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OBJECTIVE—Alteration in endoplasmic reticulum (ER) stress
in diabetic hearts and its effect on cytoprotective signaling are
unclear. Here, we examine the hypothesis that ER stress in
diabetic hearts impairs phospho–glycogen synthase kinase
(GSK)-3�–mediated suppression of mitochondrial permeability
transition pore (mPTP) opening, compromising myocardial re-
sponse to cytoprotective signaling.

RESEARCH DESIGN AND METHODS—A rat model of type 2
diabetes (OLETF) and its control (LETO) were treated with
tauroursodeoxycholic acid (TUDCA) (100 mg � kg�1 � day�1 for 7
days), an ER stress modulator. Infarction was induced by 20-min
coronary occlusion and 2-h reperfusion.

RESULTS—Levels of ER chaperones (GRP78 and GRP94) in the
myocardium and level of nonphoshopho–GSK-3� in the mito-
chondria were significantly higher in OLETF than in LETO rats.
TUDCA normalized levels of GRP78 and GRP94 and mitochon-
drial GSK-3� in OLETF rats. Administration of erythropoietin
(EPO) induced phosphorylation of Akt and GSK-3� and reduced
infarct size (% risk area) from 47.4 � 5.2% to 23.9 � 3.5% in LETO
hearts. However, neither phosphorylation of Akt and GSK-3� nor
infarct size limitation was induced by EPO in OLETF rats. The
threshold for mPTP opening was significantly lower in mitochon-
dria from EPO-treated OLETF rats than in those from EPO-
treated LETO rats. TUDCA restored responses of GSK-3�, mPTP
opening threshold, and infarct size to EPO receptor activation in
OLETF rats. There was a significant correlation between mPTP
opening threshold and phospho–GSK-3�–to–total GSK-3� ratio in
the mitochondrial fraction.

CONCLUSIONS—Disruption of protective signals leading to
GSK-3� phosphorylation and increase in mitochondrial GSK-3�
are dual mechanisms by which increased ER stress inhibits
EPO-induced suppression of mPTP opening and cardioprotec-
tion in diabetic hearts. Diabetes 58:2863–2872, 2009

D
espite recent progress in coronary intervention
strategies, diabetes is associated with higher
mortality after acute myocardial infarction due
to more extensive atherosclerotic lesions and

hypertrophied and dysfunctional left ventricle (1–3).
Therefore, diabetic patients with coronary artery diseases
are patients who most require novel protective strategies
against myocardial ischemia reperfusion injury. However,
diabetes is known to impair responses of the myocardium
to protective interventions. Protection afforded by prein-
farct angina is lost in diabetic patients (4). In animal
models, ischemic preconditioning (IPC) and some phar-
macological agents failed to reduce infarct size in diabetic
hearts (5–8). Recently, Gross et al. (7) have reported that
responses of Akt, extracellular signal–related kinase
(ERK), and glycogen synthase kinase (GSK)-3� to opioid
receptor stimulation were blunted in streptozotocin-in-
duced diabetes. GSK-3� has been shown to regulate a
variety of cellular functions (9,10), and recent studies
(10–14) have indicated that inactivation of GSK-3� by
phosphorylation at Ser9 enhances myocardial tolerance
against ischemia reperfusion injury. Furthermore, accu-
mulating evidence indicates that phospho–GSK-3�–medi-
ated cytoprotection is achieved by elevation of the
threshold for opening of the mitochondrial permeability
transition pore (mPTP), a probable final common step in
stress-induced cell necrosis (11,15–17). However, derange-
ments in GSK-3� regulation and its downstream targets in
type 2 diabetes have not yet been clarified.

The endoplasmic reticulum (ER) has received much
attention recently for its role in signal transduction
relevant to cell survival and death. Various pathophysi-
ological conditions induce Ca2� overload and/or accu-
mulation of unfolding or misfolding proteins within the
ER, a condition referred to as ER stress (18). ER stress
induces multiple responses, including adaptive changes
in translation, protein folding, secretion, and degrada-
tion. Prolonged ER stress can trigger apoptosis by
induction of C/EBP homologous protein (CHOP), acti-
vation of c-JUN NH2-terminal kinase (JNK), or caspase
12– dependent pathways. ER stress has been reported to
be involved in the pathogenesis of diabetes (18 –20),
neurodegenerative disease, immune response, athero-
sclerosis, ischemia reperfusion injury, and heart failure
(18,21–25).
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We hypothesized that ER stress is increased in the
diabetic myocardium and that increased ER stress in
diabetic hearts impairs phospho–GSK-3�–mediated sup-
pression of mPTP opening, leading to loss of myocardial
response to cytoprotective signaling. The rationale for this
hypothesis is threefold. First, increased ER stress has been
observed in epididymal fat tissue in obese diabetic mice
(26). Second, an increase in GSK-3� activity induced by ER
stress through dephosphorylation of phospho-Ser9 has
been reported in noncardiac cells (27). Finally, elevated
levels of GSK-3 protein and activity were observed in
skeletal muscle of type 2 diabetic patients (28). To test our
hypothesis, we investigated changes in anti-infarct toler-
ance, myocardial ER stress, cytoprotective signaling, and
mPTP opening threshold in a rat model of type 2 diabetes.
ER stress modulators, sodium tauroursodeoxycholic acid
(TUDCA), and 4-phenylbutyric acid (4-PBA) (29) were
used to suppress ER stress. Erythropoietin (EPO) was
used to induce GSK-3� phosphorylation in this study,
since we have characterized signaling pathways from the
EPO receptor leading to myocardial protection and mod-
ification of the pathways by concurrent pathological con-
ditions (13,30,31).

RESEARCH DESIGN AND METHODS

This study was conducted in accordance with The Guide for the Care and Use

of Laboratory Animals published by the U.S. National Institutes of Health
(NIH) (NIH publication no. 85-23, revised 1996) and approved by the animal
use committee of Sapporo Medical University.
Animal model and surgical preparation. Male Otsuka Long-Evans-
Tokushima fatty rats (OLETF) (32), a rat model of obese type 2 diabetes, and
their controls (Long-Evans-Tokushima-Otsuka rats [LETO]), both at ages
between 25 and 30 weeks, were used in this study. In OLETF and LETO rats,
TUDCA (100 mg � kg�1 � day�1) or the same volume of a vehicle (saline) was
administered intraperitoneally for 7 days before the experiments. In a post hoc
series of experiments, we examined whether 4-PBA (40 mg � kg�1 � day�1 i.p.
for 7 days) could mimic effects of TUDCA and whether Goto-Kakizaki (GK)
rats, a model of nonobese type 2 diabetes (33), respond to EPO similarly to
OLETF rats. Rats were prepared for induction of myocardial infarction as in
our previous studies (13) (see expanded methods section in the online
appendix [available at http://diabetes.diabetesjournals.org/cgi/content/full/
db09-0158/DC1]).
Infarct size experiments. After a 20-min stabilization period, blood samples
were collected from the jugular vein, and the left coronary artery was
occluded for 20 min and then reperfused for 2 h to induce infarction. EPO
(5,000 units/kg) was administered 15 min before ischemia, and SB216763 (1.2
mg/kg), a GSK-3 inhibitor, and PD98059 (2.5 mg/kg), a mitogen-activated
protein kinase kinase inhibitor, were injected at 10 and 25 min before
ischemia, respectively. After 2-h reperfusion, hearts were excised, and infarcts
and areas at risk were visualized by tetrazolium staining and by fluorescent
microspheres, respectively, as previously reported (13,30,31). Since pretreat-
ment with TUDCA did not modify infarct size in LETO rats with or without
EPO administration (see RESULTS section), a group of TUDCA-treated LETO
rats were not included in the following series of experiments (i.e., immunoblot
experiments and Ca2�-induced mPTP opening experiments).
Immunoblot experiments

Tissue sampling protocols. In protocol 1, hearts were isolated and per-
fused with Krebs-Henseleit buffer at 75 mmHg, as previously reported

(13,30,31). Biopsy samples (0.2–0.3 g) were taken from the left ventricle at
baseline (after stabilization) or at 15 min after EPO infusion (10 units/ml). In
a post hoc series of experiments, we injected a JNK inhibitor, SP600125 (0.1
mg/kg), 15 min before isolation of hearts in OLETF rats (34) or infused
thapsigargin (0.1 or 1 �mol/l) for 20 min before EPO treatment in LETO rat
hearts (25). In protocol 2, rats were surgically prepared as in infarct size
experiments in vivo and received no agent (control) or EPO (5,000 units/kg)
before coronary occlusion. In the TUDCA-treated OLETF rats, some rats were
treated with PD98059 (2.5 mg/kg) and EPO before ischemia. At 5 min after
reperfusion following a 20-min coronary occlusion, hearts were isolated and
perfused with ice-cold saline, and the tissue in the risk region was sampled
and snap-frozen in liquid nitrogen.

Samples for electrophoresis were prepared from total tissue homogenate
or cytosolic and mitochondrial fractions as in our previous studies (16,30),
and proteins of interest were immunoblotted and quantified by image analysis
as detailed in the expanded methods section (online appendix).
Ca2�-induced mitochondrial permeability transition. Opening of the
mPTP was assessed following in vitro Ca2� overload using isolated mitochon-
dria according to a method by Argaud et al. (35) with some modification, as
detailed in the expanded methods section (online appendix).
Statistics. All data are presented as means � SE. Differences between
treatment groups were tested by one-way or two-way ANOVA, and the
Student-Newman-Keuls post hoc test was used to test for multiple compari-
sons when ANOVA indicated significant differences. The difference was
considered significant if the P value was �0.05.

RESULTS

Body weight and plasma glucose level. As shown in
Table 1, body weight was larger in OLETF than in LETO
rats. Blood glucose and plasma insulin levels were higher
in OLETF than in LETO rats, confirming phenotypes of
type 2 diabetes in OLETF rats. In LETO rats, treatment
with TUDCA did not modify body weight, blood glucose,
and plasma insulin level. However, treatment with TUDCA
for 7 days significantly reduced blood glucose and plasma
insulin levels in OLETF rats, suggesting an improvement in
insulin sensitivity. We measured blood glucose levels at
baseline, before ischemia (i.e., after treatment), and 60
min after reperfusion, and none of treatments, including
administration of SB216763, significantly affected the time
courses of blood glucose levels in each study group (data
not shown).
Infarct size data. Heart rate and mean blood pressure
levels were comparable in all study groups under baseline
conditions, during ischemia, and after reperfusion, except
for slightly lower heart rate in LETO rats after SB216763
administration (see the online appendix Table). In LETO
rats, pretreatment with EPO significantly reduced infarct
size as a percentage of risk area (%I/R) from 47.4 � 5.2% in
controls to 23.9 � 3.5% (Fig. 1A). This EPO-induced
protection was not blocked by PD98059, a mitogen-
activated protein kinase kinase inhibitor, and this blocker
by itself had no effect on infarct size. Treatment with
SB216763, a GSK-3 inhibitor, mimicked the infarct size–
limiting effect of EPO. In TUDCA-treated LETO rats,
infarct sizes with and without EPO pretreatment (%I/R �

TABLE 1
Body weight and plasma glucose levels

Body
weight (g)

Glucose
(mg/dl)

Total cholesterol
(mg/dl)

Triglycerides
(mg/dl)

Insulin
(ng/ml)

LETO 527.3 � 5.4 116.0 � 3.8 89.2 � 1.2 11.8 � 3.0 6.8 � 0.8
L � TUD 510.8 � 8.0 114.5 � 6.6 97.3 � 3.2 19.9 � 4.9 5.1 � 0.8
OLETF 604.7 � 9.8* 227.1 � 13.4* 79.2 � 2.6* 58.9 � 10.2* 9.1 � 0.8*
O � TUD 596.7 � 7.7* 184.1 � 11.9*† 75.7 � 4.1* 33.0 � 5.8*† 3.2 � 0.5*†

Data are means � SE. *P � 0.05 vs. LETO; †P � 0.05 vs. OLETF. L � TUD, LETO pretreated with TUDCA; O � TUD, OLETF pretreated with
TUDCA.
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19.2 � 4.1 and 45.7 � 4.0%, respectively) were similar to
those in LETO rats.

In OLETF controls, infarct size was 14% larger than that
in LETO rats, but this difference was not statistically
significant due to the small number of hearts used in the
experiments. Thus, we performed post hoc experiments in
which four hearts were added to each of the OLETF
control and LETO control groups. The pooled data (n � 10
in each group) showed a statistically significant difference
between %I/Rs in the OLETF control group and LETO
control group (57.4 � 3.0 vs. 47.7 � 3.1%, P � 0.05). In
contrast to its effect in LETO rats, EPO failed to limit
infarct size in OLETF rats, though SB216763 afforded
significant protection in OLETF rats as well (Fig. 1B).
Comparison of %I/Rs in LETO control, TUDCA-treated
LETO control, OLETF control, and TUDCA-treated OLETF
control groups by one-way ANOVA indicated that TUDCA
alone reduced infarct size in OLETF but not in LETO rats.
More importantly, TUDCA prevented loss of myocardial
response to EPO in OLETF rats, %I/R being reduced by
EPO to 17.0 � 5.0%, and this EPO-induced protection was
sensitive to PD98059. Failure of EPO to limit infarct size
was observed also in GK rats (supplemental data in the
online appendix), suggesting that this is a common feature
in diabetic animals.

To confirm that loss of myocardial protection by EPO in
OLETF rats is derived from lack of response in Jak2-
mediated protective mechanisms, we further assessed
effects of [D-Ala2, D-Leu5]-enkephalin acetate (DADLE), a
�-opioid receptor agonist, on infarct size (online appendix
Fig. 1). Pretreatment with DADLE (1 mg/kg) significantly
reduced infarct size in LETO but not in OLETF rats.
Treatment with TUDCA restored myocardial response to
DADLE also in OLETF rats.
Immunoblot experiments
Protocol 1: ER stress markers and response of pro-
tein kinases to EPO receptor activation. Protein lev-
els of GRP78 and GRP94, ER stress chaperone proteins,
were significantly elevated in OLETF rats (Fig. 2A and B),
indicating that ER stress was enhanced in the diabetic
myocardium. One-week treatment with TUDCA reduced
the elevation of myocardial GRP78 and GRP94 levels in
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OLETF rats. This effect of TUDCA was mimicked by
4-PBA, a structurally different ER stress modulator (29,36)
(data not shown). Levels of CHOP protein, an ER-medi-
ated proapoptotic transcription factor (37), in the myocar-
dium were similar in OLETF and LETO rats (Fig. 2C).

EPO receptor protein levels in the myocardium were
similar in LETO and OLETF rats (data not shown). As
shown in Fig. 3A, administration of EPO significantly
increased the level of phospho-Akt in LETO hearts. How-
ever, such phosphorylation of Akt by EPO was not ob-
served in OLETF rats, and pretreatment with TUDCA did
not restore Akt response in OLETF rats (Fig. 3A). In
contrast, EPO-induced ERK1 and ERK2 phosphorylation
occurred similarly in LETO and OLETF rats (Fig. 3B).
Effects of 4PBA on EPO-induced Akt and ERK phosphor-
ylation were similar to those of TUDCA (online appendix
Fig. 2A and B). A JNK inhibitor, SP600125, had no effects
on responses of Akt and ERK to EPO receptor activation
in OLETF rats (online appendix Fig. 2A and B).

GSK-3� level in total myocardial homogenates in OLETF
rats was 25% higher than that in LETO rats, though this
difference did not reach statistical significance (Fig. 4A).
However, a significant difference between the two groups
was observed for mitochondrial GSK-3�. As shown in Fig.
4B, GSK-3� level in the mitochondrial fraction was signif-
icantly higher in OLETF than in LETO rats, while phospho–
Ser9–GSK-3� level in the mitochondrial fraction was
comparable between LETO and OLETF rats. The upregu-
lation of non–Ser9–phosphorylated GSK-3� in the mito-
chondria was attenuated by TUDCA pretreatment.

Infusion of 1 �mol/l thapsigargin for 20 min increased
tissue GRP78 level by 70% and prevented phosphorylation
of Akt and GSK-3� in response to EPO infusion in LETO
hearts (online appendix). However, these effects of thap-
sigargin were associated with 40% reduction in left ven-
tricular–developed pressure.

Protocol 2: phosphorylation of protein kinases after

ischemia reperfusion in vivo. EPO administration be-
fore ischemia significantly increased levels of phospho-Akt
and phospho–GSK-3� upon reperfusion in LETO rats (Fig.
5A and B). However, such phosphorylation of Akt and
GSK-3� by EPO was not observed in OLETF rats. Treat-
ment of OLETF rats with TUDCA restored GSK-3�
phosphorylation response to EPO (Fig. 5B), whereas
Akt phosphorylation by EPO was not recovered by
TUDCA (Fig. 5A). These effects of TUDCA in OLETF
rats were mimicked by 4-PBA but not by SP600125
(online appendix Fig. 2). Phospho-ERK levels upon
reperfusion were not different in LETO, OLETF, and
TUDCA-treated OLETF rats (data not shown). Interest-
ingly, restoration by TUDCA of EPO-induced GSK-3�
phosphorylation was abrogated by PD98059 (Fig. 5C), as
was infarct size limitation by EPO after TUDCA pre-
treatment (Fig. 1B). Infarct size limitation was corre-
lated with phospho–GSK-3�–to–total GSK-3� ratio (Fig.
5D), which is consistent with our previous findings in
Sprague-Dawley rats (13).
Ca2�-induced mitochondrial permeability transition.
The amount of Ca2� required to open the mPTP in the
mitochondria isolated after EPO treatment was 483.3 � 3.3
�mol/mg mitochondrial protein in LETO rats, but it was
significantly decreased to 411.1 � 19.8 �mol/mg mitochon-
drial protein in OLETF rats (Fig. 6B). In TUDCA-treated
OLETF rats, a significantly larger amount of Ca2� was
required to induce mPTP opening (510.0 � 26.5 �mol/mg)
than in untreated OLETF rats. To confirm that mPTP
opening was accurately monitored by the present method,
we assessed the effect of cyclosporine A, an inhibitor of
mPTP opening. Mitochondria isolated from LETO rats
were treated with cyclosporin A (0.3 �mol/l) for 5 min
before Ca2� challenge. The amount of Ca2� required to
induce mPTP opening in the cyclosporine A–treated mito-
chondria was much larger (740.0 � 90.2 �mol/mg, n � 3)
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than that in untreated mitochondria. Using some of the
mitochondria isolated for mPTP experiments, we deter-
mined levels of phospho– and total GSK-3� by immuno-
blotting. As shown in Fig. 6C, phospho–GSK-3�–to–total
GSK-3� ratio in the mitochondria was significantly corre-
lated with the amounts of Ca2� required to open the
mPTP. These results suggest that level of mitochondrial
GSK-3� phosphorylation at reperfusion is a determinant of
the threshold for mPTP opening.

DISCUSSION

The present study showed for the first time that ER stress
marker proteins, GRP78 and GRP94, were significantly
elevated in the myocardium of a model of type 2 diabetes
(Fig. 2), while CHOP protein level was not elevated unlike
that in a model of type 1 diabetes. To assess the contribu-
tion of increased ER stress to cell signaling and mPTP
regulation, we utilized TUDCA and 4-PBA to reduce ER
stress in the present study. TUDCA, a derivative of an
endogenous bile acid (38), and 4-PBA, a low–molecular
weight fatty acid (36), have been demonstrated to sup-
press ER stress elevated in the liver and fat in ob/ob mice
(29). Efficacy of TUDCA and 4-PBA in the OLETF myocar-
dium was confirmed by findings that these agents normal-
ized protein levels of both GRP78 and GRP94.

Phosphatidylinositol-3 kinase (PI3K)-Akt–GSK-3� sig-
naling is crucial in cytoprotection afforded by EPO and
other Jak2-activating ligands (13,30,39). In the present
study, not only EPO but also DADLE failed to protect the

myocardium of OLETF rats from infarction, suggesting
that Jak2-mediated protection is dysfunctional. In fact,
EPO failed to activate PI3K-Akt signaling in OLETF rats
(Fig. 3), whereas activation of ERK was spared. This
pattern of modification in cytoprotective signaling is ap-
parently similar to the pattern that we observed in postin-
farct remodeled hearts (30,31). However, EPO could limit
infarct size in an ERK-dependent manner in the remodeled
hearts (31) in contrast with its failure in OLETF hearts
(Fig. 1B). These findings suggest that there is a patholog-
ical factor in the OLETF myocardium that prevents phos-
phorylated ERK from compensating the role of Akt in
myocardial protection. Interestingly, pretreatment with
TUDCA or 4-PBA restored the response of GSK-3� to EPO
receptor activation (Fig. 5B) (online appendix Fig. 2C),
without having an effect on Akt phosphorylation, and
restored the myocardial response to EPO-induced protec-
tion. The GSK-3� phosphorylation by EPO in TUDCA-
treated OLETF rats was inhibited by PD98059 (Fig. 5C), as
was the infarct size–limiting effect of EPO in the same
treatment group (Fig. 1B). Taken together, these results
suggest that increased ER stress in OLETF rats inhibits the
compensatory function of ERK to phosphorylate GSK-3�
in the presence of a defect in PI3K-Akt signaling from the
EPO receptor.

The lack of Akt signaling from activated EPO receptors
and disruption of ERK–GSK-3� signaling were not the only
modifications of the GSK-3�–linked signal pathway in
OLETF rats. GSK-3� level in the mitochondria was 45%
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higher in OLETF than in LETO rats under baseline condi-
tions, whereas phospho–GSK-3� levels were similar in the
two groups, indicating an increase in nonphospho–GSK-3�
in OLETF mitochondria. The increased nonphospho–
GSK-3� in the mitochondria may be responsible for slight
enlargement of infarct size in OLETF rats compared with
that in LETO rats. The nonphosphorylated form of GSK-3�
is constitutively active, forms a complex with two major
subunits of mPTP (adenine nucleotide translocase [ANT]
and voltage-dependent anion channel [VDAC]) after isch-
emia/reperfusion (16), and reduces the threshold for
mPTP opening (10,14). Phosphorylation of GSK-3� at Ser9

reduces its activity and elevates the mPTP opening thresh-
old (10,14). Thus, the ratio of phospho–GSK-3� to total
GSK-3� can be used as a surrogate index of threshold for
mPTP opening. Since critical timing of mPTP opening is
within several minutes after reperfusion, we focused on
phospho–GSK-3�–to–total GSK-3� ratio at 5 min after
reperfusion. There was a correlation between phospho–
GSK-3�–to–total GSK-3� ratio and threshold for mPTP
opening in mitochondria isolated after ischemia/reperfu-
sion, and the ratio was lower in OLETF than in LETO rats
(Fig. 6). Suppression of ER stress by TUDCA reduced
mitochondrial GSK-3� level (Fig. 4) and infarct size (Fig.
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1) and increased the threshold for mPTP opening (Fig. 6)
to their levels in LETO controls. Taken together, these
results suggest that preischemic elevation of nonphospho–
GSK-3� in OLETF rats contributes to the low phospho–
GSK-3�–to–total GSK-3� ratio upon reperfusion, facilitating

mPTP opening and cell necrosis. Our current hypothesis
based on the present observations is schematically pre-
sented in Fig. 7.

Ischemia/reperfusion induces ATP depletion, Ca2� over-
loading, and production of reactive oxygen species (ROS)
in cardiomyocytes, and these events are known to pro-
mote mPTP opening and also to induce ER stress
(10,18,23,40). As recently reviewed by Lamarca and Scor-
rano (41), cross-talks have been proposed between ER-
derived and mitochondria-derived cell death/survival
pathways. The results of the present study suggest that ER
stress associated with diabetes modulates the mPTP in
mitochondria via modification of GSK-3� phosphorylation
signaling (Fig. 5) and mitochondrial translocation of
GSK-3� (Fig. 4). However, it remains unclear whether
ischemia/reperfusion-induced ER stress in the myocar-
dium differs between LETO and OLETF rats.

A link between change in the threshold for mPTP
opening by GSK-3� phosphorylation and change in the
extent of myocardial necrosis in situ is difficult to directly
demonstrate. However, several lines of circumstantial
evidence indicate that elevation of the threshold for mPTP
opening results in limitation of infarct size. First, multiple
agents that induce phosphorylation of GSK-3� have been
shown to induce both infarct size limitation and elevation
of the threshold for mPTP opening in response to ROS
(11,15). Second, level of phospho–GSK-3� upon reperfu-
sion was shown to be inversely correlated with infarct size
in a previous study (13), and such a correlation was
confirmed in the present study as well (Fig. 5D). Third,
pharmacological inhibitors of GSK-3�, which mimics the
effect of phosphorylation of GSK-3� at Ser9, significantly
limited infarct size in earlier studies (12,13) and in the
present experiments. It is notable that SB216763 limited
infarct size to similar extents in LETO and OLETF rats,
suggesting that the protective mechanism downstream of
GSK-3� remains intact in the diabetic myocardium. Thus,
GSK-� inhibitors are potentially useful agents for myocar-
dial salvage in patients with acute myocardial infarction
and diabetes.

It is unclear how phospho–GSK-3� elevates the thresh-
old for opening of the mPTP in response to oxygen
radicals and calcium overload at the time of reperfusion
(10,11,14,15). Recently, we found that phosphorylation of
GSK-3� at Ser9 by IPC and EPO treatment induced phys-
ical interaction of phospho–GSK-3� with ANT, and this
phospho–GSK-3�–ANT interaction inhibited binding of
ANT to cyclophilin D (10,16). Since cyclophilin D in-
creases sensitivity of ANT to Ca2�, inhibition of ANT-
cyclophilin D interaction should suppress mPTP opening.
In addition to this possible mechanism, suppression of
hexokinase release from the mitochondria and reduction
in ATP hydrolysis during ischemia have been suggested to
be involved in inhibition of mPTP opening by phospho–
GSK-3� (14).

Alterations in signal transduction and ER stress in the
myocardium of OLETF rats, a model of type 2 diabetes, are
unlikely to be extrapolated to type 1 diabetes. Disruption
in PI3K-Akt signaling and elevation of GRP78 protein level
were observed in the myocardium of streptozotocin-in-
duced diabetes as well (7,42). However, in this model of
type 1 diabetes, protein levels of CHOP and JNK were
significantly elevated, and ERK phosphorylation was also
impaired in the myocardium (7,42). In contrast, CHOP
protein was not significantly elevated and ERK phosphor-
ylation was intact in OLETF rats (Figs. 2 and 3). Involve-
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ment of JNK in impaired Akt and GSK-3� response to EPO
was not supported by the findings that SP600125 did not
restore phosphorylation of Akt or GSK-3� after EPO
receptor activation (online appendix Fig. 2). Furthermore,
focal myocardial apoptosis and fibrosis reported for the
myocardium of type 1 diabetic rats (42) were scarcely
observed in OLETF rats aged 25–30 weeks (data not
shown). There are a few possible explanations for the
differences in modification of protective signaling between
type 2 diabetic rats and streptozotocin-induced diabetic
rats. First, the level of hyperglycemia is modest in OLETF
rats and GK rats and severe in streptozotocin-induced
diabetes (227 � 13 and 193 � 9 mg/dl vs. 	500 mg/dl)
(7,42). Earlier studies have shown that hyperglycemia, per
se, disturbs cardioprotective mechanisms of IPC and phar-
macological agents against ischemia reperfusion (43–46).
Interestingly, this untoward effect of hyperglycemia de-
pends on the level of hyperglycemia; it could be overcome
by augmentation of protective stimuli, such as repetition
of IPC (6) and increasing doses of protective agents
(44,46) when blood glucose level was 
300 mg/dl but not
when it was 
600 mg/dl. Second, time courses of hyper-
glycemia in the two diabetes models are different. Adap-
tive response in cellular signaling would be different
depending on whether hyperglycemia is rapidly induced
by streptozotocin or gradually developed in type 2 diabe-
tes as in the case of OLETF and GK rats. Duration of
hyperglycemia may also affect the phenotype of modified
signaling, as inhibition of ischemia-induced ERK phos-
phorylation by hyperglycemia has been shown to depend
on the duration of hyperglycemia (47). Third, presence or
absence of insulin resistance might contribute to differ-
ences in modifications of cell signaling between type 1 and
type 2 diabetes.

There are limitations in the present study. First, we
cannot exclude the possibility of the presence of targets of
phospho–GSK-3� for cytoprotection besides mPTP, such
as Bax, p53, and myeloid cell leukemia sequence-1

(MCL-1) (9). Second, the specific ER stress pathway that
inhibited activated ERK to phosphorylate GSK-3� in
OLETF (Figs. 3 and 5) has not been identified, and the
relationship between duration of hyperglycemia and im-
pairment of signaling remains unclear. Since ER stress
activates multiple signal pathways via inositol-requiring
enzyme 1 (IRE1), PKR-like eukaryotic initiation factor-2�
kinase (PERK), and activating transcription factor 6
(ATF6) (18), the possibility that these proteins influence
the accessibility of activated ERK to mitochondrial
GSK-3� might warrant investigations. Third, it remains
unclear whether increased ER stress alone is sufficient for
disruption of ERK–GSK-3� signaling and elevation of
GSK-3� level in mitochondria. Elevation of GRP78 by 1
�mol/l thapisigargin was associated with lack of Akt and
GSK-3� phosphorylation in response to EPO receptor
activation in isolated LETO hearts. However, this dose of
thapsigargin severely compromised ventricular contrac-
tion, and the possibility of involvement of ER stress–
independent factors in the derangement in Akt–GSK-3�
signaling cannot be excluded.

In conclusion, the present study showed for the first
time that cytoprotective regulation of the mPTP and
myocyte salvage are compromised in the type 2 diabetic
heart by a defect in cell signaling upstream of GSK-3�
phosphorylation and increase in antisurvival form of
GSK-3� in mitochondria. Therapy to reduce ER stress may
provide a benefit in prevention of defects of cardioprotec-
tive mechanisms in diabetic hearts.
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29. Özcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO,
Görgün CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and
restore glucose homeostasis in a mouse model of type 2 diabetes. Science
2006;313:1137–1140

30. Miki T, Miura T, Yano T, Takahashi A, Sakamoto J, Tanno M, Kobayashi H,
Ikeda Y, Nishihara M, Naitoh K, Ohori K, Shimamoto K. Alteration in
erythropoietin-induced cardioprotective signaling by postinfarct ventricu-
lar remodeling. J Pharmacol Exp Ther 2006;317:68–75

31. Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, Takahashi A,
Shimamoto K. Impairment of cardioprotective PI3K-Akt signaling by
post-infarct ventricular remodeling is compensated by an ERK-mediated
pathway. Basic Res Cardiol 2007;102:163–170

32. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T.
Spontaneous long-term hyperglycemic rat with diabetic complications:
Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 1992;41:
1422–1428

33. Goto Y, Kakizaki M, Masaki N. Spontaneous diabetes produced by selec-
tive breeding of normal Wister rats. Proc Japan Acad 1975;51:80–85

34. Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A. Remote
vs. ischaemic preconditioning: the differential role of mitogen-activated
protein kinase pathways. Cardiovasc Res 2008;78:108–115

35. Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J,
Robert D, Ovize M. Specific inhibition of the mitochondrial permeability
transition prevents lethal reperfusion injury. J Mol Cell Cardiol 2005;38:
367–374

36. Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugai M, Omura T, Uesugi M,
Uehara T, Hosoi T, Nomura Y. Suppressive effects of 4-phenylbutyrate on
the aggregation of Pael receptors and endoplasmic reticulum stress.
J Neurochem 2006;97:1259–1268

37. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum
stress. Cell Death Differ 2004;11:381–389

38. Poupon RE, Bonnand AM, Chrétien Y, Poupon R. Ten-year survival in
ursodeoxycholic acid-treated patients with primary biliary cirrhosis: the
UDCA-PBC study group. Hepatology 1999;29:1668–1671

39. Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for
erythropoietin-mediated acute protection against myocardial ischemia/
reperfusion injury. Circulation 2004;109:2050–2053
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