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Neuroinflammation related to microglial activation plays an important role in
neurodegenerative diseases. Translocator protein 18 kDa (TSPO), a biomarker of
reactive gliosis, its ligands can reduce neuroinflammation and can be used to treat
neurodegenerative diseases. Therefore, we explored whether TSPO ligands exert an
anti-inflammatory effect by affecting the nucleotide-binding domain-like receptor protein
3 (NLRP3) inflammasome, thereby inhibiting the release of inflammatory cytokines in
microglial cells. In the present study, BV-2 cells were exposed to lipopolysaccharide
(LPS) for 6 h to induce an inflammatory response. We found that the levels of reactive
oxygen species (ROS), NLRP3 inflammasome, interleukin-1β (IL-1β), and interleukin-18
(IL-18) were significantly increased. However, pretreatment with TSPO ligands inhibited
BV-2 microglial and NLRP3 inflammasome activation and significantly reduced the levels
of ROS, IL-1β, and IL-18. Furthermore, a combination of LPS and ATP was used to
activate the NLRP3 inflammasome. Both pretreatment and post-treatment with TSPO
ligand can downregulate the activation of NLRP3 inflammasome and IL-1β expression.
Finally, we found that TSPO was involved in the regulation of NLRP3 inflammasome
with TSPO ligands treatment in TSPO knockdown BV2 cells. Collectively, these results
indicate that TSPO ligands are promising targets to control microglial reactivity and
neuroinflammatory diseases.
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INTRODUCTION

The incidence of neurodegenerative diseases increases with age, and the complications of
neurodegenerative diseases seriously affect the quality of life and survival rate of the elderly
(Karim et al., 2014). The causes of neurodegenerative diseases are unclear, and treatments for
neurodegenerative diseases are very limited. Recent research suggests that the development
of neuroinflammation is closely related to a variety of neurodegenerative diseases (Ransohoff,
2016). The occurrence and development of neuroinflammation are closely related to the
activation of microglia (Subhramanyam et al., 2019). Activated microglia can produce
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inflammatory cytokines, including tumor necrosis factor-
alpha (TNF-α), interleukin-1β (IL-1β), and reactive oxygen
species (ROS), which could result in the progression of
neurodegenerative diseases (Xu et al., 2016). Also, research has
shown that oxidative stress is associated with the pathogenesis of
neurodegenerative diseases (Crotty et al., 2017). Mitochondria-
derived ROS may activate the nucleotide-binding domain-like
receptor protein 3 (NLRP3) inflammasome (Wang et al.,
2017). NLRP3 inflammasome is a multi-protein complex that
is distributed in the cytosol (Tschopp and Schroder, 2010).
The NLRP3 inflammasome consists of NLRP3, an apoptosis-
associated speck-like protein containing a caspase recruitment
domain (ASC), and cysteinyl aspartate specific proteinase 1
(caspase-1). This inflammasome induces caspase-1 activation,
which induces the maturation and secretion of proinflammatory
cytokines, including IL-1β and interleukin-18 (IL-18; Li et al.,
2017). IL-1β and IL-18 initiate a variety of signaling pathways and
drive inflammation, which leads to neuronal damage or death
(Yatsiv et al., 2002; Meissner et al., 2010; Wilms et al., 2010). In
the central nervous system (CNS), the inappropriate activation
of the NLRP3 inflammasome participates in the pathogenesis
of both acute and chronic neurodegenerative conditions (Chen
et al., 2015; Ito et al., 2015). Translocator protein 18 kDa
(TSPO), which is a new name for a peripheral benzodiazepine
receptor, has been studied as a biomarker of reactive gliosis
and inflammation associated with a variety of neuropathological
conditions (Chen and Guilarte, 2008). TSPO plays an important
role in regulating inflammation (McNeela et al., 2018). Under
normal physiological conditions, TSPO expression is low in
brain glial cells but is significantly increased in brain injury and
inflammation, a feature that makes it particularly suitable for
assessing active glial cells (Biswas et al., 2018; Werry et al., 2019).
Significant increases in TSPO expression were found in many
neurodegenerative diseases, such as Alzheimer’s disease (AD;
Metaxas et al., 2019), Parkinson’s disease (PD; Gerhard, 2016),
and Huntington’s disease (HD; Metaxas et al., 2019). However,
the causal relationship between changes in TSPO protein
expression and the occurrence of neurodegenerative diseases is
still unclear. Recent evidence indicates that TSPO can be used as
a biomarker for neuroinflammation in the brain and that TSPO
ligands can be targeted to induce therapeutic effects against
neurological disease (Kim and Pae, 2016). Also, TSPO ligands
show therapeutic effects in terms of neuroprotection and anxiety
(Rupprecht et al., 2010). PK11195, a classic TSPO ligand, shows
great potential in treating neurodegenerative diseases (Azrad
et al., 2019). Midazolam, which is a benzodiazepine, can inhibit
the release of neuroinflammatory factors (Tanabe et al., 2011). In
this study, we examined the effects of PK11195 and midazolam
pretreatment or post-treatment on neuroinflammation and
determined that the NLRP3 inflammatory pathway is involved
in these effects.

MATERIALS AND METHODS

Cell Culture and Treatment
The BV-2 mouse microglial cell line was purchased from the
Cobioer Biological Technology Company (Nanjing, China).

BV-2 cells were cultured in 1,640 medium with 10% fetal
bovine serum (Gibco, Shanghai, China) and 1% penicillin-
streptomycin in an atmosphere with 5% CO2 at 37◦C. To
investigate the anti-inflammatory effects of PK11195 and
midazolam pretreatment, BV-2 cells were exposed to 1 µg/ml
lipopolysaccharide (LPS; Solarbio, Beijing, China) for 6 h to
stimulate the inflammatory response and constitute the LPS
group. BV-2 cells incubated with culture medium served as
the control group. BV-2 microglial cells were pretreated with
0.5 µM PK11195 (Sigma–Aldrich, St. Louis, MO, USA) or 15
µM midazolam (NHWA, Xuzhou, Jiangsu, China) for 1 h and
then exposed to LPS for 6 h. These two groups were used as
the PK11195 + LPS group and midazolam + LPS group. For
the PK11195 group and midazolam group, BV-2 cells were
previously incubated with 0.5µMPK11195 or 15µMmidazolam
for 6 h. We also used a combination of LPS and ATP to stimulate
BV2 cells. BV-2 cells were incubated with LPS (1 µg/ml) for
6 h followed by 1 mM ATP (Sigma–Aldrich, St. Louis, MO,
USA) treated for 2 h and constitute the LPS + ATP group.
BV-2 microglial cells were pretreated with 0.5 µM PK11195 or
15 µM midazolam for 1 h and then exposed to LPS + ATP.
These two groups were used as the PK11195 + LPS + ATP
group and midazolam + LPS + ATP group. To investigate
the anti-inflammatory effects of PK11195 and midazolam post-
treatment, the cells were treated with PK11195 (0.5 µM) or
midazolam (15 µM) for 2 h, after stimulated with LPS + ATP.
These two groups were used as the LPS + ATP + PK11195 group
and LPS + ATP + midazolam group.

Western Blot Analysis
After treatment, the cells were collected and lysed in RIPA buffer
(Solarbio, Beijing, China) containing PMSF (Solarbio, Beijing,
China) buffer. Protein (30µg) was extracted and electrophoresed
on SDS–PAGE gels and transferred to PVDF membranes
(Millipore Corp., Bedford, MA, USA). The membranes were
blocked with PBS buffer containing 5% skim milk at room
temperature for 2 h and then incubated overnight at 4◦C with
specific antibodies against NLRP3 (1:1,000; Abcam, Cambridge,
UK), caspase-1 (1:1,000; Abcam, Cambridge, UK), ASC (1:100;
Santa Cruz Biotechnology, Dallas, TX, USA), IBA-1 (1:1,000;
Abcam, Cambridge, UK), caspase-1 p10 (1:1,000; Abcam,
Cambridge, UK), IL-1β (1:1,000; Abcam, Cambridge, UK);
TSPO (1:1,000; Abcam, Cambridge, UK) or β-actin (1:2,000;
Beyotime, Shanghai, China). After washing the membranes with
PBS, horseradish peroxidase-conjugated secondary antibody
diluted 7,000-fold was incubated with the membrane at room
temperature for 1 h. Then, the membranes were observed using
a Tanon 5200 multifunctional imaging system. β-actin was used
as a loading control.

Detection of Mitochondrial-Derived
DCFH-ROS Levels
The radicals ROS production was measured by DCFH-DA
staining. LPS-induced BV-2 cells were pretreated with
PK11195 or midazolam. The cells were washed with PBS
three times and incubated with 2.5 µM DCFH-DA (Beyotime,
Shanghai, China) in the dark at 37◦C for 30 min. After washing
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the cells three times, images were captured using a fluorescence
microscope (Olympus, Tokyo, Japan) and analyzed with
Image-Pro Plus. The excitation wavelength was 488 nm, and the
emission wavelength was 525 nm.

Enzyme-Linked Immunosorbent Assay
(ELISA)
BV-2 cells were exposed to 1 µg/ml LPS for 6 h to stimulate the
inflammatory response. For the LPS groups, cells incubated with
culture medium served as the control. BV-2 microglial cells in
the LPS + PK11195 or LPS + midazolam groups were pretreated
with 0.5 µM PK11195 or 15 µM midazolam for 1 h and then
exposed to LPS for 6 h. Subsequently, the medium of the different
groups was collected. IL-1β (Dakewe, Beijing, China) and IL-18
(Multi Sciences, Hangzhou, Zhejiang, China) that the cells had
secreted into the culture supernatant were measured by ELISAs
according to the manufacturer’s instructions. The optical density
(OD) values at 450 nm were measured using a microplate reader.

Immunocytochemistry
After treatment, the cells were fixed with 4% paraformaldehyde
(PFA) in PBS for 30 min, washed three times with PBS for
5 min each time, and then blocked in 5% goat blocking serum
(Solarbio, Beijing, China) for 30 min at room temperature.
The cells were then incubated overnight with anti-NLRP3
(1:100; Abcam, Cambridge, UK), anti-ASC (1:100; Santa Cruz
Biotechnology, Dallas, TX, USA), anti-caspase-1 (1:150; Abcam,
Cambridge, UK), and anti-IBA-1 antibodies (1:100; Abcam,
Cambridge, UK) at 4◦C. After washing three times with PBS,
the cells were incubated with goat anti-rabbit IgG (1:500; Multi
Sciences, Hangzhou, Zhejiang, China) or goat anti-mouse IgG
(1:500; Multi Sciences, Hangzhou, Zhejiang, China) secondary
antibody for 2 h in the dark at 37◦C. Finally, fluorescence
images were acquired with a fluorescence microscope (Olympus,
Tokyo, Japan), and the analysis of the fluorescence images was
performed by ImageJ.

RNA Isolation and Real-Time PCR Assays
Total RNA was extracted with TRIzol reagent (Thermo
Fisher Scientific, Shanghai, China). Reverse transcription was
performed with a ReverTra Ace qPCR RT kit (Toyobo,
Osaka, Japan) according to the manufacturer’s instructions.
For real-time PCR analysis, the resultant cDNA products were
amplified using a 2× ChamQ SYBR qPCR Master Mix in
triplicate. β-Actin was used for standardization. The forward and
reverse primer sequences are shown in Table 1. RT-PCR was
performed for 40 cycles at 95◦C for 15 s and 60◦C for 1 min after
an initial 15 min incubation at 95◦C.

siRNA Preparation and Transfection
For siRNA experiments, BV-2 cells (6 × 105/well) were seeded
onto six-well plates. After 24 h, cells were transfected with siRNA
(100 nM; Genechem, Shanghai, China). The sequence of siRNA
against TSPO was as follows:

mTSPO-F: 5′-CCGUGCUCAACUACUAUGUAUTT-3′.
mTSPO-R: 5′-AUACAUAGUAGUUGAGCACGGTT-3′.
The siRNAs were transfected using Lipofectamine 3000

(Invitrogen, Carlsbad, CA, USA) according to themanufacturer’s

TABLE 1 | Primers used in the study.

Gene Forward primers Reverse primers

NLRP3 CCTGGGGGACTTTG
GAATCAG

GATCCTGACAACAC
GCGGA

Caspase-1 TTGAGGGTCCCAGT
CAGTCC

CCCCAGGCAAGCCA
AATC

IL-1β GCCCATCCTCTGTG
ACTCAT

AGGCCACAGGTATT
TTGTCG

IL-18 GCCTGTGTTCGAGG
ATATGACT

CCTTCACAGAGAGG
GTCACAG

TSPO GCTGTGGATCTTTC
CAGAACA

ATGCCAAGAGGGTT
TCTGC

β-actin CCAGTTGGTAACAA
TGCCATGT

GGCTGTATTCCCCT
CCATCG

instructions. After 6 h, the medium was changed and the cells
were incubated with fresh medium for 24 h. The levels of TSPO
in transfected BV-2 cells were analyzed by western blot and
real-time PCR.

Statistical Analysis
All values are expressed as the means ± SEM. The data were
analyzed with one-way ANOVA followed by Tukey’s post hoc
test for significance via SPSS 20.0. The results were considered
significant when P < 0.05.

RESULTS

PK11195 and Midazolam Reduce ROS
Levels and Inhibit NLRP3 Inflammasome
Activation
We first investigated whether pretreatment with the TSPO
ligands PK11195 and midazolam mediated the ROS production
in BV-2 cells. The results showed that the levels of ROS were
significantly increased in the cells stimulated with LPS (1
µg/ml) for 6 h. However, PK11195 or midazolam pretreatment
significantly inhibited the expression of ROS stimulated by
LPS. The results indicated that PK11195 and midazolam inhibit
the production of ROS in microglial cells (Figures 1A,B).
To further investigate whether the NLRP3 inflammasome
involved in the effect regulated by PK11195 and midazolam
in microglia, the levels of NLRP3, ASC, and caspase-1 were
measured by western blot, RT-PCR, and immunocytochemistry.
The results showed that LPS stimulation observably increased
the levels of NLRP3, ASC, and caspase-1, whereas PK11195 or
midazolam pretreatment significantly inhibited the protein
expression of NLRP3, ASC, and caspase-1 and the mRNA
expression of NLRP3 and caspase-1 (Figures 1C–I). Activation
of NLRP3 inflammasome requires priming and activating
signals. Many studies show that LPS and ATP are priming and
activating stimuli, respectively, and are used in combination
to activate NLRP3 inflammasome (Song et al., 2017; Heneka
et al., 2018; Kelley et al., 2019). Next, we used LPS + ATP
combination to induce NLRP3 inflammasome and further verify
NLRP3 inflammasome was involved in the anti-inflammatory
effects of PK11195 and midazolam. We found that NLRP3 and
Caspase-1 p10 were dramatically up-regulated in LPS + ATP,
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FIGURE 1 | PK11195 and midazolam reduced the reactive oxygen species (ROS) levels and inhibit the activation of NLRP3 inflammasome in the lipopolysaccharide
(LPS)-stimulated or LPS + ATP induced BV-2 cells. Cells were pretreated with PK11195 (0.5 µM) or midazolam (15 µM) for 1 h and then with LPS (1 µg/ml) for
another 6 h. (A) Representative images showing the ROS expression with DCFH-DA in the LPS-stimulated BV-2 cells. Scale bar, 40 µm. (B) Quantification of the
fluorescence intensity of the ROS using Image-Pro Plus (n = 5). (C) Representative images of NLRP3, ASC, caspase-1, and β-actin expression in LPS-stimulated
BV-2 cells by western blot. (D) Comparison of NLRP3, ASC, and caspase-1 expression in the LPS-stimulated BV-2 cells in each group based on western blot
analysis (n = 5). Representative images showing NLRP3 (E), ASC (F), and caspase-1 (G) expression with immunocytochemistry in the LPS-stimulated BV-2 cells.
Scale bar, 20 µm. (H) Quantification of the fluorescence intensity of NLRP3 using Image-Pro Plus (n = 5). (I) Comparison of NLRP3 and caspase-1 expression in the
LPS-stimulated BV-2 cells by group using real-time PCR (n = 5). Cells were pretreated with PK11195 (0.5 µM) or midazolam (15 µM) for 1 h, then exposed to LPS (1
µg/ml) for 6 h, followed by ATP (1 mM) incubation for another 2 h. *P < 0.05, **P < 0.01, compared with the control group; #P < 0.05, ##P < 0.01, compared

(Continued)
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FIGURE 1 | Continued
with the LPS group. (J) Representative images of NLRP3 and caspase-1
p10 expression in LPS + ATP induced BV-2 cells by western blot. (K)
Comparison of NLRP3 and caspase-1 p10 expression in the LPS + ATP
induced BV-2 cells in each group based on western blot analysis (n = 5).
*P < 0.05, **P < 0.01, compared with the control group; #P < 0.05,
##P < 0.01, compared with the LPS + ATP group. (L) Comparison of IBA-1
expression in the BV-2 cells by a group based on western blot analysis
(n = 5). (M) Representative immunocytochemistry of IBA-1 expression in the
BV-2 cells. Scale bar, 20 µm. (N) Quantification of the fluorescence intensity
of IBA-1 using Image-Pro Plus (n = 5). ∗∗P < 0.01, compared with the control
group; #P < 0.05, compared with the LPS group.

but were significantly decreased with PK11195 or midazolam
intervention (Figures 1J,K). These results further verified
that pretreatment with PK11195 or midazolam inhibited the
activation of the NLRP3 inflammasome in microglia. To
examine whether pretreatment with PK11195 or midazolam
inhibited microglial activation, the expression of IBA-1
was assayed using western blot and immunocytochemistry
analyses (Figures 1L–N). We found that the levels of
IBA-1 were upregulated by LPS stimulation, but effectively
inhibited by pretreatment with PK11195 or midazolam.
Meanwhile, the effects of PK11195 or midazolam alone on
NLRP3 inflammasomes and IBA-1 in the basal activity of BV-2
cells were assayed using western blot analysis. We found that the
levels of NLRP3 inflammasomes and IBA-1 were no significant
changes in the basal state of BV-2 cells treated with PK11195 or
midazolam alone (Supplementary Figure 1).

PK11195 and Midazolam Reduced
NLRP3-Mediated IL-1β and IL-18 Secretion
Moreover, we tested whether PK11195 or midazolam can
inhibit NLRP3-mediated IL-1β and IL-18 secretion in microglial
cells. BV-2 microglial cells were pretreated with PK11195 or
midazolam for 1 h and then exposed to LPS for 6 h.
The results showed that the levels of IL-1β and IL-18 were
significantly increased in the LPS-treated BV-2 microglial cells
in ELISAs and the RT-PCR analysis. However, pretreatment
with PK11195 or midazolam effectively inhibited the expression
of IL-1β and IL-18 (Figures 2A–D). To further investigate the
inhibitor effect of PK11195 or midazolam on IL-1β related to
NLRP3 inflammasome, BV2 cells were stimulated by LPS +
ATP and treated with PK11195 or midazolam. Consistent with
the literature, the levels of NLRP3 and Caspase-1 p10 were
robustly upregulated by LPS + ATP, indicating the activation
of the NLRP3 inflammasome (Li et al., 2018). As expected,
pretreatment with PK11195 or midazolam significantly reduced
IL-1β levels in cell lysates and medium (Figures 2E,F). These
results suggest that pretreatment with PK11195 and midazolam
inhibited the secretion of the inflammatory cytokines measured
associated with NLRP3.

Also, we observed the inhibitory effect of TSPO ligand on
NLRP3 inflammasome using post-treatment of PK11195 and
midazolam. The cells were firstly incubated with LPS for 6 h
and then treated with PK11195 or midazolam for extra 2 h
following ATP treatment for 2 h. The cell lysates were collected
and applied to western blotting, and the cytokine in the medium

FIGURE 2 | PK11195 or midazolam inhibited the expression of IL-1β and IL-18 in the LPS-stimulated or LPS + ATP induced BV-2 cells. Cells were pretreated with
PK11195 (0.5 µM) or midazolam (15 µM) for 1 h and with LPS (1 µg/ml) for another 6 h. Comparison of IL-1β (A) and IL-18 (B) expression in the LPS-stimulated
BV-2 cells by a group based on enzyme-linked immunosorbent assay (ELISA; n = 5). Comparison of IL-1β (C) and IL-18 (D) expression in the LPS-stimulated BV-2
cells by group using real-time PCR. Cells were pretreated with PK11195 (0.5 µM) or midazolam (15 µM) for 1 h, then exposed to LPS (1 µg/ml) for 6 h, followed by
ATP (1 mM) incubation for another 2 h. ∗∗P < 0.01, compared with the control group; #P < 0.05, ##P < 0.01, compared with the LPS group. (E) Comparison of IL-1β

expression in the LPS + ATP induced BV-2 cells by a group based on western blot analysis (n = 5). (F) Comparison of IL-1β release in the medium of LPS + ATP
induced BV-2 cells by a group based on ELISAs (n = 5). ∗∗P < 0.01, compared with the control group; #P < 0.05, ##P < 0.01, compared with the LPS + ATP group.
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FIGURE 3 | TPSO ligands PK11195 or midazolam downregulated the activation of NLRP3 inflammasome in BV2 cells by a TSPO-dependent mechanism. TSPO
knockdown BV2 cells were established using siRNA transfection. (A,B) Comparison of TSPO mRNA and protein expression in TSPO knockdown cells and the
control siRNA cells (n = 5). Both TSPO knockdown and the control siRNA cells were pretreated with 0.5 µM PK11195 or 15 µM midazolam for 1 h and then
exposed to LPS (1 µg/ml) for 6 h, followed by ATP (1 mM) incubation for another 2 h. (C) Representative images of NLRP3, caspase-1 p10, and β-actin expression
on control siRNA and TSPO siRNA BV-2 cells by western blot. (D,E) Comparison of the levels of NLRP3 (D) and caspase-1 p10 (E) in the TSPO knockdown and
control siRNA BV-2 cells by a group based on western blot analysis (n = 5). (F) Representative images showing the ROS expression with DCFH-DA in control siRNA
and TSPO siRNA BV-2 cells. Scale bar, 40 µm. (G) Quantification of the fluorescence intensity of the ROS using Image-Pro Plus (n = 5). ∗P < 0.05, ∗∗P < 0.01.

was assayed by ELISAs. Consistent with our previous study,
the levels of NLRP3 and Caspase-1 p10 were significantly
increased in LPS + ATP-stimulated BV-2 cells. Post-treatment of
PK11195 or midazolam significantly reversed the upregulation
of the NLRP3 and caspase-1 p10 (Supplementary Figures
2A,B) induced by LPS + ATP. Furthermore, posttreatment
of PK11195 and midazolam significantly down-regulated
NLRP3 inflammasome-derived IL-1β release (Supplementary
Figures 2C,D). These results indicate that post-treatment
with PK11195 and midazolam inhibited the activation of
NLRP3 inflammasome and downregulated IL-1β release.

Effects of PK11195 and Midazolam on
Activation of NLRP3 Inflammasome in
TSPO Knockdown Microglia
To further examine whether TSPOwas involved in the regulation
of NLRP3 inflammasome with TSPO ligands treatment,
we established TSPO knockdown BV2 cells using siRNA

transfection. Analysis of mRNA and protein expression revealed
a significant reduction of TSPO in transduced cells compared
with the control cells (Figures 3A,B). Both TSPO knockdown
and the control cells were pretreated with 0.5 µM PK11195 or
15 µM midazolam for 1 h and then exposed to LPS (1 µg/ml)
for 6 h, followed by ATP (1 mM) incubation for another 2 h.
The cell lysates were collected and applied to western blot
analysis. The results showed that the levels of ROS, NLRP3, and
cleaved-caspase-1 stimulated by LPS + ATP in TSPO knockdown
cells were significantly higher than those in the control group.
Moreover, pretreatment with PK11195 or midazolam reduced
the production of ROS and decreased the NLRP3 and cleaved-
caspase-1 expression in the control cells, although TSPO
knockdown cells were affected too. However, the levels of the two
groups were significantly different (Figures 3C–G). These results
indicated that TSPO was involved in the regulation of ROS and
NLRP3 inflammasome and in the modulation of inflammation
with TSPO ligands treatment.
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FIGURE 4 | PK11195 or Midazolam down-regulated NLRP3 inflammasome and its downstream IL-1β and IL-18 in the reactivity of BV2 microglia cell.
BV2 microglial cells were activated by LPS. LPS, priming stimuli, induce mitochondria to release ROS and then regulate NLRP3 inflammasome activation. ATP, an
activation signal, triggers the specific activation of NLRP3. Finally, the cleaved-caspase-1 activates the IL-1β and IL-18. Both pretreatment and post-treatment with
TSPO ligand can inhibit the activation of NLRP3 inflammasome and IL-1β and IL-18 expression. Collectively, these results indicate that TSPO ligands are promising
targets to control microglial reactivity and neuroinflammatory diseases.

DISCUSSION

To study the effects of TSPO ligands on neurodegenerative
diseases related to neuroinflammation, we performed
experiments on the effects of TSPO ligands treatment on
inflammatory factors and concluded that treatment with TSPO
ligands can inhibit the progression of neuroinflammation.
Our current study shows that treatment of TSPO ligands
PK11195 and midazolam can inhibit the activation of BV-2
microglia and the production of ROS, thereby also inhibiting
the expression of NLRP3, ASC, and caspase-1 at the mRNA
and protein levels and finally reducing IL- 1β and IL-18
secretion. Furthermore, TSPO was involved in the regulation of
NLRP3 inflammasome as well as in treatment with TSPO ligands
in TSPO knockdown microglial.

Microglial activation-induced neuroinflammation plays a
vital role in the progression of neurodegenerative diseases,
including AD (Sharma et al., 2020), PD (L’Episcopo et al., 2018),
and perioperative neurocognitive disorders (PNDs; Saxena and
Maze, 2018). In this study, BV2 microglial cells were activated
by LPS, but the activation was significantly down-regulated
with TSPO ligands. Therefore, we proposed a possible strategy
to prevent or limit the occurrence and development of
neurodegenerative diseases by using specific TSPO ligands.
PK11195, as a ligand for TSPO, is used as a diagnostic tool for
a variety of neuroinflammatory diseases (Harberts et al., 2013;
Rissanen et al., 2014). Also, PK11195, which has neuroprotective
potential (Milenkovic et al., 2015), suppresses microglial
activation and has suppressive effects on neuroinflammation
(Karlstetter et al., 2014). Midazolam is a benzodiazepine drug
that acts on the brainstem and limbic system mainly through

the benzodiazepine receptor (BZ receptor). It is widely used
for clinical anesthesia (Prommer, 2020). Studies have found
that midazolam can play a neuroprotective role by preventing
lipid peroxidation and mitochondrial damage (Harman et al.,
2012). Otherwise, TSPO drug ligands induce neuroactive steroid
formation for the regulation of nervous system dysfunction
(Porcu et al., 2016). In our study, we found that TSPO
ligands PK11195 and midazolam inhibited the development of
neuroinflammation through the NLRP3 inflammasome.

TSPO is known as the peripheral benzodiazepine receptor,
which ismainly localized in the outermembrane ofmitochondria
in peripheral organs and the brain (Rupprecht et al., 2010). The
widespread distribution of TSPO mitochondria indicates effects
for this protein in regulating mitochondria-related function,
including changes in mitochondrial capacity, ATP, and ROS
production, leading to the evolution of neurodegeneration in
patients (Betlazar et al., 2020). Meanwhile, changes in TSPO
protein expression have major impacts on the regulation of
inflammation (Setiawan et al., 2015). Mitochondria are regarded
as a mediator of nucleate signaling through large molecular
complexes, such as the NLRP3 inflammasome, and they activate
inflammation through the release of mitochondrial danger-
associated molecular patterns (Subramanian et al., 2013). ROS,
as upstream signals of NLRP3 inflammasome activation, is
required (Chen et al., 2017). The NLRP3 inflammasome affects
the pathogenesis of the neurodegenerative disease (Sheedy
et al., 2013). Activated NLRP3 inflammasomes can cleave
pre-IL-1β and pre-IL-18 to generate mature IL-1β and IL-
18. Inflammasomes are key players in the initiation and
perpetuation of neuroinflammatory processes that require
cytokine maturation, particularly IL-1β and IL-18 (Walsh et al.,
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2014). The NLRP3 inflammasome plays a vital role in the
brain of patients with neurodegenerative disease (Heneka et al.,
2018). There is increasing evidence that the importance of TSPO
is based on its role in the process of NLRP3 inflammasome
activation (Nakahira et al., 2011; Menu et al., 2012; Lee et al.,
2016). Our current study shows that treatment of PK11195 and
midazolam can inhibit the activation of BV-2 microglia and the
production of ROS, thereby also inhibiting the expression of
NLRP3, ASC and caspase-1 at the mRNA and protein levels and
finally reducing IL- 1β and IL-18 secretion.

To further examine whether TSPO was involved in the
regulation of NLRP3 inflammasome with TSPO ligands
PK11195 or midazolam treatment, we established TSPO
knockdown BV2 cells using siRNA transfection. Analysis of
mRNA and protein expression revealed a significant reduction
of TSPO in transduced cells compared with the control cells.
We found that the levels of NLRP3 inflammasome were
remarkably upregulated in TSPO knockdown compared with
the control cells. Moreover, challenging the control cells
with PK11195 or midazolam decreased the expression of the
NLRP3 inflammasome, significantly different from the TSPO
knockdown cells. However, the levels of NLRP3 inflammasome
in the two groups were significantly different. The results
indicated that TSPO was involved in the activation of
NLRP3 inflammasome and in the modulation of inflammation
with TSPO ligands treatment, but TSPO ligands may also
interfere with mechanisms that are in part independent
from TSPO (Bader et al., 2019; Figure 4). In the future, we
will further explore the role of TSPO ligands in primary
microglia cells and animal models, as well as other mechanisms
independent of TPSO.

CONCLUSION

The pretreatment or post-treatment of TSPO ligands inhibited
the neuroinflammation caused by microglial activation through
the NLRP3 inflammasome, interfered with the chronic
inflammatory cascade, and disrupted the cytokine cycle,
which may have a positive effect on the clinical treatment of
neurodegenerative diseases. We might use TSPO as a target

during in-depth clinical research and thus provide strategies
for preventing and treating neurodegenerative diseases related
to neuroinflammation.
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