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Osteocytes make up 90–95% of the cellular content of bone and form a rich dendritic
network with a vastly greater surface area than either osteoblasts or osteoclasts.
Osteocytes are well positioned to play a role in bone homeostasis by interacting directly
with the matrix; however, the ability for these cells to modify bone matrix remains
incompletely understood. With techniques for examining the nano- and microstructure
of bone matrix components including hydroxyapatite and type I collagen becoming more
widespread, there is great potential to uncover novel roles for the osteocyte in maintaining
bone quality. In this review, we begin with an overview of osteocyte biology and the
lacunar–canalicular system. Next, we describe recent findings from in vitro models of
osteocytes, focusing on the transitions in cellular phenotype as they mature. Finally, we
describe historical and current research on matrix alteration by osteocytes in vivo,
focusing on the exciting potential for osteocytes to directly form, degrade, and modify
the mineral and collagen in their surrounding matrix.

Keywords: perilacunar remodeling, lacunocanalicular network, extracellular matrix, collagen, mineral,
mechanical loading
INTRODUCTION

Embedded within the mineralized matrix of bone, osteocytes, a cell population of growing
importance in bone biology and medicine, find great longevity despite their apparently isolated
location. Osteocytes are increasingly recognized as cells that govern the process of bone remodeling
by directing bone forming osteoblasts and bone resorbing osteoclasts. While these actions play an
important role in determining the location and time-course of bone remodeling, osteocytes
themselves are positioned to readily access immense quantities of bone tissue. Making up over
90% of the cellular content of bone, osteocytes form a rich network of dendrites that communicate
with roughly 50 neighboring osteocytes, resulting in a total surface area that greatly exceeds that of
osteoblasts and osteoclasts combined. Therefore, any stimulus that triggers osteocytes to directly
interact with the bone matrix could have a great positive or negative impact on the overall integrity
of bone. In this review, we begin with a brief discussion of how osteocytes direct the activities of
osteoblasts and osteoclasts. Next, we cover the important role of the lacunar-canalicular network
(LCN) in osteocyte communication and remodeling. Finally, we discuss the exciting potential for
osteocytes to directly modify the organic and inorganic components of the bone matrix, which may
form an important basis for future treatment strategies aimed at improving bone mass and
tissue quality.
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OSTEOCYTE-DIRECTED MATRIX
MODIFICATION BY OSTEOBLASTS
AND OSTEOCLASTS

At the end of their period of bone formation, late-stage osteoblasts
are directed via unknown cues to either undergo apoptosis or
terminal differentiation (1, 2). One option is for osteoblasts to
differentiate into quiescent bone lining cells, which cover the bone
surface and are thought to mediate remodeling in localized bone
areas (1). Some osteoblasts further differentiate into osteocytes. Late
osteoblasts transition to early osteocytes by forming dendrites via
upregulation of the gene E11/gp38, or podoplanin (3). Upregulation
of MT1-MMP, a metalloproteinase that cleaves collagen, is also
required for osteocyte dendrite formation and maintains cell
viability throughout differentiation (4, 5). These findings may
suggest that osteocyte embedding is an active, proteolytic process,
in contrast to initial studies that suggested osteocyte embedding is a
process of passive entrapment within the matrix (6, 7). Recently,
however, studies utilizing intravital imaging have suggested that
there may be multiple mechanisms for osteocyte embedding that
involve some combination of the above processes, as well as lacunar
reshaping prior to differentiation (8). Once embedded, the osteocyte
begins its role in coordinating the actions of osteoblasts and
osteoclasts as a part of the rich osteocyte network.

Osteocyte Communication With
Osteoblasts
The activities of osteoblasts and osteoclasts are highly regulated
by signals originating from osteocytes, although the mechanisms
by which signals reach these cells are poorly understood.
Osteoblasts are responsible for new bone formation, which
primarily occurs on trabecular and cortical bone surfaces (9).
Bone formation is notably induced by the Wnt signaling
pathway. The canonical pathway involves Wnt binding to low-
density lipoprotein receptor-related protein 5/6 (Lrp5/6) and its
co-receptor, Frizzled (10). This binding inhibits the intracellular
activity of glycogen synthase kinase 3 (GSK3) and its complex
consisting of Axin and adenomatous polyposis coli (APC), which
results in hypophosphorylation of the transcription factor b-
catenin (11). Translocation of intact b-catenin to the nucleus
results in the expression of genes that enhance osteoblast survival
and bone formation activity. Osteocytes are an important
regulator of this process via the secretion of Sclerostin (Sost).
Sost is a potent suppressor of Wnt signaling by binding Lrp5/6,
competitively inhibiting Wnt binding (12). This results in
uninhibited phosphorylation of b-catenin and its subsequent
degradation by the proteasome. Sclerostin has also been shown
to inhibit bone morphogenic protein (BMP)-related bone
formation (13). In humans, mutations in Sost result in
sclerosteosis, a condition characterized by increased bone
formation resulting in high bone mass and cranial
neuropathies due to nerve compression (14). Therefore,
osteocytes have the potential to control when and where bone
formation occurs and interfering with this process can have
dramatic effects on human health.
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Osteocyte Communication With
Osteoclasts
Interestingly, osteocytes also mediate the process of bone
resorption by osteoclasts. One method of regulation is through
osteocyte secretion of receptor activator of nuclear factor kappa
B ligand (RANKL) through their dendrites, which binds the
RANK receptor on osteoclast precursors and drives their
differentiation into mature osteoclasts (15). RANKL expression
by osteocytes is essential for trabecular bone remodeling and is
secreted by osteocytes in regions of osteocytic apoptosis (16, 17).
Additionally, osteocytes secrete osteoprotegerin (OPG), a
molecule that competes with RANKL for the RANK receptor
(18). This interaction suppresses osteoclast activity and is the
basis for the anti-resorptive osteoporosis drug denosumab (19,
20). Frequently, the overall secreted RANKL/OPG ratio is
measured in in vitro and in vivo models, and in humans, to
approximate the degree of osteoclastogenesis in the bone (21).
Therefore, osteocytes can modify the total content and activity of
mature osteoblasts and osteoclasts, demonstrating their
important regulatory role in the process of bone remodeling.

Repair of bone microdamage has also been shown to be
dependent on the coordinated actions of osteocytes and
osteoclasts. Microdamage, or small cracks or breaks in the
bone, trigger osteocyte apoptosis and induce intracortical
remodeling, a process that is atypical in rodent cortical bone
(22). Further, regions of bone remodeling colocalize with regions
of osteocyte apoptosis in the context of microdamage or estrogen
deficiency (22, 23). In vitro studies have demonstrated that
apoptotic osteocytes stimulate their neighbors to release
RANKL, which acts as a chemotactic signal for osteoclasts to
migrate into the regions of apoptosis and remodel the bone (24).
Therefore, osteocytes also utilize osteoclasts to repair regions of
microdamage through the controlled release of RANKL while
preserving undamaged regions of the bone.

The process of remodeling is slow and deliberate, but
evidence demonstrating decreased whole body bone mineral
content in lactating women suggests that rapid changes in
systemic mineral demands must be met by liberating mineral
from the bone (25). Furthermore, bone matrix components must
rapidly reform to maintain bone strength when mineral
demands are lifted. Indeed, weaning triggers osteoclast
apoptosis and a decrease in RANKL levels within the bone
while osteoblastic activity remains elevated, favoring bone
formation (26). However, considering that the resorption and
formation processes by osteoclasts and osteoblasts, respectively,
primarily occur on bone surfaces, it is logical that osteocytes may
utilize their large surface area to release bone mineral during
lactation and reconstruct their surrounding matrix after
weaning. Therefore, due to their large population, extensive
network, and sprawling surface area, researchers have begun
investigating the osteocyte as a potential candidate for rapid bone
alterations when subjected to stimuli that alter bone formation
and resorption (27). The remainder of this review will focus on
observations from in vitro and in vivo studies examining the
potential for osteocytes to control the structure and composition
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of bone by modulating the activity of osteoblasts and osteoclasts
and by direct interaction with the extracellular matrix.
LACUNAR–CANALICULAR NETWORK
AND ITS ROLE IN TRANSMITTING
MECHANICAL STIMULI

Osteocyte cells are embedded in the mineralized matrix in
protected lacunae which surround the cell body. The cells are
connected to one another by dendritic cell processes which reside
in canaliculi. Together, these form the lacunar–canalicular
network (LCN). This interconnected network of cells may be
relevant to mechanical sensing and is important for signaling and
solute transport (28). As extracellular fluid flows through the
LCN, the osteocytes release chemicals such as nitric oxide,
prostaglandin, and other factors (29). Additionally, the level of
mechanical stimuli is related to osteocyte apoptosis which
promotes osteoclastogenesis and is a mechanism by which
osteocytes regulate bone repair and shape (28). Loading
enhances fluid flow and the shape of the LCN may affect how
fluid flows through the system, as observed by the use of injected
tracers, where there is an increase in labeled osteocytes with
loading (30). Ciani et al. saw an increase in the percentage of
osteocytes labeled with an injected tracer in loaded tibiae
compared to non-loaded tibiae of rats. However, this only
occurred in cancellous bone, not cortical bone (30). This
increase of fluid flow with loading has also been speculated
with numerical methods. Multiple groups have attempted to
quantify the forces placed on the LCN using finite element
analysis (FEA) and numerical models which indicate that the
shape of the network influences the shear stress the cell is
exposed to (31–33). The model in Gatti et al. indicated that
vascular porosity plays a role as well, with idealized models
showing a decrease in fluid velocity with an increase in vascular
porosity (33). Using a fluid–structure interaction model to model
a single cell, Joukar et al. indicated cells in rounded lacunae
experienced less shear stress than elliptical ones under different
modes of loading (32). The overall organization and shape of the
LCN affect the ability of the osteocyte to sense stimuli,
communicate with other cells, and effectively modulate
bone quality.

The LCN can be imaged multiple ways, in two and three
dimensions to provide quantitative measures of the LCN and
osteocyte shape and organization. Two dimensional methods
include scanning electron microscopy (11) with silver staining or
quantitative backscatter imaging. Three dimensional methods
allow for data analysis on connections between the osteocytes.
These include high resolution micro-computed tomography,
second harmonic generation, and confocal microscopy when
combined with staining (34). In addition to the LCN shape, the
osteocyte cell can be imaged using a combination of staining and
confocal microscopy. Recent research has utilized green
fluorescence protein (GFP)-labeled osteocytes and other dyes
to image cellular aspects of the osteocyte such as the cytoskeleton
along with the dendritic connections in relation to the
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surrounding collagen (35). This approach has yielded some
evidence that vesicles may be released by the osteocyte as it
embeds itself within the LCN and that collagen may be produced
by the osteocyte. It is important to note that quantifying the
number of lacunae is not the same as quantifying occupied
lacunae (36). After an osteocyte dies, the lacunae will remain
empty until it is gradually filled with mineralized debris.

Quantitative analysis of the LCN structure must be done to
determine if alterations to the shape and organization of the
network are occurring. Lacunar area or volume, lacunar density,
canalicular length, and canalicular density are some of the
measurements that can be made to quantify changes. The LCN
can also be quantified in a manner similar to quantification of the
connectivity of the trabecular bone network. This is essentially a
measure of how many connections would have to be broken to
separate the network into two (37). Additionally, the LCN can be
analyzed in terms of connectomics. In this analysis, the LCN is
considered as a system of nodes linked together by edges. Nodes
can be either lacunae or places where at least three canaliculi
connect. This analysis could be useful to determine how the
organization of the LCN affects the osteocyte’s ability to
communicate with other cells and respond to loading. Nodal
centers with higher numbers of connections may indicate fewer
and more utilized routes of communication. Connectomics
analysis has been reviewed in depth elsewhere (38). Less work
has been done using connectomics analysis, but there have been
some studies that have utilized this technique. Mabilleau et al.
have indicated that high fat diet caused an increase in node
degree in mice (39) Additionally, connectomics analysis has been
used to analyze differences in the LCN structure between sheep
and mouse bone, albeit on a limited number of samples (40). The
network of sheep bone was more regularly organized but less
connected than mouse bone, but properties such as edges per
node and edge length were similar between species.

Changes to the LCN have been observed based on the
organization of the surrounding matrix, during aging, disease,
and in response to environmental factors. More spherical
lacunae are likely to be found in woven bone versus the more
organized lamellar bone (41). Osteocytes have been seen to
elongate perpendicular to the long axis of bones in
amphibians, reptiles, and mammals (42). High fat diet caused
an increase in lacunar area in mice (39). The LCN also changes
with aging, as lacunae become flatter and the canaliculi become
more interconnected with maturity, a trend that reverses once
bone is aged (43). There are changes to the LCN in osteogenesis
imperfecta (OI) as OI mice have been observed to have more
spherical lacunae with more canaliculi than wild-type mice (44).
Mechanical unloading also results in changes to the LCN. Sciatic
neurectomy to immobilize one limb in growing rats resulted in
lower lacunar density and volume (45). Similarly, growing mice
were found to have a reduced cell volume and number of
processes with sciatic neurectomy in both cortical and
cancellous bone (46). It is important to note that these
experiments were both done in growing rodents. Immobilized
female patients had a lower osteocyte density and reduced
connectivity than postmenopausal controls (47). Fluid flow as
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determined by finite element analysis (FEA) was shown to
decrease in ovariectomized rats that had lower lacunar density
and porosity (33).

The LCN may have a direct effect on bone quality. In cases of
spaceflight where the lacunar volume was shown to decrease and
become more spherical, nanoindentation indicated that the
hardness and stiffness of the matrix also decreased (48). Another
study used nanoindentation to assess the area close to (1 to 5 µm)
and further away from the lacunae (16 to 20 µm) in ovariectomized
rats with treatment. While there were no differences between
treatment groups (PTH, alendronate, raloxifene, PTH and
alendronate, and PTH and raloxifene), Young’s modulus was
lower in the perilacunar region compared to the area further
away (49). Modulus was also higher further away from the
lacunae and canaliculi in healthy 4-month old female rats (50).
Mounting evidence supports that actions coordinated by osteocytes
in the LCN directly impact matrix quality.

The pericellular matrix (PCM) surrounds the osteocyte and
separates the cell from the walls of the lacunae and canaliculi. This
matrix contains proteoglycans and hyaluronic acid and may
amplify the impacts of mechanical loading to allow osteocyte to
sense more load than what would be calculated by tissue strain
alone. Tethering elements between the matrix wall and the cells
that could amplify force through shear drag forces in response to
fluid flow were first postulated with computational modeling (51)
prior to transverse elements between the matrix wall and cell being
visually confirmed with TEM imaging (52). Perlecan has been
speculated to form the tethering elements in the PCM. MLO-Y4
cells express perlecan protein and immunogold labeling indicated
the presence of perlecan along the osteocyte bodies and walls of the
canliculi (53). Perlecan deficient mice have shown higher solute
diffusivity, but lacked the anabolic response to in vivo tibial loading
(54) indicating its importance for mechanical sensing (54).
Additionally, integrins have been speculated to form part of the
PCM and affect the osteocyte response to mechanical stimulation.
TEM images have indicated the canalicular walls may have
protrusions into the pericellular space (55, 56). A theoretical
model incorporating tethering elements along with focal
adhesion complexes mathematically predicted a high
amplification of strain that was an order of magnitude higher
than previous strain amplification models (56). This focal
adhesion complex has been speculated to be b3-integrin as
immunohistochemistry has indicated the presence of b3-integrin
along the walls of canaliculi of murine cortical bone (55). In vitro,
inhibition of avb3 integrin attachment sites in MLO-Y4 cells
reduced the Ca2+ response to probe stimulation (57). Structured
Illumination Super Resolution Microscopy has found membrane
proteins associated with mechanotransduction to be colocalized
with b3-integrin foci in vivo, though this did not find a
colocalization with connexin 43 (58). The PCM may also alter
with age. Osteocytes isolated from aged mice were able to produce
less PCM than osteocytes from young mice in vitro. Aged cells also
had fewer plasma membrane disruptions than young cells in
response to fluid shear stress, indicating the mechanical response
may be dependent on the PCM (59). This is an aspect of osteocyte
control of the environment that needs to be further studied.
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IN VITRO MODELS OF PERILACUNAR
REMODELING

Due to their preference of remaining embedded within the bone
matrix, osteocytes have proven difficult to study when removed
from their natural enclosure. Indeed, studies on primary
osteocytes have demonstrated complications including low
yield, poor viability when grown in 2D culture, and limited
dendrite formation. Therefore, most studies to date have utilized
immortalized cellular models of osteocytes. These cell lines
represent various stages of the osteocyte life cycle, including
late transitioning osteoblasts, early osteocytes, late osteocytes,
and lines that gradually differentiate through all three stages.
Despite being derived from osteocytes, each cell line responds
differently to mechanical, endocrine, and paracrine signals.
Therefore, we will begin our analysis of osteocyte matrix
modeling and remodeling by examining what has been learned
using in vitro models.

Cellular Models of Osteocytes
The most frequently used cell line in osteocyte research is the
MLO-Y4 line. These cells were derived from the long bones of
female mice and immortalized using an SV40 T-cell antigen
coupled to the osteocalcin promoter (60). MLO-Y4 cells are
mechanosensitive, as studies utilizing fluid shear stress have
demonstrated robust increases in intracellular calcium
currents, ATP production, and release of prostaglandin E2
(PGE2) and nitric oxide (NO) (61–63), all of which are
essential components of the osteocyte response to mechanical
stimulation. Additionally, they express large amounts of
connexin 43 (Cx43) and produce a dendritic network. In
response to short-term unidirectional and oscillatory fluid
flow, MLO-Y4 cells increase RANKL expression while greatly
increasing OPG expression, resulting in a decrease in the
RANKL/OPG ratio (64, 65). This finding may indicate that
osteocytes respond to loading by reducing osteoclast activity
through paracrine signaling. Importantly, MLO-Y4 cells do not
typically express Sost, a potent inhibitor of bone formation by
osteoblasts. This shortcoming is also noted in MLO-A5 cells, a
model of late transitioning osteoblasts (66). Interestingly, long-
term fluid shear may increase Sost expression in MLO-Y4 cells
despite their lack of natural Sost expression, although conflicting
evidence exists (67, 68). In terms of anabolic functions,
conditioned media taken from MLO-Y4 cultures increases
alkaline phosphatase (34) and osteocalcin (OCN) expression in
osteoblasts, indicating the presence of additional secreted factors
that increase osteoblast activity (69).

Two models of differentiated osteocytes are the Ocy454 and
IDG-SW3 cell lines. Each of these lines utilizes an interferon-g-
driven T-cell antigen promoter to induce immortalization
followed by temperature-driven differentiation. The mechanical
response of Ocy454 cells to fluid shear are more variable than
MLO-Y4 cells, with fewer cells demonstrating increased calcium
currents with occasional high magnitude calcium waves (70).
Unlike MLO-Y4 cells, Ocy454 osteocytes express abundant
DMP1 and Sost, and Sost expression can be lowered by fluid
January 2021 | Volume 11 | Article 578477
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shear (68). Increasing the duration of fluid shear gradually
increases Sost expression and the RANKL/OPG ratio in both
lines (68). Like Ocy454 cells, the IDG-SW3 cell line expresses
classic osteocytic genes when they reach maturity. In the early
stages of differentiation, IDG-SW3 cells express osteoblastic
genes including ALP and type I collagen (col1a1) (71). As they
transition into early osteocytes, dentin matrix protein 1 (DMP1),
matrix extracellular phosphoglycoprotein (MEPE), and
phosphate-regulating neutral endopeptidase (Phex) levels
increase (71). Finally, as late osteocytes, IDG-SW3 cells begin
expressing high levels of Sost and fibroblast growth factor 23
(FGF23), demonstrating their utility in studying osteocyte
paracrine and endocrine signaling (71).

While osteoblasts and osteoclasts are the classic cell types
involved with forming and shaping bone, emerging research has
demonstrated that many of the cues that drive these cells may
also trigger osteocytes to participate in these functions. The
process of bone matrix alteration by osteocytes is currently
known as perilacunar remodeling (PLR), a concept that is
gaining popularity in the bone community. Utilizing the idea
that osteocytes also modify their activity in response to cues that
would normally change bone mass, we next examine how bone-
altering signals may modify osteocyte function to alter their
surrounding extracellular matrix using the aforementioned in
vitro models.

Osteocyte Responses to Endocrine,
Paracrine, and Mechanical Stimuli
One of the most important signals the bone receives is from
parathyroid hormone (PTH), a peptide hormone secreted from
the parathyroid gland in response to low serum calcium. In
addition to increasing calcium absorption from the intestine,
sustained elevations in PTH are known to cause mineral release
from the bone, as seen in hypercalcemia of malignancy and
chronic kidney disease (72, 73). Studies using IDG-SW3 cells
have demonstrated that PTH upregulates ATPase H+
Transporting V0 Subunit D2 (ATP6V0D2), a proton pump on
the cell membrane that acidifies the extracellular environment,
indicating that osteocytes can acidify their extracellular
environment to degrade mineral (74). PTH-related Peptide
(PTHrP) has also been shown to stimulate acidification of the
osteocyte extracellular environment by upregulating ATP6V0D2
during lactation, and this process is dependent on intact PTH
signaling in osteocytes (75). IDG-SW3 cells naturally upregulate
several osteoclastic genes throughout their 28-day differentiation
including tartrate-resistant acid phosphatase (TRAP), carbonic
anhydrase I and II (CA1/2), and cathepsin K (CTSK), indicating
that mature osteocytes are poised to participate in PLR (76).
While matrix acidification is required for mineral removal, it also
promotes the collagenolytic activity of CTSK, indicating that
osteocytes can degrade both mineral and collagen (77, 78). In
addition to PTH, Sost signaling has also been shown to
upregulate TRAP, CA, and CTSK in neighboring MLO-Y4
osteocytes (79). Therefore, osteocytes may increase the bone
resorbing activity of nearby osteocytes in addition to reducing
Frontiers in Endocrinology | www.frontiersin.org 5
osteoblast activity via Sost signaling (76, 79). Finally, TGFb also
upregulates several osteoclastic genes via the YAP/TAZ signaling
pathway in MLO-Y4 and Ocy454 cells. In MLO-Y4 cells,
treatment with TGFb results in extracellular acidification and
upregulation of CTSK and matrix metalloproteinase 13 and 14
(MMP13/14) while glucocorticoid treatment decreases MMP13
expression (80). A similar finding was shown in Ocy454 cells,
which upregulated CTSK and MMP14, but not MMP13 (78).
While these two osteocyte models differ slightly in their
responses, they each suggest that osteocytes participate in
matrix remodeling by adopting an osteoclast-like phenotype.

As mentioned above, mechanical loading alters osteocyte
signaling to osteoblasts and osteoclasts. However, whether
loading influences the process of PLR remains unclear. When
fluid shear stress is applied to MLO-Y4 cells, increased E11/gp38
expression drives increased dendrite formation and elongation
(80). For this process to occur in vivo, however, osteocyte
dendrites must express genes that allow them to degrade local
mineral and collagen to extend through the bone. Indeed, a
recent study seeding IDG-SW3 cells into an MMP-sensitive
hydrogel demonstrated increased dendricity, Cx43, and MMPs
2 and 13 throughout differentiation (81). These cells also
maintained elevated ALP expression through day 28 of
differentiation while ALP expression diminishes in 2D culture.
Another study in 3D culture demonstrated that MLO-Y4 cells
display increased col1a1 expression over time (82). Therefore,
3D culture models may be necessary to capture the ability for
osteocytes to form matrix components. However, studies
examining perilacunar modeling and remodeling by osteocytes
in 3D cell culture with loading or other physiologic stimuli
remain to be performed. Altogether, these in vitro findings
suggest that bone-forming osteoblasts can differentiate into
mechanosensitive osteocytes that coordinate the activities of
osteoblasts and osteoclasts, and eventually gain osteoclastic
resorptive abilities. Strikingly, while osteocytes reduce their
osteoblastic activity over time, these functions are not entirely
lost as they mature in a 3D environment. Therefore, further
research probing the ability for osteocytes to form mineral and
collagen are imperative to understand the contribution of
osteocytes to the microstructure and overall integrity of bone.
MODIFICATION OF MINERAL BY THE
OSTEOCYTE

Osteocyte modification of the mineral in the surrounding matrix
has been observed in cases where PLR removes mineral such as in
lactation (83) and hibernation (84), and lack of PLR can result in
hypermineralization such as in the case of exposure to
microgravity (48). This has been supported by changes to
lacunar area. In the case of lactation, it has been suggested that
the osteocyte can also replace the mineral in its surrounding bone
if recovery after weaning is allowed, as double fluorochrome
labeling has indicated new mineral formation around the
osteocyte (75). The osteocyte can alter the overall porosity of
January 2021 | Volume 11 | Article 578477
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bone by either removing or adding mineral to its lacunae. The
osteocyte network appears to influence the quality of the mineral
as well. Using small angle X-ray scattering (SAXS) combined with
confocal microscopy, a study showed that in areas with a high
density of osteocytes that were well aligned, the mineral platelet
thickness and particle orientation was higher than is less organized
areas (85). The mineral thickness and particle orientation were
lower in the areas closer to the lacunae themselves, indicating that
the osteocytes may control the quality of the mineral over time
(85). In another study looking at mice that underwent treadmill
running, the mineral to matrix ratio (MMR) of the matrix
surrounding the osteocyte was lower than the MMR of the
matrix further away, indicating the osteocyte altering its bone
matrix (86). Interestingly, mice that underwent treadmill running
and showed lower MMR in their perilacunar region had higher
post-yield work in bending tests of their tibiae, indicating that PLR
may improve bone’s overall mechanical properties (86). An effect
on mechanical properties has also been observed elsewhere as the
elastic modulus as measured by microindentation of the bone
decreased with lactation (87). Thus, changes to the mineral by the
osteocyte may affect overall bone quality.
COLLAGEN PRODUCTION AND
ALTERATION BY OSTEOCYTES

Type I collagen is the most prevalent organic component of the
bone extracellular matrix and provides the tissue with tensile
ductility and fracture toughness by limiting crack formation and
propagation (88–90). Collagen is primarily produced by osteoblasts
during bone formation alongside mineral. The helical structure of
collagen is composed of Gly-X-Y repeats where X and Y are
typically proline and hydroxyproline, respectively (91). Collagen
consists of two pro-a1 and one pro-a2 peptide chains that are
translated by ribosomes embedded within the endoplasmic
reticulum (ER) membrane. Next, post-translational modifications
including hydroxylation of proline and lysine residues and
glycosylation of some prolines occurs within the ER. The chains
twist into a triple helix and are shuttled to the Golgi apparatus as
procollagen. Upon secretion from the osteoblast, the N- and
C-terminal domains are cleaved, forming tropocollagen. Finally,
tropocollagen strands self-assemble into fibrils and neighboring
tropocollagen molecules are crosslinked at their hydroxylysine
residues by lysyl oxidase, stabilizing the fibrillar structure (92).

The overall quality of collagen is dependent on the correct level of
post-translational modifications, proper crosslinking, incorporation
into the bone, and alignment within the bone tissue. Importantly, the
alignment of collagen fibrils is related to the types of loads that each
bone experiences. During physiologic loading of the lower limb, the
anterior portion of the femur and tibia typically experiences tension
while the posterior portion is under compression (93). Studies
utilizing polarized light microscopy have determined that collagen
fibrils tend to be aligned perpendicular to transverse sections of
bones under tension while they are aligned parallel to transverse
sections in compressive regions. Intriguingly, collagen fibrils tend to
align with the major axis of osteocytes and their lacunae (41).
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Additionally, it has been shown that osteoblasts initially secrete
disorganized collagen that eventually aligns with the osteoblast major
axis or the axis under the greatest mechanical strain (94, 95).

While osteoblasts follow mechanical cues from their
environment to determine collagen orientation and placement,
mechanosensory cues from osteocytes may also be required to
instruct osteoblast collagen deposition. Further, it stands that
osteocytes themselves may be responsible for forming and
aligning collagen in the perilacunar region. One of the earliest
studies examining this possibility placed bones from egg-laying
hens in media containing radiolabeled proline, a highly prevalent
amino acid in all collagens (96). In hens fed a calcium-rich diet
after egg laying, it was reported that osteoblasts and osteocytes
demonstrated widespread uptake of proline, indicating that
osteocytes may replenish matrix collagen following lactation
(97). Modern intravital imaging studies have also demonstrated
that early osteocytes may be able to synthesize parts of the collagen
matrix surrounding their lacunae while also exerting mechanical
forces on the existing collagen matrix (8). Eventually, this process
results in a collagenous matrix that aligns with the major axis of
osteocyte lacunae, but whether this process is mechanically driven
remains unknown.

As discussed earlier, in vitro models of osteocytes have the
capacity to degrade collagen in response to catabolic stimuli
including PTH. The importance of this finding has also been
established in vivo, as lactating mice fail to resorb mineral from
their lacunae if collagen degrading genes including CTSK and
MMP-13 are knocked out in osteocytes (98, 99). Therefore,
collagen degradation is an essential step in perilacunar
remodeling. Additionally, MMP-13 expression by osteocytes is
critical to maintenance of bone fracture toughness, or the ability
of bone to resist crack formation and propagation, a property
that is highly dependent on proper collagen incorporation and
crosslinking (99, 100). There are implications that TGF-bmay be
involved as well. It has been demonstrated that inhibiting TGF-b
receptor pharmacologically in mice resulted in a reduction of
gene expression of genes associated with PLR and reduced
canaliculi length (76). The same study examined a knock-out
mouse of osteocyte specific TGF-b receptor in bone which
resulted in a similar decline in PLR gene expression and
decrease in canalicular length and lacunar–canalicular area.
Fracture resistance was notably lower in the knock-out mice
(76). Taken together, there is striking preliminary evidence to
warrant a deeper investigation of the osteocytes ability to modify,
align, and produce collagen within their lacunae. Future work
may require the use of 3D scaffolds in order to capture these
effects in vitro while in vivo studies will likely benefit from the use
of emerging techniques to analyze bone composition and
mechanical properties on the microscale in animal models of
post-lactation recovery, space flight, and other instances of
mineral challenge. Furthermore, while collagen is the most
prevalent protein in bone, genetic knockouts of non-
collagenous proteins (NCPs) including biglycan, fibrillin-2, and
bone sialoprotein among others have demonstrated altered
microarchitecture and/or reduced mechanical properties (101–
103). Biglycan in particular is required for proper collagen
assembly into organized fibrils, and knockouts resemble the
January 2021 | Volume 11 | Article 578477
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phenotype of Ehlers–Danlos syndrome (104). However, material
tests such as fracture toughness testing and tissue-level analyses
have largely not been performed on these genetic models. While
NCPs are known to impact bone formation, whether osteocytes
can interact with and alter NCPs, or whether NCPs control the
ability for osteocytes to model and remodel their surrounding
matrix remains largely unknown. Taken together, understanding
the full extent of the osteocytes capabilities will require a
combination of robust cellular models, modern imaging
modalities, and tissue-level analyses that can distinguish
material, structural, and compositional properties on the
micro- and nano-scales in and around the LCN, enhancing our
ability to devise new treatments for bone diseases.
CONCLUSION

The osteocyte has a profound effect on the bone matrix through
signaling to osteoblasts and osteoclasts and by directly modifying
Frontiers in Endocrinology | www.frontiersin.org 7
its environment (Figure 1). The structure of the LCN relates to
the structure and quality of the surrounding matrix. There is also
in vitro and in vivo evidence indicating the osteocyte can directly
modify mineral and collagen in its surroundings. Thus, the
osteocyte must be considered when examining the effects of
disease and treatments on the bone matrix.
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