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a b s t r a c t

Public health officials are increasingly recognizing the need to develop disease-forecasting
systems to respond to epidemic and pandemic outbreaks. For instance, simple epidemic
models relying on a small number of parameters can play an important role in charac-
terizing epidemic growth and generating short-term epidemic forecasts. In the absence of
reliable information about transmission mechanisms of emerging infectious diseases,
phenomenological models are useful to characterize epidemic growth patterns without
the need to explicitly model transmission mechanisms and the natural history of the
disease. In this article, our goal is to discuss and illustrate the role of regularization
methods for estimating parameters and generating disease forecasts using the generalized
Richards model in the context of the 2014e15 Ebola epidemic in West Africa.
© 2017 KeAi Communications Co., Ltd. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Developing tools for stable parameter estimation and reliable forecasting of emerging and re-emerging infectious disease
epidemics represents a key priority for public health officials and government agencies in their work to prevent and mitigate
disease threats. At the early stage of an outbreak, when incidence data are limited and subject to reporting delays, it is often
premature to characterize the transition rates of individuals between various disease epidemiological compartments using,
for instance, SEIR-type systems of differential equations, which may involve a substantial number of unknown parameters.
For the early transmission period, phenomenological models of a logistic type, describing the progression of the epidemic in
terms of the cumulative number of reported cases, C, provide a simple alternative. Inwhat follows, we employ the generalized
Richards model (Chowell et al., 2016; Smirnova et al., 2017; Turner, Bradley, Kirk, & Pruitt, 1976)
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to estimate crucial disease parameters, such as the intrinsic growth rate (r), the deceleration of growth (p), the final size of the
epidemic (K), the disease turning point (t), and the extent of deviation from the S-shaped dynamics of the classical logistic-
growth curve (a), see Fig. 1. In (1.1), T is the duration of the outbreak.

For the original Richards model (p ¼ 1), the closed-form solution is available

CðtÞ ¼ K�
1þ ae�arðt�tÞ�1=a; (1.2)

which simplifies its theoretical and numerical study. However, the statistical analysis of the fitting accuracy for the original
and generalized Richardsmodels indicates that the generalized Richardsmodel outperforms its original version for epidemics
characterized by an early sub-exponential growth phase (Chowell et al., 2016). For such outbreaks, the value of parameter p in
(1.1) is less than 1 (0<p<1), and the reduction in the residual sum of squares appears to be statistically significant. Several
mechanisms could give rise to initial sub-exponential growth in case incidence including (Chowell, Viboud, Hyman, &
Simonsen, 2015; Viboud, Simonsen, & Chowell, 2015): (i) spatially clustered contact structures (e.g., high clustering levels)
(Chowell et al., 2015; Szendroi & Csanyi, 2004); (ii) early onset of population behavioral changes and control interventions
(Chowell et al., 2015; Szendroi & Csanyi, 2004); and (iii) substantial heterogeneity in susceptibility and infectivity of the host
population that introduces high local variability in the local reproduction number that fluctuates around the epidemic
threshold at 1.0. The two limiting cases of the generalized Richards model are those in which p ¼ 0 (constant incidence
growth) or p ¼ 1 (exponential growth) (Viboud et al., 2015).

Fig. 2 illustrates representative epidemic profiles, dCdt , that the generalized Richards model supports, as the deceleration of
growth parameter, p, is varied. Overall, as parameter p increases, the epidemic profile shows faster growth that converges to
exponential rate as p/1 while keeping the epidemic size, K, fixed. On the other hand, parameter a modulates the epidemic
turning point (Fig. 2), which occurs earlier as this parameter increases.

Thus, in our investigation we utilize the generalized four-parametric model (1.1), and solve the ODE-constrained least
squares problem to estimate r, p, K, t, and a from early data of the 2014e15 Ebola epidemics in Guinea, Sierra Leone, and
Liberia. We then use the reconstructed parameter values to forecast future incidence cases by propagating uncertainty in the
system forward in time.

2. The regularized least squares problem

To present a regularized numerical algorithm for stable parameter estimation, we introduce

b :¼ r
K1�p; HðtÞ :¼ CðtÞ

K
; (2.1)
and arrive at the normalized model (Cavallini, 1993)
Fig. 1. Parameter identification process from early incidence data using the generalized Richards model.



Fig. 2. Simulations from the Generalized Richards Model (A) and the Original Richards Model (B). A) Parameter p is varied from 0.5 to 1.0 while keeping
parameter a fixed at 1.0. B) Parameter a is varied from 0.3 to 2.0 while keeping parameter p fixed at 1.0. Parameter r is fixed at 0.3 per day, K ¼ 10;000, and the
initial number of cases, Cð0Þ ¼ 1.

A. Smirnova, G. Chowell / Infectious Disease Modelling 2 (2017) 268e275270
dH
dt

¼ bHpð1� HaÞ; HðtÞ ¼
�

p
aþ p

�1
a

; (2.2)

to be fitted to early (noisy) incidence data, D ¼ ½D ;D ;…;D �, which approximate the vector
�
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�
, and
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dC
dt is defined by (1.1). This yields the following least squares problem (LSP)
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In (2.3), the function K dt is evaluated at finitely many points, t1; t2;…, tm; and jj , jj is the Euclidian norm in ℝ . By the first
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where ð , ; , Þ is the inner product in ℝm. Substituting (2.4) into (2.3), one gets the LSP with respect to the parameters b, p, a,

and t:

min
q
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q

1
2

				
				KðqÞdHdt ðqÞ � D

				
				
2

; q :¼ ½b; p; a; t�T : (2.5)
Minimization problem (2.5) is ill-posed due to the lack of stability with respect to noise in the input data. To overcome the
danger of noise propagation, which is evident from the severely ill-conditioned Jacobian, our next step is

(a) to regularize (stabilize) the functional f ðqÞ in (2.5) by incorporating a priori information about the unknown
parameters;

(b) to develop an efficient problem oriented numerical solver that would further increase our chances of computing a
reasonably accurate solution.
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Without regularization, the algorithm may diverge due to error accumulation at every step, or the uncertainty could get
out of control. The most common a priori information is the one that uses our best guess on the potential values of q. Less
common, but very helpful for this particular application, is the information on the expected orders of magnitude for b, p, a,
and t. Specifically, since t has the meaning of the disease turning point, its value should be about one or two orders of
magnitude larger than b, p, and a. This suggests that, as we introduce a priori information, parameters b, p, and a must be
appropriately weighted to balance the sensitivity of our model to all four unknowns. Combining all of the above, we add the
following term to the cost functional (2.5)

UðqÞ :¼ 				Lðq� ~qÞ				2; L ¼

2
664
u 0 0 0
0 u 0 0
0 0 u 0
0 0 0 1

3
775; u>1: (2.6)
Here ~q incorporates the expected (reference) value of q, and L is the weighting matrix. Since the information contained in

UðqÞ is less reliable than the one contained in the fidelity term,
��KðqÞ dHdt ðqÞ � D

��2, we penalize UðqÞ by a small regularization

parameter, a, and obtain the following auxiliary minimization problem (Tikhonov, Goncharsky, Stepanov, & Yagola, 1995,
1998; Yagola, 2010, pp. 17e34)

min
q

faðqÞ :¼ min
q

1
2

k FðqÞ � Dk2 þ a

2
k Lðq� ~qÞk2; (2.7)

which is a particular case of the variational (Tikhonov's) regularization aimed at stabilizing the original ill-posed model. In

(2.7),

FðqÞ :¼ KðqÞdH
dt

ðqÞ: (2.8)
3. Numerical optimization method with Hessian reduction

Since FðqÞ defined in (2.8) is a non-linear operator, the regularization needs to be combined with a robust problem-
oriented numerical algorithm capable of producing an accurate approximation to the unknown parameters. If one solves
(2.7) by a classical Gauss-Newton method and drives a to 0 as iterations progress, then one gets what is known as iteratively
regularized Gauss-Newton (IRGN) scheme (Bakushinsky, 1993; Bakushinsky & Kokurin, 2005)

�
F0�ðqkÞF0ðqkÞ þ akL

�L
�
pk ¼ ��

F0�ðqkÞðFðqkÞ � DÞ þ akL
�Lðqk � ~qÞ�; (3.1)

qkþ1 ¼ qk þ lkpk; lk >0;
where F0�ðqÞ is the adjoint to F0ðqÞ. In (3.1), ak and lk execute regularization and line search, respectively. While this method

is generally efficient, for our model one is forced to sacrifice too much accuracy to stabilize the process, and even with a
relatively large regularization parameter the uncertainty in the computed solution remains high. Hence our goal is to modify
IRGN (3.1) by truncating a “non-essential” part of the Hessian approximation in order to bring down its condition number. To
that end, consider the gradient of f, Vf ðqÞ ¼ F0�ðqÞðFðqÞ � DÞ; where

F0ðqÞ ¼
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One can easily verify that the residual, FðqÞ � D, is in the kernel of the matrix F1 ðqÞ. Indeed, from definitions of KðqÞ in
(2.4) and FðqÞ in (2.8), one concludes that for any i ¼ 1;2;3;4;
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Therefore F1 ðqÞðFðqÞ � DÞ ¼ 0 and Vf ðqÞ ¼ F2 ðqÞðFðqÞ � DÞ. This implies the Hessian approximation

GðqÞ ¼ F0�
2 ðqÞF0ðqÞ ¼ F0�

2 ðqÞ


F0
1ðqÞ þ F0

2ðqÞ
�
; (3.3)

which we reduce further by dropping F0
1ðqÞ and setting GðqÞzF0�

2 ðqÞF0
2ðqÞ: This permits to lower the condition number and

to enforce the symmetric non-negative definite structure. Dividing both sides of the modified linear system by K2ðqkÞ, which
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enables us to move all noise from the matrix to the right-hand side, one arrives at what we call Reduced IRGN (RIRGN)
(Smirnova et al., 2017)

½A0�ðqkÞA0ðqkÞ þ ~akL
�L�pk ¼ �½A0�ðqkÞðAðqkÞ � D=KðqkÞÞ þ ~akL

�Lðqk � ~qÞ�; (3.4)

where AðqÞ :¼ dH
dt ðqÞ, and ~ak :¼ ak=K

2ðqkÞ:
4. Simulation results and discussion

In this section we address the important aspects of practical implementation of RIRGN algorithm (3.4). To that end, we
investigate the trajectories of the 2014e2015 Ebola epidemic in Guinea, Liberia and Sierra Leone (World Health Organization,
2016). For illustration, we use early incident reported data to estimate the values of five unknown parameters, r, t, p, a, and K,
by solving the regularized least squares problemwith the RIRGN method (3.4). Thenwe substitute the estimated parameters
into (1.1) to find the approximate values of future incident cases using the built-in Matlab ode23s solver. The data for this
numerical experiment have been retrieved in 2015 from theWorld Health Organization (WHO) web site. Theweekly series of
cases were directly obtained from the WHO patient database.

For successful application of any regularized procedure, the right choice of the stabilizing sequence, f~akg, is very
important. The value of ~a0 has to be sufficiently large to ensure that we incorporate enough stability into the system to reduce
the excessive noise propagation. On the other hand, over-regularization may slow down the convergence of the iterative
sequence fqkg, and result in unnecessary loss of precision. In our experiment, we take ~a0 ¼ 5,10�4 for Sierra Leone and
Fig. 3. Sierra Leone: Estimation of r, t, p, a, and K, and Forecasting. r ¼ 0.52 (95% CI: 0.31, 0.71), t ¼ 27 (95% CI: 25, 29), p ¼ 0.86 (95% CI: 0.83, 0.91), a ¼ 1.03 (95%
CI: 1.02, 1.04), K ¼ 1.7 ,104 (95% CI: 1.5 ,104, 1.8 ,104).



Fig. 4. Guinea: Estimation of r, t, p, a, and K, and Forecasting. r ¼ 1.3 (95% CI: 0.03, 2.7), t ¼ 41 (95% CI: 33, 49), p ¼ 0.87 (95% CI: 0.7, 0.9), a ¼ 0.96 (95% CI: 0.95, 1),
K ¼ 1.1 ,104 (95% CI: 1 ,103, 5.9 ,104).
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Liberia and ~a0 ¼ 10�3 for Guinea, where the data are more noise contaminated. We set ~ak ¼ ~a0expð�k=2Þ, since this choice
gives us the most aggressive convergence rate for fqkg while maintaining stability for every value of k.

The outer step of the RIRGN scheme (3.4) identifies the direction of the decent. In order to optimize the step size in that
direction, we implement a version of the Armijo-Goldstein line search strategy (Nocedal &Wright, 2000), i.e., a backtracking
with lk ¼ 1=2;1=4;… until

kAðqk þ lkqkÞ � D=Kðqk þ lkpkÞk2 < jjAðqkÞ � D=KðqkÞjj2 þ lkb


A0*ðqkÞðAðqkÞ � D=KðqkÞÞ;pk

�
;

which is commonly used for Gauss-Newton type algorithms. Iterations are stopped at the moment when the discrepancy for

the approximate solution is consistent with the level of noise in our data in order to guarantee convergence and, at the same
time, it is not too small to prevent over-fitting that may compromise the accuracy of the estimated parameters, i.e., the
stopping index, K ¼ K ðdÞ, is evaluated by a posteriori stopping rule

						A�qK ðdÞ


� D=K

�
qK ðdÞ


						2 � rkd<
						AðqkÞ � D=KðqkÞ

						2; 0 � k � K ðdÞ; r>1: (4.1)
To balance the sensitivity of the cost functional to all four unknowns in the penalty term, we choose L based on our prior
knowledge of the difference in the orders of magnitude between the value of t and the values of three other parameters. This
suggests L in the form (2.6) with u>1 (u ¼ 10 works well for our code).

The selection of the initial vector, q0, and the reference vector, ~q, in the penalty term is rather difficult. In the beginning of
an emerging outbreak, it is not straightforward to make a sophisticated guess about when the disease is going to peak. Hence,
in our experiment, we take t0 in q0 to be slightly greater than tm, the last week for which the data is available, andwe take t in
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~q to be equal to 60, i.e., we assume the incidence curve will turn before 60 weeks of the epidemic have passed. The values of p
in q0 and ~q are taken to be 0.7 and 0.1, respectively, to enforce the sub-exponential growth rate. The values of two remaining
parameters, b (used to compute r) and a are taken to be 1 in both vectors for the lack of better information.

Fig. 3 illustrates parameter estimation and the epidemic forecasts based on the generalized Richards model with 20 weeks
of incident case data for the Ebola epidemic in Sierra Leone. After the five unknown parameters have been recovered from
early epidemic data, 100 additional data bootstrap curves are generated by adding a Poisson error structure to the weekly
series of reported cases (see (Chowell, Ammon, Hengartner, & Hyman, 2006)) in order to quantify uncertainty in the
recovered parameters. An alternative is to employ analytic results from asymptotic theory to estimate parameter uncertainty
(Banks, Davidian, Samuels, & Sutton, 2009). The histograms in the upper row show the recovered values of the parameters,
while the collection of curves at the bottom of the figure demonstrates the accuracy of the forecasting.

In a similar manner, we estimated parameters and produced forecasts for the Ebola epidemics in Guinea (Fig. 4) and
Liberia (Fig. 5). Not surprisingly the model has most difficulties tracking the epidemic in Guinea due to its multi-mode nature
(Fig. 4). Since this outbreak is also the longest, we need more data (30 weeks) to forecast future incidence cases. On the other
hand, the Liberia outbreak, which is 45 weeks total, can be projected from as little as 12 weeks of early data. This inverse
modeling approach could be adapted to analyze outbreaks of other disease system, e.g., avian influenza, Middle East Res-
piratory Syndrome (MERS), and Zika. One could envision disease forecasts for an emerging outbreak in real timewith updates
every few weeks or so (depending on the disease system).

In conclusion, we have illustrated the potential of rigorous mathematical approaches for generating reliable parameter
estimates and useful epidemic forecasts in the context of the generalized Richards equation, a simple phenomenological 4-
parameter model. Our results here suggest that carefully linking mathematical models with regularization techniques could
lead to stable parameter estimation and associated forward projections.
Fig. 5. Liberia: Estimation of r, t, p, a, and K, and Forecasting. r ¼ 0.12(95% CI: 0.63, 1.9), t ¼ 15(95% CI: 13, 17), p ¼ 0.82 (95% CI: 0.7, 0.88), a ¼ 1 (95% CI: 1, 1.04),
K ¼ 3.5 ,103 (95% CI: 2.2 ,103, 4.4 ,103).
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