012 Subtotal (95% Cl)	10	52 1276	5	91 1731	6.3% 52.5%	3.50 [1.26, 9.69] 3.31 [1.80, 6.06]	•
Total events	182		74				
Heterogeneity: Tau ² = Test for overall effect:				(P < 0.	0001); l²:	= 76%	
1.1.3 Recurrent MR	≥3+ at >3	years					
Amabile 2023	43	550	13	550	8.6%	3.31 [1.80, 6.08]	
Buzzatti 2019	20	100	4	206	6.2%	10.30 [3.62, 29.33]	
De Bonis 2015	18	55	5	65	6.8%	4.25 [1.69, 10.71]	
Feldman 2015	19	178	1	80	2.9%	8.54 [1.16, 62.69]	
Ondrus 2016 Subtotal (95% Cl)	2	24 907	3	48 949	3.6% 28.1 %	1.33 [0.24, 7.45] 4.37 [2.48, 7.70]	•
Total events	102		26				
Heterogeneity: Tau ² = Test for overall effect:				P = 0.2	3); I² = 29	1%	
Total (95% CI)		2492		3082	100.0%	4.09 [2.74, 6.10]	•
Total events	329		106				
Heterogeneity: Tau ² =	0.39; Ch	i² = 53.	25, df = 2	1 (P = 0).0001); P	²= 61%	0.001 0.1 1 10 1000
Test for overall effect:							0.001 0.1 1 10 1000 Favours TMVR Favours SMVR
Test for subgroup diff				2 (P =	0.30), I² =	: 18.0%	

Fig. 3. Forest plot of risk ratios of MR recurrence for MitraClip versus surgical mitral valve repair or replacement at 30 days, 1 year, and >3 years. CI = confidence interval; M-H = Mantel-Haenszel.

mortality and recurrence outcomes, no specific measures were taken to control this heterogeneity, indicating a need for caution in interpreting these findings. Future studies may consider stratifying analyses by factors such as patient demographics, procedural techniques, or comorbidities to better understand the sources of heterogeneity and their impact on the outcomes.

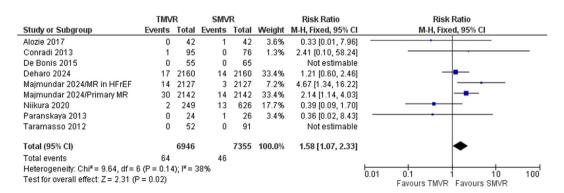


Fig. 4. Forest plot of pooled risk ratios of MI for MitraClip versus surgical mitral valve repair or replacement. CI = confidence interval; M-H = Mantel-Haenszel.

REVIEW ARTICLE

325

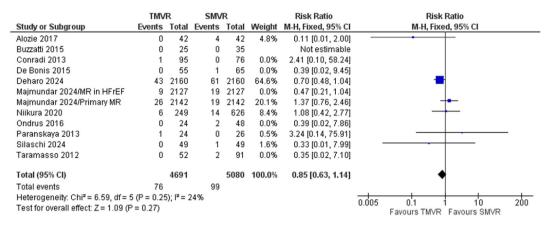


Fig. 5. Forest plot of pooled risk ratios of stroke for MitraClip versus surgical mitral valve repair or replacement. CI = confidence interval; M-H = Mantel-Haenszel.

				SMVR			Mean Difference	Mean Difference
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
8.81	6.4	42	18	7.6	41	2.9%	-9.19 [-12.22, -6.16]	
2.67	1.52	56	7.67	4.54	75	9.9%	-5.00 [-6.10, -3.90]	+
4.9	1.8	25	10.6	6.9	35	4.2%	-5.70 [-8.09, -3.31]	
13.4	12.4	95	9.2	3.8	76	3.6%	4.20 [1.56, 6.84]	
5.57	2.97	55	10.33	3.79	65	9.2%	-4.76 [-5.97, -3.55]	-
2.33	2.23	2178	7.33	3.71	2178	15.5%	-5.00 [-5.18, -4.82]	-
2.33	2.23	2187	6.67	2.97	2187	15.6%	-4.34 [-4.50, -4.18]	•
4.7	6.1	1455	10.4	7.6	1455	14.1%	-5.70 [-6.20, -5.20]	•
2	1.49	249	7.33	2.23	626	15.3%	-5.33 [-5.58, -5.08]	•
13.33	12.61	24	18	15.28	48	0.7%	-4.67 [-11.31, 1.97]	
8.6	6.5	24	10.6	1.7	26	3.5%	-2.00 [-4.68, 0.68]	
5.7	4	49	23.5	24.54	49	0.6%	-17.80 [-24.76, -10.84]	
6	3.81	52	12.33	9.04	91	4.9%	-6.33 [-8.46, -4.20]	
		6491			6952	100.0%	-4.88 [-5.45, -4.31]	•
= 140.30), df = 1	2 (P < 0	0.00001); l² = 91	1%			
(P < 0.00	001)							-20 -10 0 10 20 Favours TMVR Favours SMVR
	2.67 4.9 13.4 5.57 2.33 2.33 4.7 2 13.33 8.6 5.7 6 = 140.30	2.67 1.52 4.9 1.8 13.4 12.4 5.57 2.97 2.33 2.23 4.7 6.1 2 1.49 13.33 12.61 8.6 6.5 5.7 4 6 3.81	2.67 1.52 56 4.9 1.8 25 13.4 12.4 95 5.57 2.97 55 2.33 2.23 2187 4.7 6.1 1455 2 1.49 249 13.33 12.61 24 5.7 4 49 6 3.81 52 6491 = 140.30, df = 12 (P < 0	2.67 1.52 56 7.67 4.9 1.8 25 10.6 13.4 12.4 95 9.2 5.57 2.97 55 10.33 2.33 2.23 2178 7.33 2.33 2.23 2178 7.33 13.33 12.61 24 18 8.6 6.5 24 10.6 5.7 4 49 23.5 6 3.81 52 12.33 6491 = 140.30, df = 12 (P < 0.00001	2.67 1.52 56 7.67 4.54 4.9 1.8 25 10.6 6.9 13.4 12.4 95 9.2 3.8 5.57 2.97 55 10.33 3.79 2.33 2.23 2178 7.33 3.71 2.33 2.23 2178 7.33 3.71 2.33 2.23 2187 6.67 2.97 4.7 6.1 1455 10.4 7.6 2 1.49 249 7.33 2.23 13.33 12.61 24 18 15.28 8.6 6.5 24 10.6 1.7 5.7 4 49 23.5 24.54 6 3.81 52 12.33 9.04 6491 = 140.30, df = 12 (P < 0.00001); P = 91	2.67 1.52 56 7.67 4.54 75 4.9 1.8 25 10.6 6.9 35 13.4 12.4 95 9.2 3.8 76 5.57 2.97 55 10.33 3.79 65 2.33 2.23 2178 7.33 3.71 2178 2.33 2.23 2187 6.67 2.97 2187 4.7 6.1 1455 10.4 7.6 1455 2 1.49 249 7.33 2.23 626 13.33 12.61 24 18 15.28 48 8.6 6.5 24 10.6 1.7 26 5.7 4 49 23.5 24.54 49 6 3.81 52 12.33 9.04 91 6491 6952 = 140.30, df = 12 (P < 0.00001); P = 91%	2.67 1.52 56 7.67 4.54 75 9.9% 4.9 1.8 25 10.6 6.9 35 4.2% 13.4 12.4 95 9.2 3.8 76 3.6% 5.57 2.97 55 10.33 3.79 65 9.2% 2.33 2.23 2178 7.33 3.71 2178 15.6% 4.7 6.1 1455 10.4 7.6 1455 14.1% 2 1.49 249 7.33 2.23 626 15.3% 13.33 12.61 24 18 15.28 48 0.7% 8.6 6.5 24 10.6 1.7 26 3.5% 5.7 4 49 23.5 24.54 49 0.6% 6 3.81 52 12.33 9.04 91 4.9% 6491 6952 100.0% 140.30, df = 12 (P < 0.00001); P = 91%	2.67 1.52 56 7.67 4.54 75 9.9% -5.00 [-6.10, -3.90] 4.9 1.8 25 10.6 6.9 35 4.2% -5.70 [-8.09, -3.31] 13.4 12.4 95 9.2 3.8 76 3.6% 4.20 [1.56, 6.84] 5.57 2.97 55 10.33 3.79 65 9.2% -4.76 [-5.97, -3.55] 2.33 2.23 2178 7.33 3.71 2178 15.6% -5.00 [-6.10, -4.18] 4.7 6.1 1455 10.4 7.6 1455 14.1% -5.70 [-6.20, -5.20] 2 1.49 249 7.33 2.23 626 15.3% -5.33 [-5.58, -5.08] 13.33 12.61 24 18 15.28 48 0.7% -4.67 [-11.31, 1.97] 8.6 6.5 24 10.6 1.7 26 3.5% -2.00 [-4.68, 0.68] 5.7 4 49 23.5 24.54 49 0.6% -17.80 [-24.76,

Fig. 6. Forest plot of pooled effect estimates comparing length of stay for MitraClip versus surgical mitral valve repair or replacement. CI = confidence interval; IV = inverse variance.

3.5. Analysis of secondary outcomes

All secondary outcomes are displayed in Figs. 4-6. Eight studies reported MI as a postprocedural complication, with pooled results showing a significantly higher incidence of MI with TMVR compared to SMVR (RR 1.58, 95% CI 1.07 to 2.33, P = 0.02). 11 studies reported stroke as a postprocedural complication, with pooled results showing no statistically significant difference between the two groups in stroke incidence (RR 0.78, 95% CI 0.59 to 1.02, P = 0.07). 12 studies reported LOS, with pooled results showing that TMVR significantly reduced LOS compared to SMVR (MD -4.88, 95% CI -5.45 to -4.31, P < 0.00001). All pooled results were not heterogeneous, except for LOS, which showed high heterogeneity ($I^2 = 92$).

3.6. Sensitivity analysis

Results of the sensitivity analysis are shown in Supplementary Figure S4-S8. When restricting the

analysis to studies with secondary MR, the pooled results for mortality at 30 days (12 studies) and one year (14 studies) remained insignificant. However, the meta-analysis outcomes for mortality at three years (8 studies) and overall mortality became insignificant under the same restriction. The pooled results of recurrence of $MR \ge 3+$ remained significant when the analysis was restricted to secondary MR studies. After the restriction, pooled results for mortality at 30 days remained homogeneous, while the heterogeneity for mortality at one year, three years, and overall mortality decreased ($I^2 = 74 \text{ to } 67$, $I^2 = 88 \text{ to } 77$, and $I^2 = 78$ to 64, respectively). For recurrence of MR ≥ 3 +, the results at 30 days and three years remained homogeneous after restriction, while those at one year and the overall results became homogeneous. The pooled results of MI incidence and LOS remained significant, whereas stroke incidence became significant after the restriction. The meta-analysis outcomes of MI and stroke incidence remained homogenous while those for LOS remained heterogeneous following the restriction.

3.7. Publication bias

The funnel plots for mortality at 30 days and at one year, LOS and stroke are shown in Supplementary Figure S9-S12. The bias indicators for mortality at 30 days demonstrated evident publication bias (Regression test for funnel plot asymmetry, P = 0.041), while there was no evident publication bias for mortality at one year and stroke (Regression test for funnel plot asymmetry, P = 0.216 and P = 0.697, respectively). There was an evident publication bias for LOS (Egger's Regression and Begg's and Mazumdar Rank Correlation, P = 0.735 and P = 1.000, respectively).

4. Discussion

This systematic review and meta-analysis compared the safety and efficacy of TMVR with those of SMVR. In terms of mortality, we found no significant differences between the two groups at 30 days, consistent with previous meta analyses conducted by Khader et al. [17], Felbel et al. [18], Oh et al. [19], Takagi et al. [20], Wan et al. [21], and Yuan et al. [13]. At one year, our results align with Felbel et [18], Takagi et [20], and Kaddoura et al. [22], but different from the findings of Oh et al. [19] and Yuan et al. [13] who reported an increased risk with TMVR, which could be, in part, due to the higher comorbidity burden and higher calculated logistic EuroSCORE among TMVR patients in these studies.

The pooled results at three years indicated a significant reduction in mortality for the SMVR group compared to TMVR, which aligns with Yuan et al. [13] but contrasts with Cardoso et al. [23] and Takagi et al. [20] where the study found no significant differences between the two groups, which could be attributed to the much smaller sample sizes and fewer studies included in these meta-analyses. Therefore, SMVR should be considered for patients who are expected to live longer and can withstand the surgical procedure (low surgical risk), as it offers a better chance of long-term survival.

In regard to recurrence of $MR \ge 3 +$, the study found significantly lower rates of recurrence with SMVR at 30 days, one year and three years, consistent with Cardoso et al. [23], Khader et al. [17],Takagi et al. [20], and Yuan et al. [13] but different from Felbel et al. [18] and Wan et al. [21] where no significant difference was found, which could be a result of the smaller sample sizes in these studies not being able to detect the difference between the groups, so for patients where preventing the recurrence of MR is crucial, SMVR might be the preferred treatment to ensure lasting valve repair and reduce the need for re-interventions.

As for postprocedural stroke, we found no statistically significant difference between the groups, which agrees with Barros da Silva et al. [24], Cardoso et al. [23], Khader et al. [17], OH et al. [19], and Yuan et al. [13]. However, we found a significantly higher incidence of postprocedural MI with TMVR, indicating the need for careful patient selection and monitoring. The higher incidence of postprocedural MI in TMVR patients may be due to several factors. One possible reason is the increased mechanical stress on the mitral apparatus during the deployment of the MitraClip device, which can result in incomplete leaflet coaptation or device-related trauma. These factors can lead to elevated left ventricular pressures, promoting myocardial ischemia. Furthermore, residual mitral regurgitation, which is more common following TMVR, may exacerbate left ventricular overload, contributing to myocardial oxygen demand and ischemic events. Additionally, TMVR patients typically present with a higher cardiovascular risk profile, including pre-existing coronary artery disease (CAD), advanced age, and poorer left ventricular function compared to those undergoing SMVR. These baseline characteristics likely predispose them to a higher risk of postprocedural MI. Specifically, patients with prior MI or severe CAD are particularly vulnerable to ischemic complications following the procedure. Given these risks, careful preoperative evaluation, including coronary artery assessments and optimization of medical management, is essential for TMVR candidates. The use of perioperative strategies such as antiplatelet agents and statins could potentially mitigate the risk of MI in these high-risk patients. Moreover, closer postprocedural monitoring is recommended for early detection and management of ischemic events.

As for LOS, our study found that it was significantly lower with TMVR, consistent with Cardoso et al. [23], Khader et al. [17] and Oh et al. [19]. This suggests that while SMVR may be more beneficial for long-term outcomes, TMVR offers advantages in terms of recovery and shorter hospital stays. However, this study has several limitations that must be considered when interpreting the findings. A key limitation is that only one randomized controlled trial (RCT) was included, with the rest of the data coming from retrospective studies. The predominance of non-randomized studies introduces potential selection biases, which may impact the overall quality and reliability of the data. Additionally, there were significant differences in comorbidity burden between patients undergoing SMVR and those receiving MitraClip procedures. Specifically, the MitraClip cohort had a higher logistic

e to protocols and outcome measures, such as defining ery. consistent criteria for MR severity and postprocedural complications. Reducing this variability ular, will allow for more meaningful comparisons and improve the quality of pooled results in future to meta-analyses. Lastly, future research should focus on patientconsistent sick factors to help guide treatment selection

Lastly, future research should focus on patientspecific risk factors to help guide treatment selection between TMVR and SMVR. Tailoring interventions based on individual risk profiles can optimize outcomes and improve clinical decision-making.

5. Conclusion

In conclusion, this systematic review and metaanalysis demonstrate that while TMVR and SMVR have comparable short-term survival rates, SMVR offers better long-term survival and lower rates of MR recurrence. TMVR patients, who are typically older and at higher surgical risk, face a higher risk of postprocedural MI but benefit from shorter hospital stays. A personalized treatment approach is crucial to improve outcomes for these patients.

Ethical approval

As this systematic review does not involve primary data collection from human participants, ethical approval was not required. The review adheres to the guidelines and principles of evidence synthesis and analysis.

Disclosure of funding

This research did not receive any specific grant from funding agencies in the public, commercial. or not-for-profit sectors.

Conflict of interest

The authors of this study declare no conflict of interest.

Author contributions

Conception and design of Study: SA. Literature review: SA, ML, RA, Acquisition of data: SA, ML, RA. Analysis and interpretation of data: SA, ML, SA. Research investigation and analysis: SA, ML. Data collection: SA, ML, RA, SA. Drafting of manuscript: SA, ML, RA, SA. Revising and editing the manuscript critically for important intellectual contents: SA, ML. Data preparation and presentation: SA, ML, RA, SA. Supervision of the research: SA. Research coordination and management: SA.

EuroSCORE, indicating a higher risk profile due to its use in patients considered high risk for surgery. This disparity in baseline characteristics could have influenced the comparative outcomes. In particular, TMVR patients tend to have higher logistic Euro-SCOREs, reflecting a higher surgical risk due to advanced age, greater comorbidity burden, and poorer baseline cardiovascular health. These factors, combined with a higher prevalence of prior myocardial infarction, reduced left ventricular function, and other cardiovascular risk factors such as diabetes and hypertension, increase the likelihood of adverse postoperative outcomes. The selection of TMVR in high-risk patients underscores its role as a less invasive alternative for individuals who are not suitable candidates for open surgery. However, this also means that such patients are inherently more prone to complications like MI, stroke, and residual MR. Identifying these risk factors is crucial for tailoring the therapeutic approach and improving patient outcomes in both TMVR and SMVR populations.

Another limitation is the moderate to considerable heterogeneity observed in the meta-analyses, largely due to variations in patient demographics such as age and comorbidity levels. While we performed a sensitivity analysis to reduce heterogeneity in some outcomes, variability remained in others, underscoring the complexity of comparing these treatment options.

Given these limitations, the findings should be interpreted with caution. They highlight the necessity for further research, particularly through welldesigned and adequately powered RCTs, to confirm and strengthen these results.

To overcome the limitations of this review, future research should focus on several strategies. First, the need for more RCTs is critical, as our analysis relied heavily on retrospective studies, introducing selection bias. Well-powered RCTs with balanced patient characteristics between TMVR and SMVR will provide stronger, more reliable evidence.

Second, longer follow-up periods are needed to better capture the long-term outcomes of these procedures. While SMVR has been studied extensively, the long-term durability of TMVR, particularly its impact on survival and MR recurrence, requires further investigation through extended follow-up studies.

The heterogeneity in our analysis highlights the need for standardization in future studies. The variability in patient demographics, study designs, and outcome reporting complicates comparisons and limits the ability to draw firm conclusions. Future research should aim to standardize

Appendix

Supplementary Table S1. The Newcastle–Ottawa Scale (NOS) quality assessment of the included studies in this meta-analysis (details).

Study	Selection of cohorts				Comparability of cohorts	Outcome		
	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	of cohorts	Assessment of outcome		of follow
Niikura 2020 [25]			☆	☆		☆	☆	☆
Alozie 2017 [26]		☆	☆	☆	☆	☆	☆	☆
Kortlandt 2018 [27]			*	\$	*	\$	☆	\$
Deharo 2024 [29]	\$	☆	☆	☆	☆☆	☆	☆	\$
2024 [29] Haberman 2021 [30]			☆	☆	☆	☆		
De Bonis 2016 [37]			*	\$		\$		\$
Buzzatti 2015 [7]		*	*	*	*	\$		\$
Gyoten 2020 [38]		☆	☆	☆	☆	☆		\$
Ondrus 2016 [39]		☆	☆	☆	☆	☆		\$
Malik 2020 [40]		\$	*	\$	**	\$		
Okuno 2021 [41]		*	*	*	*	\$		\$
Paranskaya 2013 [31]			*	*		\$		\$
Anwer 2019 [32]		*	*	*	*	\$		\$
Swaans 2014 [33]		☆	☆	☆	☆	\$		☆
Taramasso 2012 [34]			*	*	*	\$		☆
Amabile 2023 [35]			*	*	**	\$		
Majmundar 2024 [36]	*	*	☆	☆	\$	*		\$
Buzzatti 2019 [42]	☆	☆	*	☆	\$	\$	☆	☆
Conradi 2013 [43]		*	*	*		\$		\$
Silaschi 2024 [44]		*	☆	☆	**	*		\$

Church and Carl and an		TMVR	T - 4 - 1		SMVR	T - 4 - 1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD		Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Alozie 2017	82.2	1.65	42	81.7	1.35	42	5.3%	0.50 [-0.14, 1.14]	•
Amabile 2023	72.6	10.1	550	72.1	9.1	550	5.2%	0.50 [-0.64, 1.64]	+
Anwer 2019	75.7	8.6	56	68.6	13.1	75	3.8%	7.10 [3.38, 10.82]	
Buzzatti 2015	84.5	3.2	25	81.9	2	35	5.0%	2.60 [1.18, 4.02]	
Buzzatti 2019	82.9	3.5	100	78.8	3.13	206	5.2%	4.10 [3.29, 4.91]	÷
Conradi 2013	72.4	8.1	95	64.5	11.4	76	4.2%	7.90 [4.86, 10.94]	
De Bonis 2015	68.3	9.17	55	63.2	10.05	65	3.9%	5.10 [1.66, 8.54]	
Deharo 2024	76	8.5	2160	76	8.5	2160	5.3%	0.00 [-0.51, 0.51]	+
Feldman 2015	67	12.7	178	64.7	12.6	80	4.0%	2.30 [-1.03, 5.63]	
Gyoten 2020	71	8.2	85	71	8.5	47	4.2%	0.00 [-2.99, 2.99]	
Haberman 2021	71	10	99	68	10	106	4.4%	3.00 [0.26, 5.74]	
Kortlandt 2018	73.96	10.45	568	69.05	9.84	173	4.9%	4.91 [3.21, 6.61]	
Majmundar 2024/MR in HFrEF	68.1	13.2	2178	68	9.8	2178	5.3%	0.10 [-0.59, 0.79]	+
Majmundar 2024/Primary MR	72.5	12	2187	72.3	9.3	2187	5.3%	0.20 [-0.44, 0.84]	+
Malik 2020	83.7	2.8	1455	83.7	2.5	1455	5.3%	0.00 [-0.19, 0.19]	+
Niikura 2020	82	7.8	249	64.3	12.4	626	5.1%	17.70 [16.33, 19.07]	-
Okuno 2021	69.3	12.03	101	69.67	6.769	101	4.4%	-0.37 [-3.06, 2.32]	
Ondrus 2016	75	9	24	76	4	48	3.7%	-1.00 [-4.77, 2.77]	
Paranskaya 2013	80	5	24	63	12	26	3.0%	17.00 [11.97, 22.03]	
Silaschi 2024	71.7	8.57	49	70	7.5	49	4.1%	1.70 [-1.49, 4.89]	-
Swaans 2014	74.6	9.4	139	70.2	9.5	53	4.2%	4.40 [1.40, 7.40]	
Taramasso 2012	68.4	9.2	91	64.9	9.8	52	4.1%	3.50 [0.23, 6.77]	—
Total (95% CI)			10510			10390	100.0%	3.44 [2.10, 4.77]	•
Heterogeneity: Tau ² = 8.64; Chi ²	= 843.6	5. df = 21	(P < 0.	00001):	I ^z = 989	6			-20 -10 0 10 20
Test for overall effect: Z = 5.05 (F						-			-20 -10 0 10 20 Favours (TMVR) Favours (SMVR)

Supplementary Figure S1. Forest plot of pooled effect estimate comparing the mean age of patients for MitraClip versus surgical mitral valve repair or replacement. CI = confidence interval; IV = inverse variance.

	TMV	R	SMV	R		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
lozie 2017	24	42	19	42	1.4%	1.26 [0.83, 1.93]	+
mabile 2023	366	550	356	550	9.0%	1.03 [0.94, 1.12]	+
Inwer 2019	45	56	58	75	5.0%	1.04 [0.87, 1.24]	+
Buzzatti 2019	55	100	118	206	4.0%	0.96 [0.78, 1.19]	+
Conradi 2013	61	95	34	76	2.5%	1.44 [1.07, 1.92]	
De Bonis 2015	46	55	45	65	4.4%	1.21 [0.99, 1.48]	 ⊷
Deharo 2024	1259	2160	1253	2160	10.6%	1.00 [0.96, 1.06]	+
eldman 2015	113	178	53	80	4.6%	0.96 [0.79, 1.16]	+
∋yoten 2020	21	85	17	47	0.9%	0.68 [0.40, 1.16]	
laberman 2021	48	99	78	106	3.5%	0.66 [0.52, 0.83]	+
Kortlandt 2018	321	568	95	173	5.9%	1.03 [0.88, 1.20]	+
Aajmundar 2024/MR in HFrEF	1239	2178	1257	2178	10.6%	0.99 [0.94, 1.04]	+
lajmundar 2024/Primary MR	1113	2187	1089	2187	10.3%	1.02 [0.96, 1.08]	+
falik 2020	665	1455	714	1455	9.4%	0.93 [0.86, 1.01]	•
liikura 2020	121	249	388	626	6.3%	0.78 [0.68, 0.90]	+
)kuno 2021	64	101	70	101	4.4%	0.91 [0.75, 1.11]	
Ondrus 2016	18	24	27	48	2.0%	1.33 [0.95, 1.87]	
aranskaya 2013	10	24	17	26	0.8%	0.64 [0.37, 1.10]	
Silaschi 2024	28	49	24	49	1.7%	1.17 [0.80, 1.70]	+
Swaans 2014	94	139	27	53	2.6%	1.33 [1.00, 1.77]	
aramasso 2012	43	91	70	52		Not estimable	
otal (95% CI)		10485		10355	100.0%	0.99 [0.94, 1.05]	
otal events	5754		5809				
leterogeneity: Tau ² = 0.01; Chi ²	= 51.56. d	f = 19 (F	× 0.000	1); I ² = 6;	3%		
est for overall effect: Z = 0.31 (F		- (0.01 0.1 1 10 10 Favours TMVR Favours SMVR

Supplementary Figure S2. Forest plot of pooled effect estimate comparing the gender (male) proportion of patients for MitraClip versus surgical mitral valve repair or replacement. CI = confidence interval; M-H = Mantel-Haenszel.

	TMV	R	SMV	R		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Alozie 2017	41	42	34	42	4.0%	1.21 [1.03, 1.41]	
Buzzatti 2015	17	25	13	35	1.3%	1.83 [1.10, 3.04]	· · · · · · · · · · · · · · · · · · ·
Buzzatti 2019	66	100	81	206	6.2%	1.68 [1.35, 2.09]	
Conradi 2013	93	95	67	76	8.7%	1.11 [1.02, 1.21]	
De Bonis 2015	45	55	56	65	6.0%	0.95 [0.81, 1.11]	
Feldman 2015	89	178	40	80	6.5%	1.00 [0.77, 1.30]	
Gyoten 2020	84	85	46	47	6.9%	1.01 [0.96, 1.06]	+
Haberman 2021	99	99	106	106	12.0%	1.00 [0.98, 1.02]	+
Kortlandt 2018	490	568	118	173	21.1%	1.26 [1.14, 1.41]	
Okuno 2021	64	101	68	101	7.9%	0.94 [0.77, 1.15]	
Ondrus 2016	21	24	44	48	3.4%	0.95 [0.80, 1.14]	
Paranskaya 2013	21	24	25	26	2.8%	0.91 [0.77, 1.08]	
Swaans 2014	123	139	47	53	8.0%	1.00 [0.89, 1.12]	
Taramasso 2012	44	52	61	91	5.2%	1.26 [1.05, 1.52]	
Total (95% CI)		1587		1149	100.0%	1.13 [1.08, 1.18]	•
Total events	1297		806				
Heterogeneity: Chi ² =	221.44, d	f=13 ((P < 0.00)	001); P	= 94%		
Test for overall effect:	Z= 5.59 ((P < 0.0	0001)				0.5 0.7 i 1.5 2 Favours TMVR Favours SMVR
			,				Favouis Innvrk Favouis Snivrk

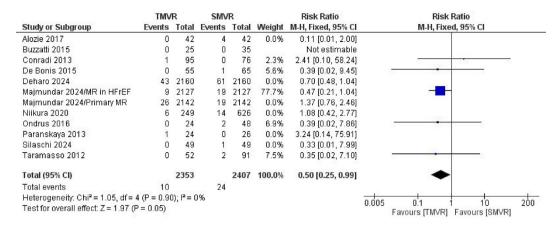
Supplementary Figure S3. Forest plot of pooled effect estimate comparing the NYHA class III/IV score of patients for MitraClip versus surgical mitral valve repair or replacement. CI = confidence interval; M-H = Mantel-Haenszel.

REVIEW ARTICLE

	Experim		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Mortality at 30	Days						
Alozie 2017	2	42	3	42	0.0%	0.67 [0.12, 3.79]	
Anwer 2019	2	56	2	75	0.0%	1.34 [0.19, 9.22]	
3uzzatti 2015	0	25	0	35		Not estimable	
Conradi 2013	4	95	2	76	3.0%	1.60 [0.30, 8.50]	
De Bonis 2015	0	55	2	65	1.0%	0.24 [0.01, 4.81]	< <u>←</u>
Gyoten 2020	1	85	3	47	1.8%	0.18 [0.02, 1.72]	· · · · · · · · · · · · · · · · · · ·
viikura 2020	10	249	14	626	0.0%	1.80 [0.81, 3.99]	
Okuno 2021	7	101	4	101	4.9%	1.75 [0.53, 5.79]	
Ondrus 2016	1	24	6	48	2.1%	0.33 [0.04, 2.61]	
Paranskava 2013	0	24	0	26		Not estimable	
Silaschi 2024	3	49	2	49	0.0%	1.50 [0.26, 8.59]	
Faramasso 2012	0	52	6	91	1.1%	0.13 [0.01, 2.32]	·
Subtotal (95% CI)	· ·	412	Ŭ	428	13.9%	0.64 [0.24, 1.65]	
Fotal events	13		23				
Heterogeneity: Tau²		² = 6 98		= 0.22	r I ≥ = 28%		
Fest for overall effec				- 0.22,	,,, = 20%	,	
restion over an enec	ι. 2 = 0.33 (i	- 0.55	,				
1.1.2 Mortality at 1	rear 🛛						
Alozie 2017	9	42	4	42	0.0%	2.25 [0.75, 6.74]	
Amabile 2023	109	550	74	550	15.0%	1.47 [1.12, 1.93]	_ _ _
Anwer 2019	13	56	13	75	0.0%	1.34 [0.67, 2.66]	
Buzzatti 2019	3	100	9	206	0.0%	0.69 [0.19, 2.48]	
Feldman 2015	69	568	28	173	0.0%	0.75 [0.50, 1.13]	
Gyoten 2020	14	85	20	47	0.0% 6.6%	1.55 [0.59, 4.03]	
Haberman 2021	14	99	32		11.4%	-	
	69		28	106		0.54 [0.31, 0.91] 0.75 [0.50, 1.13]	
Kortlandt 2018 Niikura 2020		568		173	0.0%		
	47	249	37	626	0.0%	3.19 [2.13, 4.79]	
Ondrus 2016	7	24	10	48	7.8%	1.40 [0.61, 3.22]	
Paranskaya 2013	2	24	0	26	0.0%	5.40 [0.27, 107.09]	
Bilaschi 2024	5	40	1	40	0.0%	5.00 [0.61, 40.91]	
3waans 2014	20	139	8	53	0.0%	0.95 [0.45, 2.03]	
Faramasso 2012	9	52	9	91	7.5%	1.75 [0.74, 4.13]	
Subtotal (95% CI)	4.5.5	810		842	48.3%	1.19 [0.74, 1.93]	—
Fotal events	155		130			~	
Heterogeneity: Tau ²				- = 0.0	2);	%	
Fest for overall effec	t. Z = 0.72 (i	P = 0.47	2				
1.1.3 Mortality at 3	loare						
-		550	444	660	15.00	4 05 14 64 0 061	-
Amabile 2023	222	550	114	550	15.9%	1.95 [1.61, 2.36]	-
Buzzatti 2015	3	25	1	35	0.0%	4.20 [0.46, 38.06]	
Buzzatti 2019	66	100	20	206	0.0%	6.80 [4.38, 10.55]	
De Bonis 2015	13	55 170	20	65	10.5%	0.77 [0.42, 1.40]	
Feldman 2015	32	178	15	80	0.0%	0.96 [0.55, 1.67]	
<ortlandt 2018<="" td=""><td>341</td><td>568</td><td>41</td><td>173</td><td>0.0%</td><td>2.53 [1.92, 3.34]</td><td></td></ortlandt>	341	568	41	173	0.0%	2.53 [1.92, 3.34]	
Durdman DO10	13	24	17	48	11.4%	1.53 [0.90, 2.60]	T•
Ondrus 2016	53	139	17	53	0.0%	1.19 [0.76, 1.86]	
Swaans 2014		629		663	37.8%	1.40 [0.83, 2.35]	
Swaans 2014 Subtotal (95% CI)							
Swaans 2014 Subtotal (95% CI) Fotal events	248		151	_			I
Swaans 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ²	= 0.16; Chi ^a		df = 2 (P	= 0.01)); I ² = 77%))	
Swaans 2014 Subtotal (95% CI) Fotal events	= 0.16; Chi ^a		df = 2 (P	= 0.01)); I² = 77%)	
Swaans 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² Fest for overall effec	= 0.16; Chi ^a	P = 0.21	df = 2 (P				
Swaans 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ^a Fest for overall effec Fotal (95% CI)	= 0.16; Chi ^a t: Z = 1.25 (I		df = 2 (P)); I² = 77% 100.0 %	1.17 [0.86, 1.61]	•
Swaans 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ^a Fest for overall effec Fotal (95% CI) Fotal events	= 0.16; Chi ^a t: Z = 1.25 (f 416	P = 0.21	df = 2 (P) 304	1933	100.0%	1.17 [0.86, 1.61]	•
Swaans 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ^a Fest for overall effec Fotal (95% CI)	= 0.16; Chi ^a t: Z = 1.25 (f 416 = 0.15; Chi ^a	P = 0.21 1851 ² = 36.25	df = 2 (P) 304 5, df = 13	1933	100.0%	1.17 [0.86, 1.61]	+ 0.02 0.1 1 10 5

Supplementary Figure S4. Forest plot showing sensitivity analysis of mortality after restricting the analysis to studies with secondary MR. CI = confidence interval; M-H = Mantel-Haenszel.

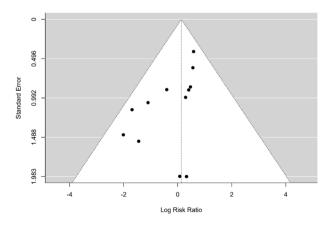
_

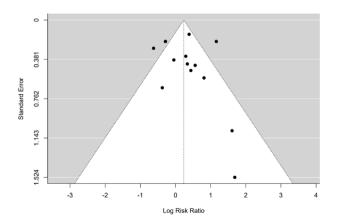

TMVR			SMV	R		Risk Ratio	Risk Ratio
Study or Subgroup					Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Recurrent MR			LUGINO	Total	Trongine	in rij ranaonij oon or	
Alozie 2017	1	42	0	42	0.0%	3.00 [0.13, 71.61]	
Anwer 2019	22	56	4	75	0.0%	7.37 [2.69, 20.17]	
Buzzatti 2015	3	25	1	26	0.0%	3.12 [0.35, 28.03]	
De Bonis 2015	5	55	0	65	1.5%	12.96 [0.73, 229.36]	
Gyoten 2020	2	30	0	30	1.4%	5.00 [0.25, 99.95]	
Ondrus 2016	4	24	1	47	2.7%	7.83 [0.93, 66.27]	
Paranskaya 2013	3	25	O	26	0.0%	7.27 [0.39, 133.95]	
Taramasso 2012	5	52	Ő	91	1.5%	19.09 [1.08, 338.54]	
Subtotal (95% CI)		161	Ŭ	233	7.0%	9.64 [2.57, 36.12]	
Total events	16		1				
Heterogeneity: Tau ² :		$i^2 = 0.4$	and the second second	P = 0.9	$(2) \cdot \mathbf{f} = 0.9$	6	
Test for overall effect			And Dalaces and		-//. 0/		
			· · · · /				
1.1.2 Recurrent MR	≥3+ at 1 y	/ear					
Alozie 2017	7	42	0	42	0.0%	15.00 [0.88, 254.52]	
Amabile 2023	36	550	12	550	29.7%	3.00 [1.58, 5.70]	
Anwer 2019	37	56	25	75	0.0%	1.98 [1.37, 2.87]	
Buzzatti 2015	8	25	0	35	0.0%	23.54 [1.42, 389.88]	
Buzzatti 2019	25	100	4	206	0.0%	12.88 [4.61, 35.99]	
Feldman 2015	37	178	16	80	0.0%	1.04 [0.62, 1.75]	
Niikura 2020	22	249	11	626	0.0%	5.03 [2.48, 10.21]	
Paranskaya 2013	0	24	1	26	0.0%	0.36 [0.02, 8.43]	
Taramasso 2012	10	52	5	91	11.8%	3.50 [1.26, 9.69]	
Subtotal (95% CI)		602		641	41.5%	3.13 [1.82, 5.40]	•
Total events	46		17				
Heterogeneity: Tau ^z :	= 0.00; Ch	i ² = 0.0	6, df = 1 (P = 0.8	0); I ^z = 0%	6	
Test for overall effect	: Z = 4.12 ((P < 0.0	0001)				
1.1.3 Recurrent MR		-					
Amabile 2023	43	550	13	550	33.0%	3.31 [1.80, 6.08]	
Buzzatti 2019	20	100	4	206	0.0%	10.30 [3.62, 29.33]	
De Bonis 2015	18	55	5	65	14.4%	4.25 [1.69, 10.71]	
Feldman 2015	19	178	1	80	0.0%	8.54 [1.16, 62.69]	
Ondrus 2016	2	24	3	48	4.1%	1.33 [0.24, 7.45]	
Subtotal (95% CI)		629		663	51.5%	3.30 [2.03, 5.37]	•
Total events	63		21	23 - 172912		28	
Heterogeneity: Tau ²	Contraction of the second second			P = 0.5	1); I² = 0%	6	
Test for overall effect	: Z = 4.80 ((P < 0.0	00001)				
Total (95% CI)		1392		1537	100.0%	3.48 [2.45, 4.94]	•
Total events	125		39				
Heterogeneity: Tau ² :	= 0.00; Ch	i ² = 4.4	2, df = 8 (P = 0.8	2); I ² = 0%	6	
Test for overall effect					12.53		0.001 0.1 1 10 1000
Toot for oubgroup di		•		2/0-	0 201 18-	10.10	Favours [TMVR] Favours [SMVR]

Supplementary Figure S5. Forest plot showing sensitivity analysis of recurrent MR after restricting the analysis to studies with secondary MR. CI = confidence interval; M-H = Mantel-Haenszel.

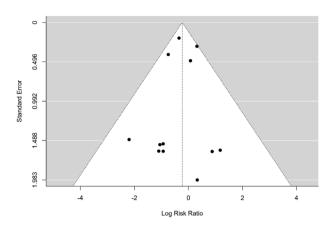
Test for subgroup differences: Chi² = 2.47, df = 2 (P = 0.29), l² = 19.1%

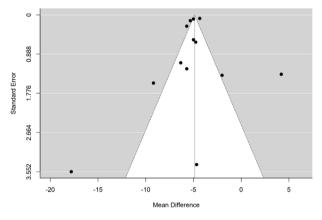
	Experimental		Control			Risk Ratio	Risk Ratio
Study or Subgroup	Events	vents Total Events Total Weight M-H, Fixed, 95		M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl		
Alozie 2017	0	42	1	42	0.0%	0.33 [0.01, 7.96]	
Conradi 2013	1	95	0	76	3.2%	2.41 [0.10, 58.24]	
De Bonis 2015	0	55	0	65		Not estimable	
Deharo 2024	17	2160	14	2160	79.7%	1.21 [0.60, 2.46]	
Majmundar 2024/MR in HFrEF	14	2127	3	2127	17.1%	4.67 [1.34, 16.22]	
Majmundar 2024/Primary MR	30	2142	14	2142	0.0%	2.14 [1.14, 4.03]	
Niikura 2020	2	249	13	626	0.0%	0.39 [0.09, 1.70]	
Paranskaya 2013	0	24	1	26	0.0%	0.36 [0.02, 8.43]	
Taramasso 2012	0	52	0	91		Not estimable	
Total (95% CI)		4489		4519	100.0%	1.84 [1.03, 3.29]	•
Total events	32		17				
Heterogeneity: Chi ^z = 3.51, df = 2	2 (P = 0.17)	; I ^z = 43	%				
Test for overall effect: Z = 2.06 (F	9 = 0.04)						0.01 0.1 1 10 100 Favours TMVR Favours SMVR


Supplementary Figure S6. Forest plot showing sensitivity analysis of MI after restricting the analysis to studies with secondary MR. CI = confidence interval; M-H = Mantel-Haenszel.


Supplementary Figure S7. Forest plot showing sensitivity analysis of stroke after restricting the analysis to studies with secondary MR. CI = confidence interval; M-H = Mantel-Haenszel.

	1	IMVR	SMVR			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Alozie 2017	8.81	6.4	42	18	7.6	41	0.0%	-9.19 [-12.22, -6.16]	
Anwer 2019	2.66666667	1.52181854	56	7.66666667	4.5352964	75	0.0%	-5.00 [-6.10, -3.90]	
Buzzatti 2015	4.9	1.8	25	10.6	6.9	35	0.0%	-5.70 [-8.09, -3.31]	
Conradi 2013	13.4	12.4	95	9.2	3.8	76	19.6%	4.20 [1.56, 6.84]	
De Bonis 2015	5.5666667	2.96895925	55	10.333333333	3.79078458	65	24.4%	-4.77 [-5.98, -3.56]	+
Majmundar 2024/MR in HFrEF	2.333333333	2.22539264	2178	7.33333333	3.70898773	2178	26.0%	-5.00 [-5.18, -4.82]	•
Majmundar 2024/Primary MR	2.3333333	2.22538651	2187	6.66666667	2.96718201	2187	0.0%	-4.33 [-4.49, -4.18]	
Malik 2020	4.7	6.1	1455	10.4	7.6	1455	0.0%	-5.70 [-6.20, -5.20]	
Niikura 2020	2	1.49131407	249	7.33333333	2.22909017	626	0.0%	-5.33 [-5.59, -5.08]	
Ondrus 2016	13.33333333	12.60892047	24	18	15.28477194	48	8.5%	-4.67 [-11.31, 1.98]	
Paranskaya 2013	8.6	6.5	24	10.6	1.7	26	0.0%	-2.00 [-4.68, 0.68]	
Silaschi 2024	5.7	4.00371075	49	23.5	24.54448766	49	0.0%	-17.80 [-24.76, -10.84]	
Taramasso 2012	6	3.8122183	52	12.333333333	9.03952639	91	21.5%	-6.33 [-8.46, -4.21]	-
Total (95% Cl) 2404 2458 100.0% -3.39 [-5.75, -1.04]									•
Heterogeneity: Tau ² = 5.52; Chi ² = 48.29, df = 4 (P < 0.00001); I ² = 92%									-20 -10 0 10 20
Test for overall effect: Z = 2.83 (P = 0.005)								Favours TMVR Favours SMVR	


Supplementary Figure S8. Forest plot showing sensitivity analysis of length of stay after restricting the analysis to studies with secondary MR. CI = confidence interval; IV = inverse variance.


Supplementary Figure S9. Funnel plot of mortality at 30 days for publication bias assessment.

Supplementary Figure S10. Funnel plot of mortality at 1 year for publication bias assessment.

Supplementary Figure S11. Funnel plot of incidence of stroke for publication bias assessment.

Supplementary Figure S12. Funnel plot of length of stay for publication bias assessment.

References

- Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet 2006;368:1005–11. https:// doi.org/10.1016/S0140-6736(06)69208-8.
- [2] Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2017;38: 2739–91. https://doi.org/10.1093/eurheartj/ehx391.
- [3] Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation 2014;129:2440–92. https://doi.org/ 10.1161/CIR.00000000000029.
- [4] Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P, et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med 2014;370:23–32. https://doi.org/10.1056/NEJMoa131 2808.
- [5] Smith PK, Puskas JD, Ascheim DD, Voisine P, Gelijns AC, Moskowitz AJ, et al. Surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med 2014;371:2178–88. https:// doi.org/10.1056/NEJMoa1410490.

- [6] Maisano F, Franzen O, Baldus S, Schäfer U, Hausleiter J, Butter C, et al. Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe. J Am Coll Cardiol 2013;62:1052–61. https://doi.org/10.1016/j.jacc.2013.02.094.
- [7] Buzzatti N, Maisano F, Latib A, Taramasso M, Denti P, La Canna G, et al. Comparison of outcomes of percutaneous MitraClip versus surgical repair or replacement for degenerative mitral regurgitation in octogenarians. Am J Cardiol 2015;115:487–92. https://doi.org/10.1016/j.amjcard.2014.11. 031.
- [8] Lim DS, Reynolds MR, Feldman T, Kar S, Herrmann HC, Wang A, et al. Improved functional status and quality of life in prohibitive surgical risk patients with degenerative mitral regurgitation after transcatheter mitral valve repair. J Am Coll Cardiol 2014;64:182–92. https://doi.org/10.1016/j.jacc. 2013.10.021.
- [9] Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 2017;135: e1159–95. https://doi.org/10.1161/CIR.000000000000503.
- [10] Bonow RO, Carabello BA, Chatterjee K, de Leon Jr AC, Faxon DP, Freed MD, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association task force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): developed in collaboration with the society of cardiovascular anesthesiologists: endorsed by the society of thoracic surgeons. Circulation 2006;114:e84–231. https://doi.org/10.1161/CIRCULATIONAHA.106.176857.
- [11] Feldman T, Foster E, Glower DD, Kar S, Rinaldi MJ, Fail PS, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med 2011;364:1395–406. https://doi.org/10.1056/ NEJMoa1009355.
- [12] Walenta K, Sinning JM, Werner N, Böhm M. Hotline update of clinical trials and registries presented at the American College of Cardiology Congress 2011. Clin Res Cardiol 2011; 100:475–82. https://doi.org/10.1007/s00392-011-0322-3.
- [13] Yuan H, Wei T, Wu Z, Lu T, Chen J, Zeng Y, et al. Comparison of transcatheter mitral-valve repair and surgical mitral-valve repair in elderly patients with mitral regurgitation. Heart Surg Forum 2021;24:E108–15. https://doi.org/ 10.1532/hsf.3433.
- [14] Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14: 135. https://doi.org/10.1186/1471-2288-14-135.
- [15] Egger M, Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ 1997;315: 629–34. https://doi.org/10.1136/bmj.315.7109.629.
- [16] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50: 1088-101. https://doi.org/10.2307/2533446.
- [17] Khader AA, Ållaf M, Lu OW, Lazopoulos G, Moscarelli M, Kendall S, et al. Does the clinical effectiveness of Mitraclip compare with surgical repair for mitral regurgitation? J Card Surg 2021;36:1103–19. https://doi.org/10.1111/jocs.15298.
- [18] Felbel D, Paukovitsch M, Förg R, Stephan T, Mayer B, Keßler M, et al. Comparison of transcatheter edge-to-edge and surgical repair in patients with functional mitral regurgitation using a meta-analytic approach. Front Cardiovasc Med 2022;9:1063070. https://doi.org/10.3389/fcvm.2022.106 3070.
- [19] Oh NA, Kampaktsis PN, Gallo M, Guariento A, Weixler V, Staffa SJ, et al. An updated meta-analysis of MitraClip versus

surgery for mitral regurgitation. Ann Cardiothorac Surg 2021;10:1-14. https://doi.org/10.21037/acs-2020-mv-24.

- [20] Takagi H, Ando T, Umemoto T, ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. A review of comparative studies of MitraClip versus surgical repair for mitral regurgitation. Int J Cardiol 2017;228:289–94. https:// doi.org/10.1016/j.ijcard.2016.11.153.
- [21] Wan B, Rahnavardi M, Tian DH, Phan K, Munkholm-Larsen S, Bannon PG, et al. A meta-analysis of MitraClip system versus surgery for treatment of severe mitral regurgitation. Ann Cardiothorac Surg 2013;2:683–92. https:// doi.org/10.3978/j.issn.2225-319X.2013.11.02.
- [22] Kaddoura R, Al-Badriyeh D, Abushanab D, Al-Hijji M. Percutaneous mitral-valve intervention for secondary mitral regurgitation: data from real-life. Curr Probl Cardiol 2023;48: 101889. https://doi.org/10.1016/j.cpcardiol.2023.101889.
- [23] Cardoso R, Ansari M, Garcia D, Martucci G, Piazza N. A meta-analysis of controlled studies comparing mitraclip versus surgery for severe mitral regurgitation: is there a mortality benefit? J Am Coll Cardiol 2016;67:343. https:// doi.org/10.1016/S0735-1097(16)30344-8.
- [24] Barros da Silva P, Sousa JP, Oliveiros B, Donato H, Costa M, Gonçalves L, et al. Stroke after transcatheter edge-to-edge mitral valve repair: a systematic review and meta-analysis. EuroIntervention 2020;15:1401–8. https://doi.org/10.4244/ EIJ-D-19-00602.
- [25] Niikura H, Gössl M, Bae R, Sun B, Askew J, Harris K, et al. Impact of the commercial introduction of transcatheter mitral valve repair on mitral surgical practice. J Am Heart Assoc 2020;9:e014874. https://doi.org/10.1161/JAHA.119. 014874.
- [26] Alozie A, Paranskaya L, Westphal B, Kaminski A, Sherif M, Sindt M, et al. Clinical outcomes of conventional surgery versus MitraClip® therapy for moderate to severe symptomatic mitral valve regurgitation in the elderly population: an institutional experience. BMC Cardiovasc Disord 2017;17: 85. https://doi.org/10.1186/s12872-017-0523-4.
- [27] Kortlandt F, Velu J, Schurer R, Hendriks T, Van den Branden B, Bouma B, et al. Survival after MitraClip treatment compared to surgical and conservative treatment for high-surgical-risk patients with mitral regurgitation. Circ Cardiovasc Interv 2018;11:e005985. https://doi.org/10.1161/ CIRCINTERVENTIONS.117.005985.
- [28] Feldman T, Kar S, Elmariah S, Smart SC, Trento A, Siegel RJ, et al. Randomized comparison of percutaneous repair and surgery for mitral regurgitation: 5-year results of EVEREST II. J Am Coll Cardiol 2015;66:2844–54. https://doi.org/ 10.1016/j.jacc.2015.10.018.
- [29] Deharo P, Obadia JF, Guerin P, Cuisset T, Avierinos JF, Habib G, et al. Mitral transcatheter edge-to-edge repair vs. isolated mitral surgery for severe mitral regurgitation: a French nationwide study. Eur Heart J 2024;45:940–9. https:// doi.org/10.1093/eurheartj/ehae046.
- [30] Haberman D, Estévez-Loureiro R, Benito-Gonzalez T, Denti P, Arzamendi D, Adamo M, et al. Conservative, surgical, and percutaneous treatment for mitral regurgitation shortly after acute myocardial infarction. Eur Heart J 2022;43: 641–50. https://doi.org/10.1093/eurheartj/ehab496.
- [31] Paranskaya L, D'Ancona G, Bozdag-Turan I, Akin I, Kische S, Turan GR, et al. Percutaneous vs surgical repair of mitral valve regurgitation: single institution early and midterm outcomes. Can J Cardiol 2013;29:452–9. https://doi.org/ 10.1016/j.cjca.2012.06.002.
- [32] Anwer LA, Dearani JA, Daly RC, Stulak JM, Schaff HV, Nguyen A, et al. Degenerative mitral regurgitation after

nonmitral cardiac surgery: mitraclip versus surgical reconstruction. Ann Thorac Surg 2019;107:725–31. https://doi.org/ 10.1016/j.athoracsur.2018.09.036.

- [33] Swaans MJ, Bakker ALM, Alipour A, Post MC, Kelder JC, de Kroon TL, et al. Survival of transcatheter mitral valve repair compared with surgical and conservative treatment in high-surgical-risk patients. JACC Cardiovasc Interv 2014;7: 875–81. https://doi.org/10.1016/j.jcin.2014.01.171.
 [34] Taramasso M, Denti P, Buzzatti N, De Bonis M, La Canna G,
- [34] Taramasso M, Denti P, Buzzatti N, De Bonis M, La Canna G, Colombo A, et al. Mitraclip therapy and surgical mitral repair in patients with moderate to severe left ventricular failure causing functional mitral regurgitation: a singlecentre experience. Eur J Cardio Thorac Surg 2012;42:920–6. https://doi.org/10.1093/ejcts/ezs294.
- [35] Amabile A, Muncan B, Geirsson A, Kalogeropoulos AP, Krane M. Surgical versus interventional mitral valve repair: analysis of 1,100 propensity score-matched patients. J Card Surg 2023;2023:1–7. https://doi.org/10.1155/2023/8838005.
- [36] Majmundar M, Patel KN, Doshi R, Kumar A, Arora S, Panaich S, et al. Transcatheter versus surgical mitral valve repair in patients with mitral regurgitation. Eur J Cardio Thorac Surg 2024;65. https://doi.org/10.1093/ejcts/ezad391.
- [37] De Bonis M, Taramasso M, Lapenna E, Denti P, La Canna G, Buzzatti N, et al. MitraClip therapy and surgical edge-toedge repair in patients with severe left ventricular dysfunction and secondary mitral regurgitation: mid-term results of a single-centre experience. Eur J Cardio Thorac Surg 2016;49: 255–62. https://doi.org/10.1093/ejcts/ezv043.
- [38] Gyoten T, Schenk S, Rochor K, Herwig V, Harnath A, Grimmig O, et al. Outcome comparison of mitral valve surgery and MitraClip therapy in patients with severely reduced left ventricular dysfunction. ESC Heart Fail 2020;7:1781–90. https://doi.org/10.1002/ehf2.12741.
- [39] Ondrus T, Bartunek J, Vanderheyden M, Stockman B, Kotrc M, Van Praet F, et al. Minimally invasive mitral valve repair for functional mitral regurgitation in severe heart failure: MitraClip versus minimally invasive surgical approach. Interact Cardiovasc Thorac Surg 2016;23:784–9. https://doi.org/10.1093/icvts/ivw215.
- [40] Malik AH, Zaid S, Yandrapalli S, Shetty S, Aronow WS, Ahmad H, et al. Trends and outcomes with transcatheter versus surgical mitral valve repair in patients ≥80 years of age. Am J Cardiol 2020;125:1083-7. https://doi.org/10.1016/ j.amjcard.2019.12.050.
- [41] Okuno T, Praz F, Kassar M, Biaggi P, Mihalj M, Külling M, et al. Surgical versus transcatheter repair for secondary mitral regurgitation: a propensity score-matched cohorts comparison. J Thorac Cardiovasc Surg 2023;165: 2037–2046.e4. https://doi.org/10.1016/j.jtcvs.2021.07.029.
- [42] Buzzatti N, Van Hemelrijck M, Denti P, Ruggeri S, Schiavi D, Scarfò IS, et al. Transcatheter or surgical repair for degenerative mitral regurgitation in elderly patients: a propensity-weighted analysis. J Thorac Cardiovasc Surg 2019;158: 86–94.e1. https://doi.org/10.1016/j.jtcvs.2019.01.023.
 [43] Conradi L, Treede H, Rudolph V, Graumüller P, Lubos E,
- [43] Conradi L, Treede H, Rudolph V, Graumüller P, Lubos E, Baldus S, et al. Surgical or percutaneous mitral valve repair for secondary mitral regurgitation: comparison of patient characteristics and clinical outcomes. Eur J Cardio Thorac Surg 2013;44:490–6. discussion 496. https://doi.org/10.1093/ ejcts/ezt036.
- [44] Silaschi M, Cattelaens F, Alirezaei H, Vogelhuber J, Sommer S, Sugiura A, et al. Transcatheter edge-to-edge mitral valve repair versus minimally invasive mitral valve surgery: an observational study. J Clin Med 2024;13. https:// doi.org/10.3390/jcm13051372.

334