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Chang Liu1, Jiawei Zheng1, Zehao Lin1, Fuxian Ren3* and
Dengfeng Gao1*
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2Department of Digestive Medicine, Daqing Longnan Hospital, Daqing, China, 3Department of
Cardiology, Meishan Branch of the Third Affiliated Hospital, Yanan University School of Medical,
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Purpose: In recent years, the complete blood count with differential (CBC

w/diff) test has drawn strong interest because of its prognostic value in

cardiovascular diseases. We aimed to develop a CBC w/diff-based prediction

model for in-hospital mortality among patients with severe acute myocardial

infarction (AMI) in the coronary care unit (CCU).

Materials and methods: This single-center retrospective study used data

from a public database. The neural network method was applied. The

performance of the model was assessed by discrimination and calibration.

The discrimination performance of our model was compared to that of seven

other classical machine learning models and five well-studied CBC w/diff

clinical indicators. Finally, a permutation test was applied to evaluate the

importance rank of the predictor variables.

Results: A total of 2,231 patient medical records were included. With a mean

area under the curve (AUC) of 0.788 [95% confidence interval (CI), 0.736–

0.838], our model outperformed all other models and indices. Furthermore,

it performed well in calibration. Finally, the top three predictors were white

blood cell count (WBC), red blood cell distribution width-coefficient of

variation (RDW-CV), and neutrophil percentage. Surprisingly, after dropping

seven variables with poor prediction values, the AUC of our model increased

to 0.812 (95% CI, 0.762–0.859) (P < 0.05).
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Conclusion: We used a neural network method to develop a risk prediction

model for in-hospital mortality among patients with AMI in the CCU based

on the CBC w/diff test, which performed well and would aid in early clinical

decision-making. The top three important predictors were WBC, RDW-CV and

neutrophil percentage.

KEYWORDS

complete blood count with differential, prediction model, mortality, acute
myocardial infarction, coronary care unit, neural network

Introduction

In recent decades, early reperfusion therapy and adjunctive
pharmacotherapy have improved the outcomes of acute
myocardial infarction (AMI) (1). Globally, in-hospital mortality
has decreased from 29% in 1969 (2) to approximately 5%
today (3, 4). However, the contemporary in-hospital mortality
varies substantially across patients in different risk groups. Risk
stratification in patients with AMI is important for clinical
decision-making. Traditional risk score systems mostly derive
from ideal clinical trials with stringent patient cohort selection
(5–7). We aimed to develop and assess a risk prediction model
in a real-world cohort.

The complete blood count with differential (CBC w/diff)
test provide a wealth of information on the inflammatory
state, oxygen-carrying capacity, and coagulation state. Many
indices are accepted prognostic markers for short- and long-
term outcomes following AMI, such as white blood cell count
(WBC) (8), neutrophil to lymphocyte ratio (NLR) (9), platelet
to lymphocyte ratio (PLR) (10), systemic immune-inflammation
index (SII, calculated as P × N/L, where P and N/L are

Abbreviations: ACC, accuracy; AMI, acute myocardial infarction;
AdaBoost, adaptive boosting; AUC, area under the curve; BIDMC, Beth
Israel Deaconess Medical Center; BMI, body mass index; CBC w/diff,
complete blood count with differential; CKMB, creatine kinase - MB
isoenzyme; CI, confidence interval; CCU, coronary care unit; DBP,
diastolic blood pressure; DT, decision tree; FC, fully connected layer;
GNB, Gaussian naive Bayes; GRACE, Global registry of acute coronary
events; ICD, International classification of diseases; KNN, k-nearest
neighbor; LR, logistic regression; MCH, mean corpuscular hemoglobin;
MCHC, mean corpuscular hemoglobin concentration; MCV, mean
corpuscular volume; MPV, mean platelet volume; MIMIC, Medical
Information Mart for Intensive Care; NLR, neutrophil-to-lymphocyte
ratio; NSTEMI, non-ST-elevation myocardial infarction; PDW, platelet
distribution width; PLR, platelet to lymphocyte ratio; RF, random
forest; RBC, red blood cell; ROC, receiver operating characteristic;
ReLU, rectified linear unit; RDW-CV, red blood cell distribution width-
coefficient of variation; SBP, systolic blood pressure; SEN, sensitivity;
SII, systemic immune-inflammation index; SPE, specificity; SpO2, pulse
oxygen saturation; SQL, structure query language; STEMI, ST-elevation
myocardial infarction; SVM, support vector machine; TIMI, thrombolysis
in myocardial infarction; TRIPOD, transparent reporting of multivariable
prediction model for individual prognosis or diagnosis; WBC, white
blood cell count.

the absolute platelet count (PLT) and the NLR, respectively)
(11), and red cell distribution width (RDW) (12). The CBC
w/diff indices have drawn strong interest because of their low-
cost and easy availability in clinical practice. However, existing
cardiovascular prognostic scoring systems do not include
predictors derived from the CBC w/diff indices. Moreover, it
is unclear whether a comprehensive model incorporating all of
these indices would have better predictive ability, and which
index is the most powerful predictor among them has yet to
be identified. Hence, we used all of these indices to create a
prediction model and ranked the predictive values in order of
importance to the model.

Traditional regression models are constrained by a failure
to account for non-linear effects and complex interactions
among predictor variables (3). In this study, we developed
a prediction model based on the neural network method.
Our model’s prediction performance was then compared to
other models developed using the most recently published
classical machine learning methods, including traditional
logistic regression (LR), k-nearest neighbor (KNN), support
vector machine (SVM), Gaussian naive Bayes (GNB),
adaptive boosting (AdaBoost), decision tree (DT), and
random forest (RF).

We aimed to develop a CBC w/diff-based neural network
prediction model for in-hospital mortality among patients with
severe AMI in the CCU, as well as to identify the most important
predictor variable in the CBC w/diff test.

Materials and methods

Design, data source, and ethical
statement

This current study was a single-center retrospective study.
We used the clinical information of patients from a public
database to develop a prediction model for in-hospital mortality.

We obtained data from a freely available public database
called the Medical Information Mart for Intensive Care-IV
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FIGURE 1

Flowchart of patient inclusion. The medical information mart for
intensive care IV (MIMIC-IV) (version 1.0) database includes
medical records of 5,23,740 admissions from 3,82,278 patients.
In total, 11,935 admissions had a discharge diagnosis of acute
myocardial infarction (AMI), of which 3,261 were admitted to the
coronary care unit (CCU). After excluding 502 multiple
admissions except for the first admission and 528 patients
missing over 60% values of the complete blood count with
differential (CBC w/diff) test, 2,231 patients were ultimately
included in this study, of whom 397 died. MIMIC, medical
information mart for intensive care; AMI, acute myocardial
infarction; CCU, coronary care unit; CBC w/diff, complete blood
count with differential.

(MIMIC-IV, Published: March 16th, 2021. Version: 1.0)1 (13).
This database contains de-identified clinical data of a large
number of patients admitted to the Beth Israel Deaconess
Medical Center (BIDMC, Boston, MA, USA) from 2008 to 2019
(inclusive). One of the authors gained access to the dataset by
completing the Collaborative Institutional Training Initiative
program course (Certificate Record ID: 39690061).

Informed consent was waived for this study because of
the perfect anonymous data. We conducted this study in
accordance with the Declaration of Helsinki. We report this
study according to the Transparent Reporting of multivariable
prediction model for Individual Prognosis or Diagnosis
(TRIPOD) guidelines (14).

Patient selection

In the initial inclusion cohort, all patients with International
Classification of Diseases, 9th revision (ICD - 9) codes of the 410
groups or ICD, 10th revision (ICD-10) codes of the I21 groups
(the ICD codes of AMI) were included on discharge. Then,
those admitted to the CCU were chosen from these patients. To

1 https://doi.org/10.13026/s6n6-xd98

FIGURE 2

The architecture of the proposed neural network. The letter “b”
in the figure represents the batch size of the model, which is the
number of samples used to train a single forward and backward
pass. FC, fully connected layer; ReLU, rectified linear unit.

improve comparability among patients, only initial admission
data were used for patients admitted to the hospital more than
once. Finally, patients who had a CBC w/diff test with more than
60% missing values were excluded. Figure 1 shows the details of
the selection process used in this study.

Data extraction

We extracted the data using structure query language
(SQL) with PostgreSQL software (version 13) and Navicat
Premium software (version 15). The code that supports the
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TABLE 1 Comparison of baseline clinical characteristics between included and excluded patients.

Characteristics Included (n = 2231) Excluded (n = 528) P-value

Age (years) 72.25 (62.92–81.60) 71.83 (60.04–88.98) 0.420

Sex [male, n (%)] 1378 (61.8%) 316 (59.8%) 0.416

BMI (kg/m2) 28.85 (26.33–29.98) 28.85 (27.27–28.95) 0.816

Hypertension [n (%)] 865 (38.8%) 234 (44.3%) 0.019

Cardiac arrhythmia

Cardiac arrest [n (%)] 214 (9.5%) 32 (6.1%) 0.010

Atrial fibrillation [n (%)] 745 (33.4%) 133 (25.2%) <0.001

Congestive heart failure [n (%)] 1398 (62.7%) 225 (42.6%) <0.001

Peripheral vascular disease [n (%)] 358 (16.0%) 79 (15.0%) 0.539

Cerebrovascular disease [n (%)] 247 (11.1%) 37 (7.0%) 0.006

Diabetes mellitus [n (%)] 934 (41.9%) 166 (31.4%) <0.001

In-hospital death [n (%)] 397 (17.8%) 66 (12.5%) <0.001

P ≤ 0.05 are indicated in bold.
BMI, body mass index.

MIMIC-IV is publicly available.2 In addition to the parameters
in CBC w/diff at admission, we also extracted the baseline
characteristics related to patients’ cardiovascular risks, including
demographics, comorbidities, laboratory values, and other
clinical parameters. The outcome of interest was all-cause in-
hospital death marked in the electronic medical record system
on discharge. We did not calculate the sample size because
all selected data in the database were used to maximize the
generalizability and power of the findings.

Missing values

Missing values were imputed by the missForest method (15),
which has been proven to outperform all other algorithms. After
completing the missing values, we normalized the 19 variables
by column to facilitate subsequent data analysis.

Model development

Figure 2 shows the architecture of the proposed model.
Specifically, the proposed model has one input layer, one output
layer, and four hidden layers in between. The input layer
contains 19 neurons, representing the 19 variables in the blood
test. The output layer contains two neurons representing the
predicted probabilities of the model for survival and death,
and the sum of these two probabilities is 1. The four hidden
layers have feature dimensions of 32, 64, 32, and 2. This
design simulates the complex relationship between variables and
outcomes by allowing the 19 variables to undergo sufficient non-
linear transformation. The hidden layers are connected by the
activation function Rectified Linear Unit (ReLU) (16) and the

2 https://github.com/MIT-LCP/mimic-code

dropout layer (17). Finally, before the output layer, there is a
Sigmoid function (18) to generate the final association outcome.
The Sigmoid function was chosen because it shrank the final
output values into an S-shaped curve ranging from 0 to 1,
representing the probability value predicted by the model.

Our neural network was built using PyTorch (version 1.1.2).
We chose stochastic gradient descent (19) as the optimizer.
The weighted cross-entropy (20) was used as the loss function,
where the weight of negative samples was set to 0.2, and
the weight of positive samples was set to 0.8. This weight
set was created because the number of negative samples is
roughly four times that of positive samples. In addition, the
relevant hyperparameter settings were as follows: epoch was
set to 200, batch size was 32, learning rate was 0.001, and
momentum was 0.9.

The model’s final performance was determined by taking
the average of the results of the 5-fold cross-validation, which
is currently a preferred technique in computer science.

Statistical analysis

Two-sided P-values ≤ 0.05 were considered statistically
significant. Baseline characteristics analyses were conducted
using SPSS software (version 23). Other statistical analyses were
calculated and plotted using Python (version 3.7.5).

Comparison of baseline characteristics
The baseline characteristics of patients were compared

between survivors and non-survivors. The Kolmogorov–
Smirnov test was used to assess the normality of the distribution.
Data are presented as the mean with standard deviation for
normally distributed continuous variables or median with
interquartile range for skewed data. Independent sample t-tests
or Mann–Whitney U tests were used as appropriate. Categorical
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TABLE 2 Comparison of baseline clinical characteristics between survivors and non-survivors in the included cohort.

Characteristics All patients (n = 2231) Survivors (n = 1834) Non-survivors (n = 397) P-value

Demographics

Age (years) 72.2 (62.9–81.6) 71.1 (62.0–80.6) 77.1 (67.6–84.7) <0.001

Sex [male, n (%)] 1378 (61.8%) 1147 (62.5%) 231 (58.2%) 0.105

Comorbidities

Hypertension [n (%)] 865 (38.8%) 759 (41.4%) 106 (26.7%) <0.001

Diabetes mellitus [n (%)] 934 (41.9%) 750 (40.9%) 184 (46.3%) 0.046

Peripheral vascular disease [n (%)] 358 (16.0%) 278 (15.2%) 80 (20.2%) 0.014

Cerebrovascular disease [n (%)] 247 (11.1%) 180 (9.8%) 67 (16.9%) <0.001

Congestive heart failure [n (%)] 1398 (62.7%) 1117 (60.9%) 281 (70.8%) <0.001

Cardiac arrhythmia

Atrial fibrillation [n (%)] 745 (33.4%) 566 (30.9%) 179 (45.1%) <0.001

Cardiac arrest [n (%)] 214 (9.6%) 112 (6.1%) 102 (25.7%) <0.001

Laboratory variables

Troponin T (ng/mL) 1.22 (0.32–2.45) 1.18 (0.32–2.45) 1.36 (0.33–2.46) 0.397

CKMB (ng/mL) 35 (9–67) 35 (9–67) 36 (9–67) 0.669

Creatinine (mg/dL) 1.2 (0.9–1.8) 1.1 (0.9–1.6) 1.6 (1.2–2.4) <0.001

Glucose (mg/dL) 141 (113–196) 137 (112–186) 171 (121–243) <0.001

Clinical parameters

BMI (kg/m2) 28.9 (26.3–30.0) 28.9 (26.6–30.0) 28.9 (25.3–30.1) 0.067

Heart rate (bpm) 86 (73–95) 85 (73–94) 88 (76–103) <0.001

SBP (mmHg) 123 (109–135) 123 (111–137) 117 (101–126) <0.001

DBP (mmHg) 70 (60–78) 70 (61–79) 67 (55–76) <0.001

SpO2 (%) 97 (95–99) 97 (95–99) 96 (94–100) 0.849

P ≤ 0.05 are indicated in bold.
CKMB, creatine kinase - MB isoenzyme; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; SpO2 , pulse oxygen saturation.

variables are presented as absolute numbers with percentages
and were compared by using the chi-square test.

Model assessment
The performance of our newly developed model was

evaluated using discrimination and calibration on the testing
set in accordance with the guidelines of the Discrimination
and Calibration of Clinical Prediction Models (21). Our model’s
discrimination performance was compared to seven classical
machine learning models (including LR, KNN, SVM, GNB,
AdaBoost, DT, and RF) and five well-studied CBC w/diff
clinical indicators (including WBC, RDW-CV, NLR, PLR, and
SII). WBC was the whole white blood cell count. RDW-
CV was the red blood cell distribution width-coefficient of
variation in this study. The NLR was the ratio of the absolute
count or percentage of neutrophils to lymphocytes. The PLR
was the absolute platelet to lymphocyte count ratio. The
SII was calculated as P × N/L, where P was the absolute
PLT and N/L was the NLR. To evaluate discrimination
performance, receiver operating characteristic (ROC) curves
were plotted. The area under the curve (AUC) with 95%
confidence interval (CI), sensitivity, specificity, accuracy (ACC),
precision, and F1-score were all calculated. DeLong’s test was
used to assess the difference in AUC between our model

and another model or index. To demonstrate the calibration
performance, a calibration curve was constructed. Given that
the visual representation of the correlation between predicted
and observed values is sufficient to evaluate calibration
performance and that statistical tests such as the Hosmer–
Lemeshow test have limitations (21), we did not test for
significant differences. We also calculated the Brier score.
The Brier score offers a more comprehensive assessment
of model performance, combining model discrimination and
calibration. The Brier score represents the mean squared
difference between the predictions and the observed outcome.
When two models are compared, a smaller Brier score indicates
better model performance.

Feature importance rank

This study applied a permutation test to evaluate the
importance rank of features (22). According to permutation
test theory, a feature is considered important if the model’s
prediction error increases after permuting its values, indicating
that the model’s predictive capability is heavily reliant on
that feature. The importance of a feature in our model was
determined by its effect on ACC and AUC. A feature was
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TABLE 3 Comparison of baseline complete blood count with differential characteristics between survivors and non-survivors in the
included cohort.

Characteristics All patients (n = 2231) Survivors (n = 1834) Non-survivors (n = 397) P-value

WBC (K/µL) 11.10 (8.30–14.50) 10.90 (8.30–14.00) 12.60 (8.75–17.40) <0.001

RBC (m/uL) 3.88 (3.38–4.36) 3.88 (3.43–4.42) 3.67 (3.20–4.10) <0.001

Hemoglobin (g/dL) 11.6 (10.0–13.1) 11.6 (10.2–13.2) 10.9 (9.5–12.2) <0.001

Platelet count (K/µL) 217 (169–269) 218 (172–269) 207 (151–270) 0.022

Neutrophil percentage (%) 79.9 (70.4–86.0) 79.2 (69.7–85.4) 82.6 (74.6–87.5) <0.001

Monocyte percentage (%) 5.4 (3.7–7.5) 5.4 (3.8–7.5) 5.1 (3.1–7.9) 0.460

Lymphocyte percentage (%) 12.1 (7.3–19.7) 13.0 (7.9–20.5) 9.0 (5.8–15.0) <0.001

Eosinophil percentage (%) 0.6 (0.1–1.7) 0.6 (0.2–1.8) 0.2 (0–1.0) <0.001

Basophil percentage (%) 0.3 (0.2–0.5) 0.3 (0.2–0.5) 0.2 (0.1–0.4) <0.001

Neutrophil count (K/µL) 13.05 (7.45–742.06) 11.64 (6.86–733.21) 16.14 (9.25–861.23) <0.001

Monocyte count (K/µL) 23.46 (0.83–49.78) 26.79 (0.85–50.42) 1.96 (0.78–47.10) 0.004

Lymphocyte count (K/µL) 64.38 (1.39–147.92) 73.63 (1.51–155.19) 3.61 (1.01–112.11) <0.001

Eosinophil count (K/µL) 1.21 (0.03–9.00) 1.66 (0.05–10.38) 0.14 (0.01–3.97) <0.001

Basophil count (K/µL) 0.59 (0.03–3.69) 1.10 (0.03–3.91) 0.06 (0.01–2.22) <0.001

Hematocrit (%) 35.5 (30.7–39.4) 35.2 (30.9–39.7) 33.7 (29.8–37.9) <0.001

MCV (fL) 91.1 (87.0–95.0) 91.1 (87.0–94.0) 93.0 (88.0–97.0) <0.001

MCH (pg) 30.0 (28.8–31.3) 30.0 (28.9–31.3) 29.9 (28.4–31.4) 0.177

MCHC (%) 32.9 (32.0–33.9) 32.9 (32.2–34.0) 32.3 (31.1–33.2) <0.001

RDW-CV (%) 14.3 (13.4–15.2) 14.1 (13.3–14.9) 14.8 (13.9–16.6) <0.001

P ≤ 0.05 are indicated in bold.
CBC w/diff, complete blood count with differential; WBC, white blood cell; RBC, red blood cell; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean
corpuscular hemoglobin concentration; RDW-CV, red cell distribution width-coefficient of variation.

considered important if the sum of ACC and AUC deteriorated
significantly as a result of the permuting process.

Results

Baseline characteristics of the study
population

According to the study objective, we included medical
records from the MIMIC-IV database of patients diagnosed with
AMI who were admitted to the CCU for the first time. After
the selection process, 2,759 records were found to be eligible,
but 528 of them had incomplete data, with more than 60%
of the CBC w/diff values missing. Ultimately, a total of 2,231
medical records were included in this study. We compared
the baseline characteristics of patients who were included
and those who were excluded due to missing data (Table 1).
There was no statistically significant difference between the
two groups in terms of age, sex, or body mass index (BMI).
Notably, patients in the included group had a higher rate of
comorbidities and in-hospital mortality than patients in the
excluded group. This study aimed to mine data from the severe
population in the intensive care records database, so mortality
was markedly higher than in other studies in general medical
centers.

Table 2 shows the baseline characteristics of the 2,231
patients who were included in the study. Among the 2,231
patients (median age, 72.2 [62.9–81.6] years; sex, 1,378 [61.8%]
male), 397 [17.8%] died in the hospital. The characteristics of
survivors and non-survivors were compared. The non-survival
group had a higher age, more comorbidities, higher blood
creatinine, higher blood glucose, a faster heart rate, and lower
blood pressure than the survival group.

The majority of predictor variables in the CBC w/diff test
at admission were included in our newly developed model.
Table 3 shows the levels of each variable in all patients, as well
as in the survival and non-survival groups. The values of the
majority of variables differed significantly between the survival
and non-survival groups.

The discrimination performance of
models and clinical indices

All model discrimination performance results reported
were from the best-performing models with optimized hyper
parameters. As shown in Figures 3A,B and Table 4, our
model had relatively ideal discrimination performance with
a mean AUC of 0.788 (95% CI, 0.736–0.838), sensitivity of
0.741, specificity of 0.709, ACC of 0.715, precision of 0.358,
and F1-score of 0.479. DeLong’s test revealed that our model’s
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FIGURE 3

Receiver operator characteristic (ROC) curves of models and
indices for predicting in-hospital mortality. The solid red line
indicates the mean ROC curve of our neural network model.
(A) The solid red line indicates the average result of the 5-fold
cross-validation. The other five dotted lines represent the result
of each fold. (B) Our model had a significantly higher mean area
under the curve (AUC) of 0.788 (95% CI, 0.736–0.838) than
other models [including logistic regression (LR), k-nearest
neighbor (KNN), support vector machine (SVM), Gaussian naive
Bayes (GNB), adaptive boosting (AdaBoost), decision tree (DT),
and random forest (RF)] (P < 0.05). (C) The AUC of our model
also outperformed that of other indices [includingwhite blood
cell count (WBC), neutrophil-to-lymphocyte ratio (NLR), platelet
to lymphocyte ratio (PLR), systemic immune-inflammation index
(SII), and red blood cell distribution width-coefficient of variation
(RDW-CV)] (P < 0.05). ROC, receiver operator characteristic;
AUC, area under the curve; CI, confidence interval; LR, logistic
regression; KNN, k-nearest neighbor; DT, decision tree; SVM,
support vector machine; RF, and random forest; AdaBoost,
adaptive boosting; GNB, Gaussian naive Bayes; WBC, white
blood cell count; NLR, neutrophil-to-lymphocyte ratio; PLR,
platelet to lymphocyte ratio; SII, systemic immune-inflammation
index; RDW-CV, red blood cell distribution width-coefficient of
variation.

AUC was significantly higher than that of the other models
(P < 0.05). Furthermore, in terms of sensitivity, specificity,
ACC, precision, and F1-score, our model outperformed all
other models. Overall, our model had better discrimination
performance than other models.

Our model’s discrimination performance was also superior
to that of some well-studied CBC w/diff-derived clinical indices,
such as WBC, RDW-CV, NLR, PLR, and SII. As shown in
Figure 3C and Table 4, our model’s AUC was significantly
higher than that of other indices (P < 0.05). In addition, when
sensitivity, specificity, ACC, precision, and F1-score were all
considered, our model outperformed all other clinical indices.

The calibration performance of our
model

The calibration curve of our model was plotted to
evaluate the calibration performance (Figure 4). The death
risk predicted by our model agreed with the observed death
rate to some extent, indicating that our model performed
well in estimating the absolute risk. Intuitively, among
patients with an actual mortality risk of less than 30%, our
model slightly underestimated the mortality risk. In contrast,
among patients with a higher actual mortality risk, our
model overestimated the mortality risk slightly. As a more
comprehensive assessment index of model performance, the
Brier scores are shown in Table 4. Our model had a small
Brier score, indicating it had good performance in both
discrimination and calibration.

Feature importance

These predictors ranked in descending order of importance
were WBC, RDW-CV, neutrophil percentage, basophil
percentage, lymphocyte count, mean corpuscular hemoglobin
concentration (MCHC), neutrophil count, monocyte count,
mean corpuscular volume (MCV), hemoglobin, lymphocyte
percentage, PLT, mean corpuscular hemoglobin (MCH),
eosinophil count, hematocrit, red blood cell count (RBC),
basophil count, monocyte percentage, and eosinophil
percentage (Figure 5).

It can be seen that some variables played weak roles in
improving the discrimination performance of the model. So,
we dropped one to N variables with poor prediction values
step by step and observed the change in the discrimination
performance of our model. As shown in Table 5, we can see that:
(1) dropping several variables with poor prediction values could
help the model to improve its discrimination performance;
(2) when seven variables were dropped, the discrimination
performance of the model was the largest with an AUC of 0.812
(95% CI, 0.762–0.859) (P < 0.05); (3) the AUC of our model
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TABLE 4 Discrimination performance of all models and indices.

AUC (95% CI) SEN SPE ACC Precision F1-score Brier P-value

Our 0.788 (0.736–0.838) 0.741 0.709 0.715 0.358 0.479 0.187

LR 0.721 (0.659–0.780) 0.672 0.646 0.651 0.293 0.406 0.222 0.022

KNN 0.632 (0.568–0.698) 0.616 0.594 0.598 0.247 0.351 0.249 <0.001

DT 0.673 (0.605–0.739) 0.693 0.586 0.608 0.267 0.385 0.235 0.006

SVM 0.726 (0.665–0.782) 0.683 0.629 0.639 0.287 0.402 0.219 0.013

RF 0.718 (0.659–0.777) 0.69 0.613 0.627 0.28 0.397 0.223 0.004

AdaBoost 0.714 (0.654–0.774) 0.651 0.666 0.663 0.298 0.407 0.239 0.009

GNB 0.691 (0.626–0.752) 0.687 0.609 0.62 0.282 0.394 0.281 0.005

WBC 0.590 (0.514–0.664) 0.54 0.625 0.611 0.239 0.329 0.254 0.005

NLR 0.619 (0.550–0.686) 0.633 0.568 0.579 0.241 0.347 0.253 0.001

PLR 0.584 (0.510–0.656) 0.607 0.533 0.546 0.219 0.321 0.263 <0.001

SII 0.589 (0.519–0.661) 0.548 0.625 0.611 0.241 0.333 0.259 <0.001

RDW-CV 0.645 (0.577–0.711) 0.614 0.62 0.621 0.259 0.364 0.242 <0.001

The best results are indicated underlined. P ≤ 0.05 are indicated in bold.
AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; LR, logistic regression; KNN, k-nearest neighbor; DT, decision tree; SVM, support
vector machine; RF, and random forest; AdaBoost, adaptive boosting; GNB, Gaussian naive Bayes; WBC, white blood cell count; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet to
lymphocyte ratio; SII, systemic immune-inflammation index; RDW-CV, red blood cell distribution width-coefficient of variation.

FIGURE 4

Calibration performance of our neural network model. The solid
red line indicates the calibration curve of our neural network
model, which closely matches the blue ideal calibration curve.

was decreasing significantly as more than ten variables were
dropped.

Discussion

Early clinical decision-making is crucial for patients
suffering from severe AMI. Thus, in the present study, we
developed a convenient and rapid risk stratification model for
in-hospital mortality. This model consisted of 19 predictor
variables from the CBC w/diff test and was built with a neural
network algorithm. The discrimination performance of the

model was superior to that of clinical indices derived from
the CBC w/diff test and models built based on seven other
classical machine learning algorithms. Moreover, as shown in
the calibration curve, the model exhibited good performance in
estimating the absolute risk. Finally, after using a permutation
test to rank the 19 predictor variables in order of importance
for the model, the top three important predictors were WBC,
RDW-CV, and neutrophil percentage. Then, by dropping several
variables with poor prediction values, we surprisingly got better
discrimination performance of the model.

To further explore the clinical application of our model,
we examined its performance in subgroups with different
myocardial infarction types and demographics. We extracted
subgroups of the ST-elevation myocardial infarction (STEMI)
and the non-ST-elevation myocardial infarction (NSTEMI)
patients according to the ICD codes from the discharge
diagnosis list. Of the total 2,231 patients, 319 had a definite
diagnosis of STEMI, and 442 had a definite diagnosis of NSTMI.
After predicting the in-hospital mortality risk for two subgroups
separately, we found that our model outperformed other clinical
indicators in both subgroups (Supplementary Tables 1, 2).
Additionally, as shown in Supplementary Table 3, our model
performed well in both male and female subgroups, as well as in
young (≤65 years) and old (>65 years) subgroups.

Prognostic value of complete blood
count with differential indices in acute
myocardial infarction

Complete blood count with differential is commonly
performed today because of its low cost and ease of availability
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FIGURE 5

Feature importance ranking of our neural network model. The feature importance rank denotes how heavily our model relies on a predictor
variable. The relative importance rank of the 19 predictor variables from the complete blood count with differential (CBC w/diff) test in our
model is shown. CBC w/diff, complete blood count with differential; WBC, white blood cell; RDW-CV, red cell distribution width-coefficient of
variation; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; RBC,
red blood cell.

in clinical practice. In recent years, the CBC w/diff indices
have piqued the interest of researchers since they have been
verified to provide a wealth of independent information on
pathophysiology and risk stratification. The red blood cell
indices provide information about the oxygen-carrying capacity.
Elevated RDW (12) and decreased MCHC (23) have been
linked to higher in-hospital and long-term mortality in patients
with AMI. The white blood cell indices provide information
about the inflammatory and immune systems. Leukocytes
play important roles in the development and progression of
AMI because they not only permeate the endothelial layer
and induce formation of microvessels in the tunica intima,
resulting in plaque rupture (24), but they also amplify the
inflammatory cascade after AMI (25). The elevated WBC count
was found to be connected to congestive heart failure, shock,
and increased mortality among patients with AMI (8, 26).
Furthermore, the prognostic value of the count and percentage
of neutrophils in AMI has also been confirmed (27, 28). Platelet
indices indicate thrombotic risk and inflammatory activation
to some extent, since platelets participate in thrombogenesis
and interact with leukocytes (29). Mean platelet volume

(MPV) and platelet distribution width (PDW) are important
markers of platelet activation (30), as well as strong and
independent predictors of mortality in patients with AMI (31,
32). Given that oxygen-carrying capacity, inflammatory and
immune status, and thrombotic risk all play key roles or
may have interacted in the pathophysiology of AMI, several
composite indices were developed and proved to be strong
predictors of adverse outcomes following AMI. These composite
indices include the NLR (9), PLR (33), WBC/MPV ratio
(34, 35), and SII (11). The newly developed model in this
study integrated all available indices in the CBC w/diff test
reported by the MIMIC-IV database, and was supposed to
have more substantial predictive power than other indices. In
contrast to other machine-learning models and clinical indices,
the excellent discrimination performance of our model was
ultimately confirmed.

We ranked the predictors using a permutation
test. The top three predictors were WBC, RDW-CV,
and neutrophil percentage. The prognostic value and
pathophysiological significance of these three predictors
have been well studied, which partly confirmed the
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TABLE 5 Discrimination performance of our model after dropping variables with poor prediction values.

AUC (95% CI) SEN SPE ACC Precision F1-score P-value

drop_0 0.788 (0.736–0.838) 0.741 0.709 0.715 0.358 0.479

drop_1 0.790 (0.737–0.839) 0.772 0.684 0.700 0.348 0.477 0.156

drop_2 0.789 (0.736–0.841) 0.768 0.675 0.693 0.338 0.469 0.195

drop_3 0.792 (0.740–0.842) 0.765 0.689 0.704 0.347 0.477 0.137

drop_4 0.792 (0.738–0.841) 0.766 0.703 0.713 0.360 0.486 0.129

drop_5 0.796 (0.744–0.845) 0.755 0.717 0.725 0.369 0.494 0.025

drop_6 0.797 (0.745–0.847) 0.743 0.720 0.723 0.367 0.488 0.023

drop_7 0.812 (0.762–0.859) 0.797 0.710 0.726 0.385 0.514 0.012

drop_8 0.806 (0.751–0.851) 0.768 0.708 0.718 0.375 0.497 0.016

drop_9 0.803 (0.749–0.849) 0.766 0.709 0.718 0.370 0.493 0.017

drop_10 0.782 (0.731–0.833) 0.737 0.686 0.696 0.337 0.461 0.161

drop_11 0.774 (0.721–0.825) 0.726 0.707 0.709 0.352 0.471 0.019

drop_12 0.770 (0.716–0.822) 0.708 0.702 0.703 0.340 0.458 0.017

drop_13 0.766 (0.710–0.819) 0.706 0.699 0.700 0.342 0.457 0.014

drop_14 0.720 (0.661–0.777) 0.713 0.653 0.664 0.309 0.429 0.004

drop_15 0.722 (0.662–0.780) 0.689 0.664 0.667 0.310 0.424 0.005

drop_16 0.719 (0.658–0.776) 0.702 0.665 0.671 0.311 0.430 0.003

drop_17 0.700 (0.635–0.760) 0.698 0.644 0.653 0.298 0.416 0.003

drop_18 0.623 (0.555–0.690) 0.588 0.618 0.613 0.250 0.350 0.001

The best results are indicated underlined. P ≤ 0.05 are indicated in bold. The “drop_N” means that dropping the last N variables in the feature importance ranking.
AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy.

practical application value of our model. However, it
is important to note that the high performance of the
neural network-based algorithm comes at the sacrifice of
the interpretability of the relationship between predictive
factors and the outcome of interest. Although some blood
components seem to have poor prediction values, which
does not mean that they are of poor pathophysiological
significance. The rank result can only be a hint, but
not the evidence.

In this study, for the purpose of aiding in early clinical
decision-making, we used the first CBC w/diff test result
immediately after admission to create our model. Nevertheless,
there is indisputable that the dynamic change of the blood
cells has significant prognostic value in AMI. Foy et al.
(36) have identified a universal recovery trajectory defined by
exponential WBC decay and delayed linear growth of PLT,
which provides a generic approach for identifying high-risk
patients with acute inflammatory diseases, including AMI. It
means that the CBC w/diff test has more prognostic value to be
developed in the future.

Machine learning algorithms in the
prediction model

Most traditional risk models for cardiovascular disease are
based on regression methods. While robust and useful, these
methods are limited to using a small number of predictors

and presupposing the linear and homogeneous effects of the
predictors on the outcome. New methods for developing
risk models are urgently needed because of the increasing
ubiquity of large datasets, such as Electronic Health Records.
Since machine learning algorithmic models can include more
variables and produce more flexible relationships between
predictors and outcomes, they have shown significant value
in risk model development. For patients with AMI, state-
of-the-art machine learning models have steadily improved
the discrimination performance of risk stratification (3,
4, 37).

As canonical “black box” algorithms, neural networks
apply the non-linear transformation to the predictor variables,
hence being able to model many heterogeneous and non-
linear effects (3). However, due to those multiple hidden
layers in the transformation process, the interpretability of
causal relationships between predictor variables and outcomes
of interest can be challenging. Of note, interpretability is not
necessary for the development of prediction models, where the
focus is on the prediction performance instead of the predictors.

Strengths and limitations

There are several strengths of the newly developed
model. First, it is a well-performing CBC w/diff-based neural
network model derived from a real-world cohort aiming
at risk stratification purposes among patients with AMI
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in the CCU, making it suitable for severely ill patients
diagnosed with AMI in the CCU. Of note, this model
needs to be recalibrated and updated appropriately when
used in other medical centers, which means that the hyper-
parameters need to be slightly optimized. Second, the CBC
w/diff test’s low cost and easy availability promotes clinical
application and facilitates rapid clinical decision-making. Third,
as intuitively demonstrated by the calibration curve, the
new model slightly underestimated the mortality risk among
patients with an actual mortality risk of less than 30%
and overestimated the mortality risk among patients with a
higher actual mortality risk, thereby avoiding unnecessary and
excessive tests in low-risk patients, and, more importantly,
avoiding treatment delays in high-risk patients. Fourth, the
neural network algorithm used in the new model showed
competence in prediction and can be applied to develop other
prediction models.

However, the new model has several limitations. First,
the retrospective study design makes the data susceptible to
selection and measurement biases. Yet, the cohort analyzed in
this study was collected prospectively and reflected real-world
data, which may convey more practical significance. Second,
causal relationships between predictors and the outcome
cannot be established due to limited interpretability. This
is a commonly recognized shortcoming of neural network
models. All causal inferences require further experimental
verification. Third, the model has not been externally validated.
However, iterated cross-validation enhances the strength of
the results. Fourth, missing data may lead to potential bias.
But, the proportion of missing values was very low (less
than 7.4%) in the study cohort. Moreover, for missing data
imputation, we adopted the missForest method, an excellent
machine learning-based data imputation algorithm. Fifth,
the predictor variable list lacks platelet indices, including
PDW and MPV, as they are unavailable in the database.
Finally, although the newly developed CBC w/diff-based model
has excellent performance in predicting in-hospital mortality
among patients with AMI in the CCU, it is obvious that
the comprehensive risk of these patients cannot be assessed
solely based on this laboratory test. The additional value
of the CBC w/diff variables to other existing risk scores,
such as the thrombolysis in myocardial infarction (TIMI)
or global registry of acute coronary events (GRACE) scores,
was not determined, as most components of these scores
were not available in this public database. According to the
original publication of the GRACE model (38), it’s AUC
in the derivation, the internal validation, and the external
validation datasets were 0.83, 0.85, and 0.79, respectively. It
seems that the predictive ACC of the CBC w/diff-based model
is close to that of the GRACE model. In the future, this
model should strive to validate its prognostic value in the
combined analysis with conventional scores, such as the GRACE
and TIMI scores.

Conclusion

We developed a risk prediction model based on the neural
network algorithm for in-hospital mortality among patients
with AMI in the CCU. The top three important predictors in
this model were WBC, RDW-CV, and neutrophil percentage.
The model is simple and easy to use. After entering 19
variables from the CBC w/diff test, the final prediction result
can be easily obtained with just one click on a Python
command. The relevant codes are available on the GitHub
website.3 We believe the proposed method can be used as
a quick and easy risk assessment tool for clinical decision-
making.
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