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Abstract A correction is proposed to the Delta function con-
volution method (DFCM) for fitting a multiexponential decay
model to time-resolved fluorescence decay data using a
monoexponential reference fluorophore. A theoretical analysis
of the discretised DFCM multiexponential decay function
shows the presence an extra exponential decay term with the
same lifetime as the reference fluorophore that we denote as the
residual reference component. This extra decay component
arises as a result of the discretised convolution of one of the
two terms in the modified model function required by the
DFCM. The effect of the residual reference component becomes
more pronounced when the fluorescence lifetime of the refer-
ence is longer than all of the individual components of the spec-
imen under inspection and when the temporal sampling interval
is not negligible compared to the quantity (τR

−1 – τ−1)−1, where
τR and τ are the fluorescence lifetimes of the reference and the
specimen respectively. It is shown that the unwanted residual
reference component results in systematic errors when fitting
simulated data and that these errors are not present when the
proposed correction is applied. The correction is also verified
using real data obtained from experiment.

Keywords Fluorescence lifetime . Time-resolved
spectroscopy . Delta function convolutionmethod (DFCM) .

Fluorescence decay curve fitting . Reference reconvolution

Introduction

Fluorescence lifetime measurements have a range of
photophysical, biological and biomedical applications. The
fluorescence lifetime can report on the local environment or
state of the fluorophore and it can be used to distinguish be-
tween particular fluorescent species. Within the field of bio-
medical optics, the fluorescence lifetime can report on, for
example, protein-protein interactions in FRET, metabolic rate,
the disease state of tissue matrix components, and provide
many other molecular readouts, resulting in its increasing ap-
plication in clinical and biology laboratory settings [1, 2].
Fluorescence lifetime data from most biological specimens,
however, present complex fluorescent decay profiles and ro-
bust methods to analyse such data are required to fully exploit
the potential of fluorescence lifetime measurements.

Fluorescence lifetime measurements are carried out in ei-
ther the time-domain or the frequency domain [1]. For each
approach the analysis of lifetime data must take account of the
instrument response in order to recover an accurate represen-
tation of the specimen fluorescence decay profile. This paper
concerns time domain fluorescence lifetime measurements
that are analysed by fitting the experimental data to a model
of the fluorescence decay. For most experimental systems, the
temporal instrument response function (IRF), which is the
apparent signal that is measured for an ideal Dirac Delta func-
tion input signal, typically presents a FWHM on the order of a
few 100’s of picoseconds and its shape is often complex with
sub-structure that distorts the measured fluorescence decay
profiles of specimens under inspection. This is of particular
importance when the specimen exhibits a multi-exponential
fluorescence decay, since the impact of the IRF on the mea-
sured signal (which is the convolution of the actual fluores-
cence signal with the IRF) can distort the apparent contribu-
tions of the individual decay components to the recovered
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fluorescence profile. Thus the shape of the IRF can signifi-
cantly affect lifetimemeasurements, even when only the mean
lifetime is required, or when a single exponential decay model
is fitted to a complex decay profile. It is therefore important to
incorporate a measurement of the IRF in the analysis of the
fluorescence decay profile – otherwise lifetime measurements
cannot be compared between different instruments. Typically
in the curve fitting procedure, the fluorescence decay model
(such as a multi-exponential decay) is first convolved with the
IRF measurement before comparison with the measured fluo-
rescence decay profile of the specimen under inspection.

Since the shape and/or position of the IRF can change when
adjusting instrumentation settings such as PMT gain, electronic
detection thresholds, laser repetition rate or laser diode drive
current, it is usually necessary to measure the IRF for each set
of fluorescence lifetime measurements. Furthermore, some de-
tectors exhibit a spectrally dependent temporal response, known
as the “colour effect”, due to the velocity of the initial photo-
electron [1, 3–5] and so the IRF needs to be determined for each
spectral channel of a fluorescence lifetime measurement. Ideally
this would be undertaken using a calibration sample that pro-
vides a near instantaneous response across the spectral range of
the detector. In general, however, it is difficult to find such a
fluorescent calibration sample although, for multiphoton excita-
tion, it is possible to utilise the plasmon enhanced luminescence
from gold nanorods, which provide a broadband ultrafast (i.e.
sub-picosecond) emission that we have previously demonstrated
to be a convenient calibration sample for IRFmeasurements in a
multispectral multiphoton microscope [5]. Unfortunately an
equivalent calibration sample providing broadband ultrafast
emission for single photon excitation in the visible has not yet
been identified and, in practice, temporal IRF are often mea-
sured using an ultrashort excitation pulse scattered from the
sample plane to provide an “impulse response”. Unfortunately
this does not provide the IRF for the spectral region of the
detected fluorescence emission and scattering specimens often
cause unwanted artefacts caused by multiple reflections of the
excitation pulses within the instrument. Furthermore, such a
temporal IRF measurement at the excitation wavelength may
require removal of the laser blocking filter as well as a modifi-
cation of any configuration in front of the detector providing
spectral resolution and this can be time-consuming and imprac-
tical on a regular basis, especially for real-world instrumentation,
e.g. applied to clinical or industrial applications.

For single photon excited lifetimemeasurements, an IRF in
the desired spectral window can sometime be approximated
using a calibration specimen based on a fluorophore with a
very short fluorescence lifetime. However, the fluorophores
typically used [6–9] are dyes with lifetimes on the order of
tens of picoseconds, which is significant compared to the res-
olution of time-resolved detection systems such as those based
on time-correlated single photon counting (TCSPC) and so the
measured IRF is not an impulse response. The impact of the

non-zero lifetime of the calibration specimen can be approxi-
mately compensated by shifting the measured IRF profile in
time before or during the fitting procedure. However, this
becomes less effective when analysing the fluorescence decay
profiles of specimens with short fluorescence lifetimes [10].
Furthermore, the selection of dyes available with very short
lifetime and useable quantum yield is limited; the emission
spectra of the dyes proposed by Luchowski et al. and
Szabelski et al. [6–9] only extend upwards from ~525 nm
and do not cover the spectral range of the autofluorescent
compounds found in tissue [11] or genetically expressed fluo-
rescent proteins in the blue spectral region [12].

An alternative approach to directly measuring the IRF is to
make a reference measurement using a calibration fluorophore
with known decay characteristics, for example, a single expo-
nential decay profile with a known lifetime [3, 13–19]. The
IRF can be extracted from this measurement for subsequent
use in the fitting procedure by performing deconvolution of
the measured reference fluorophore decay data with the
known reference decay profile (e.g. a single exponential de-
cay) [3, 13]. However, the deconvolution step is sensitive to
noise on the reference decay measurement and can be
bypassed by using the technique of reference convolution
[14], which is less sensitive to noise [15]. As discussed below,
this technique entails mathematically modifying the model of
the specimen fluorescence decay such that, when it is con-
volved with the measured reference fluorescence decay pro-
file, it provides the desired curve for direct comparison with
the measured specimen fluorescence decay profile during
curve fitting. This is commonly referred to as the Delta func-
tion convolution method (DFCM) [17]. The modification of
the specimen decay model can be generalised to any reference
decay function and so, in theory, this technique does not re-
quire a short or single-exponential lifetime reference
fluorophore. Thus a much wider range of reference
fluorophores is available [20].

The DFCM has been tested through Monte Carlo simula-
tions [21–23] and through its application to fitting experimen-
tal data [10, 14, 17, 21, 23]. However, several of these studies
have also reported that the performance of the technique de-
creases under some conditions which have been associated
with: longer reference lifetimes [23]; cases where the refer-
ence lifetime is shorter than twice the channel width [22];
cases where the reference lifetime is much longer than the
IRF [10] or cases when the specimen lifetime(s) are short
compared to the reference decay [10, 14, 21–23]. Limitations
in the accuracy of the DFCM have previously been qualita-
tively attributed to: attempting to fit multi-exponential decays
where one component is weak [22], noise on the measured
reference decay [14, 23] or only using the early portion of the
reference decay when fitting short specimen decays [10].

We have found that the DFCM technique fails when
analysing data from fluorophores exhibiting fast decays similar
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to those associated with tissue autofluorescence and this has
motivated us to seek a quantitative explanation for the limitations
of theDFCM. For the first time, to the best of our knowledge, we
show analytically that these limitations are due to a mismatch in
the terms input to the DFCM model function when one of the
input terms is discretised. We propose a modification to the
DFCM to correct for this mismatch and verify our technique
using simulated and experimental fluorescence lifetime data.

Theory

In conventional non-linear least squares fitting of fluorescence
decays, the impulse response function, IRF, of the system is
convolved with the model fluorescence decay function, Fmod,
of the specimen under inspection to yield a calculated fluores-
cence intensity decay profile, Imod, as shown in Eq. 1(a). The
parameters of Fmod then are adjusted to obtain the best fit
between Imod and the measured decay of a specimen under
investigation. We will refer to this as “impusle convolution”.
In reference convolution (known in the literature as the Delta
function convolution method, DFCM), instead of directly re-
cording the impulse response of the system, the fluorescence
decay profile of a reference specimen, R, is recorded and the

physical decay model is modified (to eFmod ) such that the
calculated decay profile is given by Eq. 1(b).

Imod ¼ Fmod � IRF að Þ
IDFCM ¼ eFmod � R bð Þ

ð1Þ

This is a well-established technique and it has been shown
that the fluorescence lifetime of the reference specimen can
also be included as a fit parameter and that its decay does not
need to be mono-exponential [10, 14, 15, 17, 21, 22]. How-
ever, these relaxations of prior knowledge come at the cost of

an increased number of fitted parameters, which in turn re-
quires more detected photons to reach a given accuracy. For
the purpose of this paper, we will assume that the reference
decay is a mono-exponential with a known fluorescence life-
time, τR, and amplitude, aR. We will also make the common
assumption that the specimen decay model is a sum of expo-
nential components with lifetimes and amplitudes τi and ai. In
this case the generalised model function used in the DFCM
(see [17] for derivation), is shown in Eq. 2(a). By substituting
Eq. 2(a) into Eq. 1(b) and defining the combined lifetime,
τi′ = (τR

−1 – τi
−1)−1, the expression for the calculated fluores-

cence decay profile is obtained, as shown by Eq. 2(b).
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ð2Þ

Equation 2(b) can be derived using Laplace or Fourier trans-
forms [15, 17] and can be readily verified for the case where
the IRF corresponds to a Delta function at t = 0, such that the
convolution of the IRF with the reference decay function gives
R(t) = aRA(t,τR). If this is substituted for R in Eq. 2(b), the
convolution (term 2 of Eq. 2(b)) becomes an integral with
limits set by noting that the fluorescence decay profiles are
zero for t < 0. The resulting equation is shown below
(Eq. 3(a)) and the result of the integration is shown in
Eq. 3(b). The second part of term 2 balances with term 1 of
3(b), leaving a term which is equal to the ith multi-exponential
decay component, aiexp(−t/τi).
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ð3Þ

As detailed in the introduction, however, several studies have
reported limitations with the technique as the reference lifetime
becomes long compared to the channel width or when the fluo-
rescence lifetime of the specimen decay being fitted is shorter

than the reference lifetime. We have confirmed this with our
own simulations, which are presented below, and here show
analytically that this is due to the discretisation of the convolu-
tion in term 2 of Eq. 2(b). These errors become greater when the
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temporal sampling interval is not much smaller than the com-
bined lifetime, τi′ and when τR is longer than all values of τi.

For TCSPC data acquisition, photon arrival times are record-
ed in time-bins of a specific width and it is necessary to account
for this temporal binning in a treatment of TCSPC measure-

ments. In our model this is achieved by integrating the speci-
men fluorescence decay model over the width of a time
bin, Δt, and the DFCM for TCSPC data, when the
specimen decay model is a sum of exponentials, is
now as shown in Eq. 4.

IDFCM‐TCSPC t j
	 
¼X
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ai
aR

Rmeas t j
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ð4Þ

Here, tj is the j
th time-bin spanning jΔt→ ( j + 1)Δt. Rmeas

is formally what is measured when the signal from the refer-
ence fluorophore is acquired using a TCSPC instrument. This
discretisation does not cause a problem for term 1 but it does
for term 2 where an analytical exponential decay function is
convolved with the discrete (measured) reference fluorophore
decay that is only known at discrete time points tj.

To illustrate the problem that arises, we can follow the ap-
proach used for the validation of Eq. 2(b) above and assume a
Delta function IRF such that the reference fluorescence profile
follows a single exponential decay with time constant τR. Be-
cause of the integral over the time bin, Rmeas (and therefore

term 1) is exactly aRτR [1-exp (−Δt/τR)] exp (−tj/τR). However,
the convolution in term 2 must be approximated by a discrete
convolution since the reference decay has only been measured
at a discrete number of time points. If we use simple zero order
discretisation to perform the convolution, the model must be
integrated over the width of a TCSPC bin and hence:

A0th order t j; τ
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t j
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By then substituting in the expression for Rmeas gives:
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By rearranging term 2 of Eq. 6 and noting that tn = nΔt,
it can be seen that the term is a geometric series in

exp (−Δt/τi′). Equation 7 is obtained by summing the
series and simplifying:

IDFCM‐TCSPC t j
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If the DFCM is valid as presented, we now expect Eq. 7 to
simplify to the original specimen model decay function (i.e. a
multi-exponential decay with amplitudes and decay constants
ai and τi). Upon inspection of Eq. 6, it can be seen that when
Δt/τi → 0 and Δt/τi′ → 0, the numerator and denominator of
factor B both approximate to Δt so B tends to 1, and
factor D also tends to 1. Hence, the exponential decay
terms with lifetime τR (terms A and the product of B,
D, E) cancel, leaving only terms with exponential decay
components τi (corresponding to term C). Therefore, in
the limit Δt → 0, Eq. 6 does indeed simplify to the
original physical decay model.

However, whenΔt is not negligible, terms A and the prod-
uct of B,D, E do not cancel and so there is a residual reference
component, i.e. there is an extra decay component with life-
time τR and amplitude (1 – BD). It should be noted, however,
that if the reference has a significantly shorter lifetime than the
specimen, then even if the amplitude of the residual reference
component is not negligible, it will decay much faster than the
terms corresponding to thephysical decaymodel, i.e. for τR<<τi
we expect the DFCM to produce reasonable results. Therefore,
a more suitable way to quantify the magnitude of the residual
reference components is with its photon weighted amplitude
relative to the specimen decay, i.e. (1 –BD)τR/τi.

We have therefore shown analytically that the DFCM will
produce erroneous results due to the discretisation of term 2 of
Eq. 4, which is required to compute the convolution. If we

were to have used the trapezium approximation in the
discretisation of the convolution term, we would obtain a sim-
ilar result, except that the residual reference component would
have a smaller, negative pre-exponential factor; in this case, a
similar analysis shows that the amplitude of the residual ref-
erence component is ~�∑i Δt=2τ i0 for smallΔt compared to
~∑i Δt=τ i0 for zero order discretisation. In fact, there will al-
ways be some mismatch between the terms 1 and 2 of Eq. 4
for any method of interpolation and so there will always
be a residual reference component when computing the
DFCM in this fashion. We note that any more complex
method of interpolation will impact the computation
time required to fit the decay curves, especially when
fitting multi-exponential decay models over large data
sets. Therefore, instead of improving the interpolation,
we propose to introduce a correction factor to compen-
sate for the residual reference component.

Since the deviation in the DFCM from the physical decay
is quantified by factors B and D in Eq. 7, we can apply a
correction factor to the convolution term in Eq. 5, which is
given by:

1

BD
¼ τ i0 exp Δt=τ i0ð Þ � 1ð Þ

τ i 1� exp �Δt=τ ið Þð Þ ð8Þ

By applying our correction factor (the RHS of Eq. 8) toα in
Eq. 5 and then simplifying the result, we obtain Eq. 9(a).
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ResCORR t j
	 
 ¼ ICORR t j

	 

−Imeas t j

	 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ICORR t j

	 
þ X
i
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0
i

� �2
Rmeas t j

	 
r cð Þ

ð9Þ

The application of the correction factor means that we also
need to correct the decay amplitude contributions, which is
shown in Eq. 9(b). When this corrected model is evaluated for
a Delta function IRF as before, a multi-exponential decay is
obtained with lifetime components τi and with no unwanted
term with decay constant τR.

For completeness, the residuals function used for fitting is
shown in Eq. 9(c), where Imeas(t) is the measured fluorescence
decay profile of the specimen under inspection. As is normal
for least squares fitting, the residuals function is weighted by
the expected noise at each data point. In this case, the

weighting is unchanged from that used in conventional
DFCM since the correction factor has been applied to the
convolution term which has a negligible variance compared
to the measured reference decay [17].

In this section, we have shown that discretisation of the
conventional DCFM model by the width of a time-bin leads
to an unwanted term in the final equation and that this can be
overcome through the introduction of a correction to the
DFCM model. The discretisation of the model over a time-
bin is equivalent to assuming an IRF with a top-hat profile and
therefore an experimentally acquired IRF can be modelled by
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summing the results obtained from a series of top-hat seg-
ments of appropriate amplitudes, i.e. zero-order interpolation
of the IRF. In the following sections, we will show that by
evaluating the corrected DFCM (Eq. 9) in the case of data
simulated using a realistic IRF and for given specimen decay
parameters, the resulting curve correctly matches the speci-
men decay model. We then validate that this approach can
be used in decay fitting by using Monte-Carlo simulations to
show that, when fitting using the corrected DFCM, the correct
decay parameters are retrieved. In these simulations, we vali-
date our use of zero-order interpolation by generating the IRF
and the data at a high temporal resolution and then binning it
to a lower temporal resolution before curve fitting. In addition,
we show that the corrected DFCM yields comparable results
to impulse convolution over a wide range of lifetimes and
offers a substantial improvement over the conventional
DFCM. We also demonstrate the use of DFCM in fitting ex-
perimentally acquired data.

Methods

Non-Linear Least Squares Fitting

Non-linear least squares fitting of simulated or experimental
TCSPC data was employed using the Levenberg-Marquadt
minimisation algorithm in MATLAB® (The Mathworks,
Inc., Massachusetts). Three types of fitting model were

implemented: impulse convolution, conventional DFCM and
corrected DFCM. Impulse convolution is the commonly used
method of forward convolution of the model decay function
with a directly measured IRF, e.g. from a scattering specimen,
which we will term IRFmeas. In this case, we found that it was
necessary to use the trapezium approximation to evaluate the
convolution. This compensates for the sub-resolution tempo-
ral variation in an IRF acquired from a scatterer (i.e. the IRF is
not constant within a time-bin measurement). We found that
the trapezium approximation was not necessary when using
the corrected DFCM since the sub-resolution temporal varia-
tion in the reference decay becomes negligible when this is
much longer than the width of a time-bin. For the same
reason, the trapezium approximation should not be nec-
essary for the conventional DFCM. However, for a fair
comparison with the impulse convolution method using
trapezium integration, we have implemented the trapezi-
um approximation in the conventional DFCM. The
resulting equations are shown in Eq. 10: (a) & (b) show
the model decay and residuals functions for impulse
convolution and (c) & (d) show these functions for the
conventional DFCM. The terms shown in Eq. 10(e)
arise due to the trapezium approximation and can be
derived by linear interpolation of the IRF function
followed by convolution with the exponential decay
function. The corresponding functions for the corrected
DFCM are as shown in Eq. 9. In these equations, the
terms and conventions are as stated above.
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In order to reduce bias commonly encountered with non-
linear least squares fitting at low photon counts, data points with
fewer than 10 counts were ignored. It should be noted that we
are not performing our simulations in a low signal level regime
and therefore precise determination of a lower threshold was not
required. If operating in a low signal level regime, themaximum
likelihood method for curve fitting may be more appropriate.

Simulated Data

Simulated data was generated using MATLAB®. An IRF was
generated by summing four Gaussian curves at a temporal
resolution of 8192 time bins over a range of 12.5 ns. The
Gaussian parameters were chosen such that the final curve
resembled an experimentally acquired IRF from a Hamamatsu
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H7422P-40 and a B&H SPC-830 TCSPC card with a FWHM
of 500 ps. The parameters (amplitude, temporal offset and
standard deviation) for the four Gaussians were: 100, 2.44,
0.15; 1, 2.44, 0.3; 1.5, 3.66, 0.15 and 1.2, 4.54, 0.15 respec-
tively. The resultant IRF will be referred to as the “realistic
IRF”. Single or double exponential decays were generated
with 8192 time bins over a range of 12.5 ns. The exponential
decay curves were then convolved with the realistic IRF (with
zero-order interpolation) and the resulting curves were then
binned down to 256 time bins. Generating the data at a high
temporal resolution and then re-binning it in this fashion ac-
counts for the fact that the actual impulse response does vary
(slowly) within an experimental time bin. We are thus able to
validate our choice of zero-order discretisation of the convo-
lution when fitting using the modified DFCM.

When performing curve fitting, the simulated decay curves
were scaled to a signal level of 106 counts in total and Poisson
noise was added. When performing DFCM, reference decays
with single exponential lifetimes of 1.0 ns and 2.0 ns and
3 × 106 total counts were generated in the same fashion as
the decay curves including the addition of noise. When
performing conventional impulse convolution, the high tem-
poral resolution IRFwas binned down to 256 time bins, scaled
in amplitude such that the count at the peak was 5 × 105 and
then Poisson noise was added. This count level was chosen
since it is just below the maximum count obtainable (16-bit)
by some of the hardware typically used in fluorescence life-
time measurements (e.g. B&H TCSPC cards).

For the Monte-Carlo simulations, each decay curve was
generated 16 times with different noise and fitted using the
three model decay functions (i.e. the same set of 16 noisy
decay curves were fitted using impulse convolution, the con-
ventional DFCM and the corrected DCFM). The mean and
sample standard deviation of each fitted parameter was then
calculated for each model. The corrected DFCM was tested
using single and double exponential decays. Single exponen-
tial lifetimes were chosen to be between 0.2 ns and 2.0 ns. For
double exponential decays, the short component was fixed at
0.2 ns, the long component ranged from 0.4 ns to 2.0 ns and
the photon-weighted amplitudes of the two components were
equal (i.e. a1τ1 = a2τ2). A signal level of 106 was simulated for
both the double and single exponential decays.

Experimental Data Acquisition

Experimental data was acquired using a custom built TCSPC
based fluorescence lifetime spectrometer described elsewhere
[24]. Briefly, a supercontinuum laser source (SC400, Fianium)
was directed into a prism based spectral selection unit to tune
the excitation wavelength. Excitation light was then passed
through a Glan-Taylor polarising cube before being directed
onto a Cuvette containing the analyte. Fluorescence from the
specimen was collected at right angles to the excitation beam

and imaged through an emission filter (FF01-585/40–25,
Semrock) and polarizer onto the input slit of a monochromator
(CM110, CVI inc.) and detected by a photomultiplier tube
(PMC-100, B&H, GmBH). TCSPC measurements were per-
formed using a B&H SPC-730 card. For the measurements
presented in this paper, an excitation wavelength of 525 nm at
20 MHz was used. The selected emission fluorescence was
centred at 580 nm with a bandwidth of 10 nm. The TCSPC
resolution was set to 1024 bins, equal to a bin width of approx-
imately 50 ps. To perform impulse convolution, the IRF of the
system was acquired with a sample of Ludox (LUDOX® TM-
40 colloidal silica, Sigma Aldrich) as a specimen, which
entailed removing the emission filter and centring the mono-
chromator at the excitation wavelength. All measurements
were recorded with the emission polariser at the magic angle
to the excitation polarisation to ensure that the polarisation of
the specimen did not affect the fluorescence decay [1].

The experimentally acquired data has a significant and un-
avoidable d.c. offset due to after-pulsing of the PMT. To com-
pensate for this, the offset was estimated using a 5 ns portion
of the data prior to the arrival of the excitation pulse. This
method of offset estimation is valid since the period of 50 ns
between excitation pulses was sufficient to assume that the
fluorescence from any of the specimens had decayed
completely. The measured offset of the decay curve under
inspection was included as a fixed parameter in the fitting
model. For the measured impulse IRF and reference decays,
the offset was subtracted from the measured profiles before
use in the fitting routine. The long period between excitation
pulses also meant that there was no requirement to compen-
sate for incomplete decays in the model.

The fluorophores chosen and their reported fluorescence
lifetimes [20, 25] were: Rhodamine 6G in water (4.08 ns),
Rhodamine B in water (1.68 ns–1.74 ns), Erythrosin B in
methanol (0.47 ns) and Erythrosin B in water (0.089 ns). Rho-
damine B was chosen as a reference fluorophore with its life-
time fixed to the value we obtained by fitting with impulse
convolution (1.656 ns) using a scattered excitation light mea-
surement. Data was acquired from each fluorophore three times
and NLLSQ fitting with the three models (each using a single
exponential decay model) was performed as described above.

Results

Figure 1 shows the conventional and corrected DFCM com-
puted with fixed parameters in comparison to the desired
noiseless monoexponential specimen decay model. In
Fig. 1a, the corrected DCFM was obtained using Eq. 9 and
with the reference decay (Rmeas) set to a noiseless pure
monoexponential decay with lifetime τRef. It can be seen that
in the very early part of the decay, the conventional DFCM
matches the physical decay model. However, the conventional
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DFCMdeviates from the physical model in the later part of the
decay. For the conventional DCFM calculated with zero order
(simple) interpolation, the conventional DFCM runs parallel
to the reference decay curve as is expected from the theory
section, see e.g. Eq. 7.When using trapezium interpolation the
deviation starts later and is in the opposite direction. In this
case, the model decay goes negative for a while before rising
to zero (not shown on the log scale). However, it can be seen
that the corrected DFCM model matches the specimen decay
curve. The same features can be seen when the noiseless real-
istic IRF is used, see Fig. 1b. The corrected DFCM was cal-
culated using zero-order interpolation but, as can be seen from
Fig. 1a, b, it yields the desired specimen decay, which indi-
cates that this approach is valid.

As expected, the photon weighted amplitude of the
(unwanted) residual reference decay component relative to the
specimen decay increases as the bin width increases and as the
specimen lifetime decreases (Fig. 1c) or the reference lifetimes
increases (Fig. 1d). It can be seen that even for the smallest bin
width used (Δt = 0.003 ns) and the reference and specimen
lifetimes shown in Fig. 1c, the relative magnitude of the un-
wanted residual reference component is still a few percent of
that of the specimen. When using a bin width equivalent to 256

time bins over 12.5 ns (Δt = 0.05 ns), it can be seen
that even when using a reference fluorophore with a
lifetime of 0.25 ns, the relative magnitude of the resid-
ual reference component is 30 % for specimen fluores-
cence lifetimes of 0.2 ns (Fig. 1d).

Figure 2 shows the fitting of individual simulated curves
using the three different models together with the resulting
normalised residuals. It can be seen that when fitting a
0.2 ns single exponential decay (Fig. 2c), the conventional
DFCM fails to produce a good fit to the data; there is a sys-
tematic deviation from zero in the residuals around the rising
edge of the curve. Figure 2e shows that the curve fitted using
the corrected DFCM yields a better fit to the data with resid-
uals randomly distributed around zero. The corrected DFCM
retrieved the correct lifetime, whereas the conventional
DFCM returned an overestimate.

When fitting a double exponential decay, see Fig. 2d, the
conventional DFCM model has produced a good fit in the
latter portion of the curve, but at the rising edge of the curve,
there is a deviation from zero in the residuals. The fitted pa-
rameters do not match the simulated values or those returned
by impulse convolution. Figure 2f shows that the corrected
reference model returns a good fit and that the fitted

Fig. 1 Showing the unwanted residual reference decay component in
conventional DFCM. a and b show the conventional and corrected
DFCM computed for a specimen with 0.2 ns fluorescence decay time, a
reference with 1.0 ns fluorescence decay time and a time bin width of
0.05 ns. The two types of conventional DFCM, simple and trapezium, use
zero or first order interpolation respectively to evaluate the convolution in
Eq. 4. The corrected DFCM is computed using Eq. 9 which, as described
in the text, uses zero order interpolation. The reference and specimen

decay curves were generated using an ideal IRF (i.e. a Delta function at
time = 0) in (a) and the realistic IRF in (b). Noise was not added to any of
the curves shown in this figure. c and d show the photon weighted
amplitude of the reference decay component relative to the specimen
decay. This is plotted as a function of the specimen lifetime for a range
of time bin widths at a fixed reference lifetime in (c) and for a range of
reference lifetimes at a fixed time bin width in (d)
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parameters are much closer to the simulated values than those
returned by the conventional DFCM.

Experimentally acquired data obtained from erythrosine B
fitted with the conventional and corrected DFCM methods

Fig. 2 Shows the performance of the different fitting models on
individual simulated decay curves. The left hand column shows data
simulated with a single exponential decay of 0.2 ns. The same data is
used in (a), (c) and (e) and the same reference decay is used in (c) and (e).
The right hand column shows data simulated with a double exponential
decaywith lifetimes of 0.2 ns and 0.8 ns and a photonweighted amplitude
ratio of 0.5. The same data is used in (b), (d) and (f) and the same
reference decay is used in (d) and (f). The reference was simulated with
a decay time of 2.0 ns. The realistic IRF (the red curve in (a) and (b)) was

used to generate the specimen and reference decays. The total number of
simulated photons was 106 in all specimen decay curves and 3 × 106 in all
reference decay curves. The top row shows the data and curves fitted with
the ideal method of impulse convolution. The middle row shows the data
fitted using the conventional DCFM. The bottom row shows the data
fitted with the corrected DCFM. The upper plot of each panel shows
the fitted curves and the lower plot of each panel shows the weighted
residuals
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(Fig. 3) shows the same behaviour as the simulated data. It can
be seen that when the specimen has a lifetime that is shorter
than that of the reference, there is a systematic deviation from
zero in the residuals around the rising edge of the curve. The
fitted lifetime (0.16 ns) is not in agreement with the value
reported by Boens et al. (0.089 ± 0.003 ns) [20]. However,
when the same data set was fitted with the corrected DFCM,
the residuals behave as expected and the fitted lifetime value
(0.09 ns) is in agreement with that reported by Boens
et al. and with that obtained by fitting with impulse
convolution (0.09 ns - data presented in Table 1).

Figure 4 shows the results of the Monte-Carlo simulations.
In these simulations, fluorescence decay values were based on
those of autofluorescence molecules found in tissue. The most
difficult decay curves to fit are those which contain compo-
nents with short, closely spaced decay times. Therefore, we
have chosen exponential decays with a short component of
0.2 ns, corresponding to melanin [26] and a long component
increasing from 0.4 ns, similar to that of free NAD(P)H [27],
up to 1.5 ns.We have also simulated single exponential decays
using the same range of lifetimes. We have chosen reference
decay times of 1 ns and 2 ns which are typical of those rec-
ommended for use as fluorescence lifetime standards [20].

For the single exponential simulated decays (shown in
Fig. 4a, e), it can be seen that the conventional DFCM returns
acceptable lifetimes for long specimen decays. However, for
short specimen decay times, there is a systematic overestimate
of the fitted lifetime that is much larger than the error bars. In
contrast, the corrected DFCM has returned lifetimes which are
comparable in accuracy to those returned by impulse
convolution.

For the double exponential simulated decays (Fig. 4b–d
and f–h), similar results are obtained; as the long component
of the double exponential gets shorter, a systematic deviation

larger than the error bars emerges between the fitted and the
simulated parameters. When fitting with a reference lifetime
of 2 ns, the systematic error in all of the returned parameters is
less than 5 % only when the long lifetime is greater than 1 ns.
However, the corrected DFCM has fitted parameters that are
comparable to the impulse convolution method across the
whole range of reference and specimen lifetimes. In both cases
of single and double exponential decays, the magnitude of the
error and the range of affected lifetimes is larger when the
reference decay time is longer. It can also be seen that the
range of affected lifetimes is larger when fitting the double
exponential data.

When we apply the conventional and corrected DFCM to
experimentally acquired data, our results, presented in Table 1,
show a similar trend to our Monte Carlo simulations. It can be
seen that the conventional DFCM has performed well for long
lifetimes, but poorly for short ones. However, the corrected
DFCM performs as well as impulse convolution for all the
fluorophores tested.

Discussion

The use of a reference fluorophore with known characteristics
in the temporal calibration of fluorescence lifetime instrumen-
tation is a well-established technique. The measured fluores-
cence decay profile can be used in a variety of ways, but the
most common technique is to use the Delta function convolu-
tion method (DFCM) with non-linear least squares fitting.
Although this approach has been described as mathematically
rigorous and has sometimes been shown to provide excellent
results [10, 17, 21, 22], it has also been found to be unreliable
under certain conditions. The unreliability has been noted to
be associated with reference lifetimes longer than the temporal

Fig. 3 Shows fits obtained with a the conventional DFCM and b the
corrected DFCM to an experimentally acquired decay from erythrosine B
in water. The lifetime of the reference fluorophore, Rhodamine B in
water, was measured to be 1.656 ns, which was obtained by fitting the

reference decay using the impulse convolution model with a scatterer IRF
measurement acquired using Ludox. The bin width used in the data
acquisition was 0.0488 ns
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sampling interval, the IRF and the specimen decays [10, 14,
21–23]. However, to date there has been no report of a sys-
tematic study into the conditions under which the DFCM fails
and no conclusive evidence of its cause. We have shown for
the first time, to the best of our knowledge, that the cause of
the error is a mismatch between the two terms of the modified
model function which arises because of the unavoidable
discretisation error associated with the numerical convolution
in one of the terms of the modified model function. Our anal-
ysis shows that the error is quantifiable for multi-exponential
decays and we have therefore been able to suggest a correction
to the DFCM.

Our theoretical analysis of the conventional DFCM model
decay function has shown that it has a residual reference com-
ponent in addition to the physical decay component(s), i.e. for
given reference and specimen exponential decay parameters,
the computed conventional DFCM model deviates from the
specimen model by the presence of a term that matches the
reference decay. It is this residual reference component that
leads to the errors when using the conventional DFCM under
certain conditions. In this study, we have chosen to simulate
the short fluorescence lifetimes similar to those associated
with tissue and cellular autofluorescence (melanin [28] and
NAD(P)H [27]) which are commonly encountered experi-
mentally, for example in [29–32]. We have chosen reference
decay times similar to many of the available reference
fluorophores presented by Boens et al. in their comprehensive
review of fluorescence standards for time resolved measure-
ments [20].

In our Monte-Carlo simulations of single exponential fluo-
rescence lifetime data, we have shown that for long fluores-
cence lifetimes, the three model functions perform as well as
each other. However, as the specimen decay gets shorter, the
conventional DFCM returns an overestimate of the true value.
This behaviour is explained in the following way: when the
specimen fluorescence lifetime is shorter than that of the ref-
erence, the latter portion of the conventional DFCM model

curve (computed with trapezium integration) is dominated
by the residual reference component which lies beneath the
true curve as shown in Fig. 1a, b and the fitting routine com-
pensates for this by overestimating the fitted lifetime. This
effect becomes smaller as the specimen decay time gets longer
and lies within the noise of our Monte Carlo simulations. This
may explain why many studies have not reported any system-
atic errors with the conventional DFCMwhen using reference
decay times that are shorter than the specimen decay times.

In our simulations, we have used count levels for the spec-
imen and references decay curves (106 and 3 × 106 photons
per decay respectively), which can be realistically obtained in
single point measurements of tissue autofluorescence in a rea-
sonable period of time. For example: Coda et al. achieved a
count rate of 6 × 105 s−1 from colonic autofluorescence [33]
(based on an average of 2 × 105 counts in each of 16 spectral
channels acquired in 5 s); Skala et al. achieved count rates of
5 × 105 s−1 with multiphoton excitation in a hamster cheek
pouch model and in live cells [31] and in our experience with
skin and heart tissue autofluorescence, similar count rates are
easily obtained (unpublished data). Therefore we have shown
that the results of the corrected DCFM can in practice be as
accurate as those obtained by impulse convolution across a
wide range of lifetimes. We have also confirmed this in our
tests on experimental data. Our simulations show that the
magnitude of the overestimate and the range of affected life-
times increase as the reference decay time increases. We have
also shown that the range of lifetimes affected is larger for
multi-exponential decay curves. We emphasise that this range
overlaps with decay times found in autofluorescence data
[29–32] and therefore recommend that our correction be im-
plemented if the DFCM is to be reliably applied in, for exam-
ple, the growing field of tissue FLIM.

One limitation of the correction presented in this work is
that it is only applicable to cases where the specimen model is
a multi-exponential decay and we have only evaluated the
correction factor for TCSPC style data, i.e. time bins with

Table 1 Shows the performance of the three fitting techniques on
experimentally acquired data. The reported lifetime values are from [20]
(†) and [25] (‡). The fitted lifetimes are the mean ± standard deviation of
three measurements. When using the two DFCMmethods, the references

used were Rhodamine B in water and Rhodamine 6G in water. Their
lifetimes were fixed to the value obtained by fitting with impulse
convolution (1.656 ns for Rhodamine B and 4.010 ns for Rhodamine 6G)

Type Fluorophore (solvent) Reported lifetime (ns) Fitted lifetime (ns)

Impulse convolution Reference Conventional DFCM Corrected DFCM

Specimen Erythrosin B (water) 0.089 ± 0.003 † 0.089 ± 0.001 Rhodamine 6G 0.189 ± 0.001 0.087 ± 0.001

Rhodamine B 0.158 ± 0.003 0.089 ± 0.002

Specimen Erythrosin B (methanol) 0.47 ± 0.02 † 0.469 ± 0.001 Rhodamine 6G 0.483 ± 0.004 0.460 ± 0.001

Rhodamine B 0.474 ± 0.001 0.473 ± 0.001

Reference Rhodamine 6G (water) 4.08 ‡ 4.01 ± 0.01 – – –

Reference Rhodamine B (water) 1.74 ± 0.02 †
1.68 ‡

1.656 ± 0.001 – – –
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constant spacing equal to the bin width. However, these are
not significant drawbacks since firstly, the majority of

fluorescence lifetime experiments utilise a (multi ) exponen-
tial decay model in their analysis. Secondly, if a different

Fig. 4 Shows results of Monte-Carlo simulations of exponential decay
curves fitted with the three different models and using a simulated
reference decay with lifetimes of 1 ns (a–d) and 2 ns (e–h). The single
exponential decay curves (panels a & e, shaded green) were simulated
with lifetimes varying from 0.2 ns to 1.5 ns. Double exponential decay
curves (panels b–d & f–h, shaded yellow) were simulated with the short

component fixed at 0.2 ns, the long component varying from 0.40 to
1.5 ns and equal photon weighted amplitudes. In the fitted lifetime plots
(panels a, c, d, e, g, and, h), the mean ± standard deviation were
divided by the simulated lifetime so that a value of unity
corresponds to an exact fit. In the amplitude ratio plots (panels
b and f), a value of 0.5 corresponds to an exact fit
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model decay function is required or a method other than
TCSPC is used to acquire the data, a correction factor can be
calculated using the analysis technique we have outlined. The
correction factor will be expressed as summation which in
some cases may be simplified in a similar way to that shown
above (the summation of a geometric progression). When this
is not possible, the correction factor can evaluated
numerically.

One further phenomenon we have observed but not pre-
sented, is that DCFM fitting routine begins to fail when the
number of counts in the measured reference decay is similar
to, or smaller than the specimen counts. We have found that
acceptable results are obtained once the measured reference
fluorescence profile has about three times (or greater) the
number of counts as in the specimen decay curve. We believe
that this particular constraint can be easily met during real-life
data acquisition.

In conclusion, we have shown analytically that the
conventional DFCM model used in fitting fluorescence
decay curves is subject to discretisation errors that can
degrade accuracy of fitted model parameters. The errors
become particularly significant when the following two
conditions are simultaneously met: firstly, when the
fluorescence lifetime of the reference fluorophore is lon-
ger than that of all individual components of the spec-
imen under inspection and secondly, when the temporal
sampling interval is not much smaller than the com-
bined lifetime (τi′ = 1/(1/τR – 1/τ), where τR and τi
are the reference and specimen decay times respective-
ly). We have also proposed a corrected DFCM model
decay function. We have shown, using both simulated
and experimental data, that this is a robust model yield-
ing results equivalent to those using impulse convolu-
tion. Since the model is a reference decay technique
that can utilise a wide range of fluorophores, it can
greatly reduce the effects of any spectral dependencies
in the instrument response function and allows for the
straight forward acquisition of a temporal calibration
measurement for a wide-range of fluorescence lifetime
instrumentation.
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