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Abstract

Background: Combination antiretroviral therapy (cART), the standard of care for HIV-1 infection, is considered to be
successful when plasma viremia remains below the detection limit of commercial assays. Yet, cART fails in a substantial
proportion of patients after the apparent success. No laboratory markers are known that are predictive of cART outcome in
initial responders during the period of undetectable plasma viremia.

Methodology/Principal Findings: Here, we report the results of a retrospective longitudinal study of twenty-six HIV-
infected individuals who initially responded to cART by having plasma viremia suppressed to ,50 copies/ml. Eleven of
these patients remained virologically suppressed, whereas fifteen experienced subsequent cART failure. Using sensitive
methods based on seminested real-time PCR, we measured the levels of HIV-1 proviral (pr) DNA, unspliced (us) RNA, and
multiply spliced RNA in the peripheral blood mononuclear cells (PBMC) of these patients at multiple time points during the
period of undetectable plasma viremia on cART. Median under-therapy level of usRNA was significantly higher (0.43 log10

difference, P = 0.0015) in patients who experienced subsequent cART failure than in successfully treated patients. In
multivariate analysis, adjusted for baseline CD4+ counts, prior ART experience, and particular cART regimens, the maximal
usRNA level under therapy was the best independent predictor of subsequent therapy failure (adjusted odds ratio [95% CI],
24.4 [1.5–389.5], P = 0.024). The only other factor significantly associated with cART failure was prior ART experience
(adjusted odds ratio [95% CI], 12.3 [1.1–138.4], P = 0.042). Levels of usRNA under cART inversely correlated with baseline
CD4+ counts (P = 0.0003), but did not correlate with either baseline usRNA levels or levels of prDNA under therapy.

Conclusion: Our data demonstrate that the level of HIV-1 usRNA in PBMC, measured in cART-treated patients with
undetectable plasma viremia, is a strong predictive marker for the outcome of therapy.
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Introduction

Combination antiretroviral therapy (cART), the standard of

care for human immunodeficiency virus type 1 (HIV-1) infection

[1–3], is an exemplary success of modern medicine, as it has

resulted in a dramatic decrease in HIV-related morbidity and

mortality [4,5]. Since the introduction of cART, the response to

therapy has dramatically improved, with currently most patients

reaching HIV RNA levels in plasma that are below the limit of

detection of modern commercial assays (,50 copies/ml). Despite

these encouraging results, failure of ART is still a common

problem. In the Netherlands, the annual proportion of previously

therapy-naı̈ve patients who experience failure increased from 6%

to 9% in the period between 1997 and 2007 (F. de Wolf. The HIV

epidemic in the Netherlands. The 2nd Netherlands Conference on

HIV Pathogenesis, Prevention and Treatment, 25 November

2008, Amsterdam, The Netherlands).

In initial cART responders, previous ART experience and

specific drug regimens are associated with subsequent therapy

failure (virological rebound, VR) [6–11]. In addition, several

baseline parameters (plasma HIV-1 viremia, CD4+ counts, HIV-1

DNA level in PBMC) were reported to be associated with the risk

of VR [6,12,13]. However, no laboratory markers have yet been

identified that are predictive of cART outcome in initial

responders during the period of undetectable plasma viremia.

Whether HIV-1 continues to replicate in patients on cART is a

matter of considerable debate [14–26]. The best evidence for

residual HIV-1 replication comes from the studies on viral
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evolution [17,18,20,22], which demonstrated patient-specific

differences in HIV-1 evolution under cART. If residual viral

replication continues in some patients on cART but not in others,

the former are more prone to develop drug-resistance mutations

and, as a consequence, fail therapy. Hence, quantifying the levels

of intracellular HIV-1 RNA and DNA in patients on cART could

provide hints as to why some patients fail therapy.

We have recently developed sensitive seminested real-time PCR

methods based on TaqMan chemistry for quantitation of

intracellular HIV-1 proviral (pr) DNA and both unspliced (us)

and multiply spliced (ms) RNA forms [27]. Using these methods,

we have recently demonstrated a singnificant longitudinal increase

in levels of usRNA in PBMC of the majority of untreated patients

with steady-state plasma RNA loads in the asymptomatic phase of

HIV-1 infection (Pasternak et al., manuscript in preparation). This

finding indicates that in untreated patients, HIV-1 usRNA load in

PBMC may be a more sensitive prognostic indicator than viral

RNA load in plasma. Here, we used these methods to study the

predictive value of intracellular levels of viral RNA and DNA for

the virological outcome of therapy.

Results

Cellular HIV-1 load (prDNA, usRNA, and msRNA) was

quantified in PBMC at baseline and at multiple time points during

the period of undetectable HIV-1 plasma viremia on cART (‘‘the

eclipse phase’’) in patients who were successfully treated with

cART (‘‘successes’’) and those who experienced VR on cART

after achieving undetectable HIV-1 load in plasma (‘‘failures’’).

UsRNA and prDNA were detected and quantified in all baseline

PBMC samples and in 94% of the under-therapy PBMC samples.

MsRNA could be detected and quantified in 83% of the baseline

samples, but only in 16% of the under-therapy samples (Table S1),

precluding any quantitative comparison of msRNA levels under

cART between the patient groups. To account for the possible

effects of mismatches in the primer and probe binding regions on

the efficiency of real-time PCR, all quantified amounts of prDNA

and usRNA in the baseline and under-therapy PBMC samples

were normalized to the individual mismatch-related quantification

errors (see Methods and Figure S1).

None of the baseline characteristics, except for prior ART

experience (P = 0.015) and baseline CD4+ count (P = 0.019), was

significantly associated with subsequent VR (Table 1). No

significant correlations were observed in any pair of the baseline

quantitative parameters, except for usRNA and msRNA

(P = 0.023, rs = 0.51). Among the antiretroviral drugs received by

the patients, only the use of nelfinavir was significantly associated

with VR (P = 0.024), confirming earlier reports [9,11]. No

significant association of the presence of drug-resistant HIV-1

strains at baseline and subsequent VR was apparent.

Figure 1 shows levels of HIV-1 prDNA, usRNA, and CD4+

counts at baseline and at four time points during the eclipse phase

in all patients (Figure 1A), and the failures and successes separately

(Figure 1B). Significant changes from baseline in levels of all

parameters were observed after cART initiation (Figure 1A). The

median (IQR) drop in prDNA level between the baseline and the

first time point on cART was 0.49 (0.40–0.78) log10 (P = 0.002),

whereas the corresponding drop in usRNA level was 1.05 (0.90–

1.50) log10 (P,0.001). The difference between the drops in

prDNA and usRNA levels was significant (P = 0.002). Subsequent-

ly, we used repeated measures analysis of variance (RM-ANOVA)

to compare the under-therapy levels of HIV-1 prDNA, usRNA,

and CD4+ count between the patient groups. Baseline values were

excluded from this analysis. No significant differences were

observed between the failures and successes in the under-therapy

level of prDNA and CD4+ count (figure 1B). Conversely, there was

a statistically significant difference in the level of usRNA under

cART between the patient groups (P = 0.0015), the median

usRNA level of failures being 0.43 log10 higher than that of

successes. This difference was established early after the start of

cART and observed throughout the eclipse phase (Figure 1B).

Next, we estimated average longitudinal trends of the

parameters during the eclipse phase by fitting linear mixed models

(Figure 2). Again, baseline values were excluded from this analysis.

Trends observed for prDNA and CD4+ count were statistically

significant (P = 0.006 and P = 0.005, respectively), with prDNA

declining on average by 0.12 log10/year, and CD4+ T cell number

increasing by 68 cells/mm3 blood/year. Levels of usRNA did not

significantly change over time in all patients (Figure 2A), and the

separate patient groups (Figure 2B). In this analysis, statistically

significant difference in the levels of virological parameters

between failures and successes was again observed only for the

levels of usRNA (P = 0.005; Figure 2B).

Based on the observation that higher levels of usRNA are

associated with higher risk of VR, we used the maximal value of

usRNA measured during the eclipse phase to determine a

clinically relevant cutoff value of HIV-1 usRNA in PBMC for

the risk of VR. Area under the receiver operating characteristic

(ROC) curve was 0.800 (95% CI, 0.598–0.929; P = 0.0006),

indicating the ability of the maximal level of usRNA under therapy

to correctly predict VR in 80% of random cases, and the cutoff

value of usRNA was 3.43 log10 copies/mg total RNA (,2700 cop-

ies/mg total RNA). As shown by the Kaplan-Meier plot (Figure 3),

whereas the risk of VR remained low (,5%) for maximal under-

therapy values of usRNA smaller than the cutoff value, the risk

increased rapidly for higher values.

Next, we stratified the patients into two groups based on the

determined cutoff value of usRNA. Of the eight patients whose

usRNA level under cART did not reach the cutoff value, only one

experienced VR, whereas VR was observed in 14 out of 18

patients whose maximal usRNA level was higher than the cutoff

value (unadjusted odds ratio (OR), 24.5; 95% CI, 2.3–262.7;

P = 0.0033). Subsequently, maximal level of usRNA under cART,

along with other factors associated with the VR in univariate

analyses with significance levels ,0.1 (baseline CD4+ count, prior

ART experience, use of nelfinavir as PI, use of didanosine as

NRTI), were included in the multivariate logistic regression

analysis. Maximal level of usRNA under cART was independently

predictive of the therapy outcome (adjusted OR for VR (95% CI),

24.4 (1.5–389.5), P = 0.024). The only other factor significantly

associated with VR was prior ART experience (adjusted OR (95%

CI), 12.3 (1.1–138.4), P = 0.042). Area under curve of the logistic

regression was 0.882 (95% CI, 0.695–0.974, P = 0.0004), meaning

that the predictive power of the multivariate model was 88.2%.

Finally, correlation tests were performed between pairs of the

under-therapy levels of the studied parameters (Figure 4A) and

combinations of the baseline and under-therapy levels (Figure 4B).

Figure 4C summarizes the observed correlations. No significant

correlation was observed between the under-therapy levels of

prDNA and usRNA, but levels of usRNA under cART inversely

correlated both with CD4+ count under therapy (rs = 20.56,

P = 0.003) and, even more strongly, with baseline CD4+ count

(rs = 20.65, P = 0.0003). Of note, no significant correlation was

observed between the baseline and under-therapy levels of

usRNA, whereas baseline and under-therapy levels of prDNA

strongly correlated between each other (rs = 0.74, P,0.0001). As

subsequently assessed by Pearson analysis, 40% of the variance of

usRNA level under cART could be explained by the baseline
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Figure 1. Levels of virological parameters and CD4+ counts. Time points on the X axes correspond to the median times from cART initiation of
PBMC samples for every of the sampling time groups (see Methods). Numbers of patients in every sampling time group are indicated on the graphs.
For the upper panels, total numbers of patients are indicated. Median values and interquartile ranges of the studied parameters are indicated. Thin
dotted lines on the upper panels indicate the limit of detection of the modern commercial assays (50 copies/ml). Levels of statistical significance are
depicted on the graphs and signify the following P values: ***, P,0.001; **, 0.001,P,0.01; *, 0.01,P,0.05; ns (not significant), P.0.05. (A) All
patients combined. Parameters were compared between baseline and time on cART-grouped PBMC samples. (B) Patient groups (red, failures; blue,
successes). Parameters were compared between failures and successes. Numbers of failures and successes are indicated by nF and nS, respectively. To
prevent overlap, data sets are nudged between the patient groups.
doi:10.1371/journal.pone.0008490.g001
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CD4+ count, but only 6% of its variance could be explained by the

baseline usRNA level. By contrast, 59% of the variance of prDNA

level under cART could be explained by the baseline prDNA

level.

Due to the low detectability of msRNA in the under-therapy

PBMC samples, we could not assess correlations of this marker

with the other parameters. However, median level of usRNA in

the msRNA+ under-therapy PBMC samples was 0.48 log10 higher

than usRNA level in the msRNA2 samples (P = 0.034, Mann-

Whitney test), suggesting that the correlation between levels of

usRNA and msRNA, observed at baseline, exists also under

cART. The levels of msRNA in PBMC before the start of cART

were, on average, 1.5 log10 lower than those of usRNA (Table 1).

Interestingly, exactly the same msRNA/usRNA ratio was

observed in the msRNA+ under-therapy PBMC samples (Table

S1). If this ratio holds for the samples where msRNA was

undetectable, the median level of msRNA in the under-therapy

PBMC samples should theoretically be ,1.9 log10 copies/mg total

RNA, which is below the average limit of detection of our msRNA

assay, explaining the low (16%) detectability of msRNA.

Discussion

The main clinical objective of cART is suppression of HIV-1

plasma viremia to below the lowest existing detection limit of

commercial assays. In most patients on cART, this objective is

achieved, and therefore plasma viremia in these patients cannot be

informative about the subsequent outcome of therapy. Hence,

additional markers have to be identified that are associated with

therapy outcome in patients with fully suppressed plasma viremia.

In this study, we demonstrated that the level of HIV-1 usRNA in

PBMC from such patients is predictive of subsequent VR. To the

best of our knowledge, this is the first report showing that a viral

parameter–measured in a patient on cART during the period of

undetectable plasma viremia–is predictive of the outcome of

therapy. Several reports have indicated the presence of HIV-1

Figure 2. Longitudinal trends of the virological parameters and CD4+ count during the eclipse phase. The dots represent all the PBMC
samples used in this study. Best-fit lines and their 95% CI are shown by solid and dashed lines, respectively. (A) All patients combined. Levels of
statistical significance of the longitudinal trends are shown on the graphs. (B) Patient groups (red, failures; blue, successes). Levels of statistical
significance of the comparison of the parameters between the patient groups are shown on the graphs.
doi:10.1371/journal.pone.0008490.g002

HIV RNA and cART Failure

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8490



mRNA in PBMC from patients on cART [28–34]. However, the

mere presence of intracellular viral RNA does not necessarily

imply residual virus replication, and may instead reflect produc-

tion of virus from stable reservoirs without new replication cycles.

In contrast, our observation that patients with higher levels of

usRNA in PBMC were more prone to failing cART might link

higher cellular HIV-1 RNA load in these patients with virus

replication under therapy, which, in turn, resulted in selection of

drug-resistance mutations. Acquired drug-resistance mutations

were indeed observed in all plasma samples sequenced after failure

(data not shown). It remains to be investigated whether drug-

resistance mutations can indeed be detected in PBMC of these

patients during the eclipse phase. Low-level plasma viremia was

recently detected by ultrasensitive assays in most patients on cART

[15,24–26]. Whether this residual viremia reflects ongoing virus

replication despite therapy, or the production of virus from stable

reservoirs without new replication cycles, is controversial

[15,23,26,35,36]. The possible association of the residual plasma

viremia with the outcome of cART and its correlation with the

levels of usRNA in PBMC remain to be studied.

Latently infected resting CD4+ T cells are considered to be an

extremely stable viral reservoir in patients on suppressive cART,

and a major barrier to HIV-1 eradication [16,21,37–39].

Occasionally, these cells may become reactivated, as a response

to antigens or cytokine induction [21]. Because unfractionated

PBMC were used in our study, we could not discern whether the

HIV-1 usRNA detected in PBMC was derived from resting or

activated CD4+ T cells, but we assume that the majority of usRNA

was derived from activated CD4+ T cells, productively infected

with HIV-1. This is supported by the observed differences in

longitudinal trends between prDNA and usRNA after the start of

cART. Whereas levels of prDNA gradually diminished throughout

the whole follow-up period, those of usRNA first sharply declined

after the start of therapy and reached the plateau during the

eclipse phase (Figure 1). These differences can be explained by the

fact that prDNA levels reflect the size of the proviral archive,

whereas levels of usRNA reflect the amounts of productively

infected cells at every moment in time. Similar differences in decay

kinetics between HIV-1 DNA and RNA after the start of ART

have been reported by others [29,32,40,41] and are consistent

with the observations that latently infected cells harboring inactive

HIV proviruses are cleared after the start of therapy much slower

than productively infected cells [19,39,42]. During the eclipse

phase, after the initial drop in the amount of productively infected

cells, very few cells among the total bulk of latently infected cells

would become reactivated at any given moment. However,

because activated CD4+ T cells can contain up to 4000 copies

of HIV-1 usRNA/cell [43], this small fraction of cells may be

largely ‘‘responsible’’ for the usRNA levels detected in this study.

Then, the observed difference in the usRNA levels between

failures and successes may be shaped by the difference in the

relative amounts of latently infected resting CD4+ T cells that

become reactivated to the productively infected phenotype and

escape immunological clearance. Importantly, we have observed

that usRNA levels under cART strongly inversely correlated with

baseline CD4+ counts but did not correlate with either HIV-1

prDNA levels under therapy or baseline levels of HIV-1 usRNA,

prDNA, or plasma RNA (Figure 4). Conversely, a strong

correlation has been observed between baseline and under-

therapy levels of HIV-1 prDNA. Thus, the relative amount of

cells expressing viral RNA at any moment during cART (reflected

in the usRNA level) might be defined, to a large extent, by the

immunological state of the patient before therapy (reflected in the

CD4+ count), and not simply by the size of viral reservoir (reflected

in the levels of prDNA). Consequently, level of HIV-1 usRNA in

PBMC under cART, which we found to be (i) strongly inversely

associated with baseline CD4+ count, and (ii) strongly predictive of

subsequent VR, provides a missing link explaining the previously

observed inverse association between the baseline CD4+ count and

the risk of therapy failure [6,12]. Remarkably, the level of usRNA

under cART was a better predictor of therapy failure than the

CD4+ count at baseline. Although baseline CD4+ count could

explain 40% of the variance of usRNA level under cART, other

parameters known to be associated with VR, such as adherence to

cART, may also influence the levels of usRNA.

There are certain limitations to this study. First, our usRNA assay

does not distinguish between genuine intracellular HIV-1 usRNA

and cell-associated virion RNA. However, Fischer et al. [28] have

shown that in patients on cART with plasma viremia suppressed to

,50 copies/ml, extracellular fraction comprised, on average, 0.6%

of total quantified usRNA, which is negligible. Secondly, this study

included patients who started cART, on average, in 1997, and their

therapy regimens would currently be considered suboptimal as a

first-line therapy in the developed world, mainly due to toxicity

issues [44]. While generalization of our findings requires replication

of the results in patients treated with current antiretroviral drugs, we

would like to stress that: (i) antiretroviral drugs received by patients

in this study are still widely used in the resource-limited settings [44],

and a substantial proportion of them is recommended for use as a

first-line therapy in the developing world by the World Health

Organization [45], and (ii) cART regimens used in this study

suppressed plasma viremia in all of our patients to ,50 copies/ml, a

clinically accepted detection limit of the modern ultrasensitive assays

for HIV-1 RNA detection. Furthermore, in PBMC of patients

treated with cART in 2006–2007, levels of usRNA were essentially

similar to those observed in this study (A.O.P. and V.V.L.,

unpublished data).

In summary, our findings demonstrate that the level of HIV-1

unspliced RNA in PBMC is a strong predictive marker for the

outcome of therapy in cART-treated patients. Use of this

quantitative assay in the standard laboratory practice could aid

in monitoring the course of cART and facilitate the early detection

of drug-resistant escape mutants before the actual failure of the

therapy.

Figure 3. The risk of VR according to the maximal usRNA value
during the eclipse phase. Kaplan-Meier plot shows the risk of VR as a
function of maximum usRNA level measured during the eclipse phase.
Small vertical bars show successfully treated patients.
doi:10.1371/journal.pone.0008490.g003
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Figure 4. Correlations of virological parameters and CD4+ count. Best-fit lines and 95% CI are shown by solid and dashed lines, respectively.
Spearman correlation coefficients (rs) and corresponding P values are indicated within the graphs. Mean values of the quantified under-therapy
parameters per patient (geometric means of log10-transformed values of usRNA and prDNA load and arithmetic means of CD4+ count) were used.
The units of measurement are log10 copies/106 PBMC for prDNA, log10 copies/mg total RNA for usRNA, log10 copies/ml for plasma RNA, and cells/
mm3 blood for CD4+ count. (A) Correlations between the under-therapy levels of the studied parameters. (B) Correlations between the baseline and
under-therapy levels. (C) Schematic representation of the correlations shown in panels A and B. Arrows indicate significant correlations, and thickness
of arrows indicates levels of statistical significance: thick arrows, P,0.001; intermediate arrows, 0.001,P,0.01; thin arrows, 0.01,P,0.05.
doi:10.1371/journal.pone.0008490.g004
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Methods

Patients and Patient Samples
We have used archival PBMC samples from HIV-1 infected

individuals who were participating in the Amsterdam Cohort

Studies (ACS) on HIV infection and AIDS. The ACS have been

conducted in accordance with the ethical principles set out in the

Declaration of Helsinki, and written informed content has been

obtained prior to sample collection. The study has been approved

by the ACS committee. The ACS have been approved by the

Medical Ethical Committee of the Academic Medical Center.

We have selected 26 HIV-1 infected individuals who received

cART between 1996 and 2002, and have initially responded to

cART by showing undetectable HIV-1 RNA loads in plasma

(,50 copies/ml). cART was defined as at least a triple-therapy

regimen, consisting of two nucleoside reverse transcriptase inhib-

itors (NRTI) and at least one protease inhibitor (PI) or non-

nucleoside reverse transcriptase inhibitor (NNRTI). All patients

were men infected by HIV-1 subtype B strains. Two groups of

patients were selected, matched by median calendar year of cART

initiation: successfully treated patients (n = 11) and patients who

experienced VR after initially responding to therapy (failures on

cART; n = 15). Individuals treated with cART, in whom HIV-1

plasma viremia dropped to the undetectable levels (,50 copies/ml)

and remained undetectable for the whole period of the therapy (with

the minimum of one year), were considered to have virological

success. Occasional ‘‘blips’’ (transient episodes of detectable plasma

viremia) of ,500 copies/ml, preceded and followed by measure-

ments of ,50 copies/ml, were allowed. Individuals treated with

cART for at least six months, in whom HIV-1 plasma viremia has

dropped to the undetectable levels after the start of therapy, has

been undetectable for at least three months after that, and

subsequently became detectable (.50 copies/ml in two consecutive

measurements or .500 copies/ml in any measurement), were

considered to experience VR (cART failure). No difference was

observed in the frequency of blips between the patient groups.

Baseline was defined as the date of start of cART. The follow-up

period was calculated from the start of therapy until the date of

first measurement of plasma viremia above the detection limit (for

failures), or until the date of last measurement of plasma viremia

under the current therapy regimen (for successes). Median (IQR;

range) follow-up periods were 2.30 (1.58–3.48; 0.62–6.04) years

for all patients, 2.16 (1.40–2.85; 0.62–3.97) years for failures, and

2.48 (2.11–4.68; 1.32–6.04) years for successes. During the follow-

up period, plasma viremia was monitored at least every four

months, and cellular HIV-1 load was quantified at multiple time

points (Table S1). The numbers of under-therapy PBMC samples

were 24 for failures and 25 for successes. There were no significant

differences between the patient groups in the PBMC sampling

times from the start of therapy (P = 0.35). For every PBMC sample

used in this study, concurrent measurements of plasma viremia

and CD4+ count were available.

Quantitation of HIV-1 Load in PBMC and Plasma Samples
For quantitation of cellular HIV-1 RNA and DNA load, PBMC

were isolated by standard Ficoll-Hypaque density gradient centrifu-

gation and frozen in aliquots in liquid nitrogen. Total cellular nucleic

acids were extracted from PBMC samples (,106 PBMC was used for

one extraction) according to the isolation method of Boom et al. [46],

eluted in water, and frozen in aliquots at 280uC until further

processing. HIV-1 prDNA and both forms of cellular HIV-1 RNA

(usRNA and msRNA) were quantified by seminested real-time PCR,

as described earlier [27]. The eluted cellular DNA was directly

subjected to two rounds of PCR amplification: a limited-cycle pre-

amplification step and a real-time PCR step, using seminested

primers. For RNA quantitation, the eluted RNA samples were first

subjected to DNase treatment (DNA-free kit, Ambion), to remove

HIV-1 prDNA which could interfere with the quantitation, and

subsequently to reverse transcription (RT). For both usRNA and

msRNA assays, two rounds of amplification with seminested primers

were performed on the resultant cDNA. For all assays, no positive

signals have been obtained from the negative controls, as well as from

the –RT controls for RNA assays, which were included in the

quantitation. The amounts of PBMC-derived HIV-1 DNA and RNA

were normalized to total cellular inputs, which were quantified in

separate real-time PCR by using the detection kits for either beta-

actin or ribosomal RNA, respectively (both–Applied Biosystems), and

expressed either as number of copies per 106 PBMC for prDNA, or as

number of copies per mg total RNA for usRNA and msRNA. The

sensitivity of all three assays was four copies per reaction, which

translated into approximately 40 copies/106 PBMC for the prDNA

assay and 100 copies/mg total RNA for RNA assays (actual detection

limits depended on the total cellular inputs of the PBMC samples),

and the linear range was at least five orders of magnitude. The

reproducibility and accuracy of these assays have been demonstrated

earlier [27]. For further validation of the assays, prDNA and usRNA

were quantified in 28 PBMC samples, randomly selected from the

pool of samples from patients under cART, in triplicates (including

independent extraction and RT-PCR). The mean coefficients of

variation, calculated on log10-transformed values, were 5.31% (95%

CI, 4.41–6.31%) for the prDNA assay, and 2.29% (95% CI, 1.35–

5.31%) for the usRNA assay.

Plasma viremia was quantified using commercial ultrasensitive

assays with limits of detection of 40 or 50 copies/ml (Quantiplex

HIV-1 RNA 3.0, Bayer Diagnostics, or M2000RT, Abbott

Molecular), according to manufacturers’ recommendations. For

those patients who were treated with cART before the year 2000

(when ultrasensitive assays for plasma HIV-1 RNA quantitation

were introduced in our laboratory), HIV plasma viremia was

remeasured using the modern ultrasensitive assays.

Determination of Baseline Drug Resistance
To determine the presence of drug-resistant HIV-1 strains at

baseline, we used prDNA extracted from the baseline PBMC

samples as described above. Regions corresponding to the pol gene

of HIV-1 were amplified in the nested PCR with the following

primers: 59Prot I (59-AGGCTAATTTTTTAGGGAAGATCT-

GGCCTTCC-39) and 39ET-21 (59-AGCTGGCTACTATTT-

CTTTTGCTACTACAGGTGG-39) (pol-PCR I), and 59Prot II

(59-TCAGAGCAGACCAGAGCCAACAG-39) and 39RT20 (59-

CTGCCAGTTCTAGCTCTGCTTC-39) (pol-PCR II). PCR

products were sequenced directly using the primers of the pol-

PCR II. The sequenced fragments contained all 99 codons of

protease and the first 284 codons of reverse transcriptase. Analysis

of drug-resistance mutations was carried out using the Geno2-

pheno software (Max-Planck-Institut for Informatics, Saarbrücken,

Germany, available online at http://www.geno2pheno.org/),

which includes the algorithm for the determination of resistance

for every antiretroviral drug individually by using the Z-score

(number of standard deviations above the mean of drug-naı̈ve

patients) produced by a particular pol genotype.

Sequence Analysis of Real-Time PCR Target Regions and
Control Real-Time PCR: Correction for Mismatch-Related
Quantification Errors

To account for the possible effects of mismatches in the primer

and probe binding regions on the efficiency of real-time PCR,
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prDNA extracted from patients’ PBMC samples was used for

sequence analysis of the target regions of prDNA and usRNA real-

time PCR assays (these two assays are performed with the same set

of seminested real-time PCR primers and probe). Regions

corresponding to the gag gene of HIV-1 and containing the

primer and probe binding sites were amplified in the nested PCR

with the following primers: 59GAG-1 (59-CATGCGAGAGCGT-

CAGTATTAAGCGG-39) and SK39 (59-TTTGGTCCTT-

GTCTTATGTCCAGAATGC-39) (gag-PCR I), and GAG-2I-

SP6 (59-CGATTTAGGTGACACTATAGGGGAAAAAATTC-

GGTTAIGGCC-39) and GAGAE-3-T7 (59-TAATACGACT-

CACTATAGGGACTATTTTATTTAATCCCAGGAT-39) (gag-

PCR II). The PCR products were sequenced directly with the

primers of the gag-PCR II. Subsequently, the effects of

mismatches in the primer and probe binding regions on the

efficiency of real-time PCR were determined by performing the

seminested real-time PCR with the patient-derived PCR ampli-

cons that contained all the primer and probe target sites, as

templates. The concentrations of the template amplicons were

determined spectrophotometrically and equalized by dilution

before real-time PCR. Patient-specific mismatch-related quantifi-

cation errors (MRQE) were calculated as the differences between

the log10-transformed output copy numbers of the individual

mismatched templates and the log10-transformed median output

copy number of the templates without mismatches. The presence

of mismatches did not substantially influence the real-time PCR

quantification, as the difference between the 10% and 90%

percentiles of the MRQE values was 0.26 log10, and the total

range, except for one outlier, was 0.34 log10 (Figure S1). There was

no significant difference in MRQE values between the baseline

samples and the corresponding under-therapy samples (P = 0.24,

paired Wilcoxon signed rank test), and between the patient groups

(P = 0.17, Mann-Whitney test).

Statistical Analyses
For cellular and plasma HIV-1 load, statistical analyses were

performed on log10-transformed values. All quantified amounts of

prDNA and usRNA in the baseline and under-therapy PBMC

samples were normalized to the individual MRQE values (see

above), and statistical analyses were based on the normalized

values. For the four PBMC samples in which prDNA and/or

usRNA were undetectable, the prDNA and usRNA levels were

left-censored at the corresponding detection limits, normalized to

the MRQE values. For the comparisons of the baseline parameters

between the patient groups, we used Mann-Whitney test for

continuous variables and Fischer’s exact test for discrete variables.

For the comparisons of the levels of usRNA and prDNA and

CD4+ count in patients on cART, under-therapy PBMC samples

were divided in four groups based on sampling time from cART

initiation: group I, 0.1–0.6 years; group II, 0.7–1.5 years; group

III, 1.9–2.5 years; group IV, 2.9–6.0 years. Any of these groups

did not contain more than one value from any patient. In three

cases, patients were sampled twice in the period corresponding to

the groupings (two cases in group IV and one in group I). In these

cases, mean values per patient were used for the statistical analysis.

The parameters were compared between baseline and time on

cART-grouped PBMC samples by using paired Wilcoxon test and

between failures and successes by using RM-ANOVA. Baseline

values were excluded from the latter analysis. Longitudinal trends

of the studied parameters under cART were estimated by fitting

the linear mixed models, taking into account correlations of

repeated measurements within the individual patients. Subse-

quently, linear mixed models were used to compare the virological

parameters between the patient groups. The cutoff value of

usRNA for the risk of VR was determined by the ROC curve

analysis with therapy outcome as the classification variable and

maximal value of usRNA under therapy as the diagnostic variable.

Correlations of virological parameters and CD4+ count were

assessed by using Spearman tests. All parameters, except for CD4+

count under therapy, were normally distributed (P.0.1, D’Agos-

tino & Pearson omnibus normality test), and Pearson r2 values of

pairwise correlations were calculated for these parameters. RM-

ANOVA was performed by using XLSTAT (http://www.xlstat.

com), logistic regression and ROC curve analysis by using

MedCalc 10.4 (http://www.medcalc.be), and linear mixed model

analysis by using SPSS 16.0 (http://www.spss.com/). All other

statistical tests were performed by using GraphPad Prism 5.01

(http://www.graphpad.com). All statistical tests were two-sided. P

values,0.05 were considered statistically significant.

Supporting Information

Figure S1 Sequences of primer and probe target regions of

seminested real-time PCR assays for usRNA and prDNA

detection.

Found at: doi:10.1371/journal.pone.0008490.s001 (0.07 MB

PDF)

Table S1 HIV-1 load in PBMC and plasma and CD4+ counts.

Found at: doi:10.1371/journal.pone.0008490.s002 (0.37 MB

PDF)
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