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TP53 genes is one of more important tumor suppressor gene, which acts as a potent transcription factor with fundamental role
in the maintenance of genetic stability. The development of esophageal and gastric cancers is a multistep process resulting in
successive accumulation of genetic alterations that culminates in the malignant transformation. Thus, this study highlights the
participation of the main genetic alterations of the TP53 gene in esophageal and gastric carcinogenesis. Among these changes,
high frequency of TP53 mutations, loss of heterozygosity (LOH), overexpression of the p53 protein, and consequently loss of p53
function, which would be early events in esophageal and gastric cancers, as well as an important biomarker of the prognosis and
treatment response. Furthermore, Single Nucleotide Polymorphisms (SNPs) of TP53 have been implicated in the development
and prognosis of several cancers, mainly TP53 codon 72 polymorphism whose role has been extensively studied in relation to
susceptibility for esophageal and gastric cancer development.

1. Introduction

Gastric and esophageal cancers together are responsible by
high rates of incidence and mortality worldwidely [1]. These
neoplasms are histologically and genetically heterogeneous,
but in the meantime sharing common aspects, such as a
multifactorial origin involving risk factors such as smoking
consumption and alcohol intake, progression through pre-
cancerous lesions, and the occurrence of an inflammatory
process [2, 3].

Esophageal cancer is classified in two major histological
types as esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EA). The ESCC may occur
as consequence of a premalignant lesion knows as megae-
sophagus (esophagus dilatation) due achalasia leading to
food retention or esophageal stasis. In consequence, chronic
esophagitis may occur due increased bacterial prolifera-
tion in the liquid stasis [4], acanthosis, parakeratose and

leukoplakia [5]. The megaesophagus increases the risk of the
3% to 8% of developing ESCC [6]. The EA is related with
Barrett’s esophagus (BE), an acquired metaplastic abnor-
mality in which the normal stratified squamous epithelium
of the esophagus is replaced by an intestinal-like columnar
epithelium containing goblet cells (intestinal metaplasia).
Such condition is widespread and provides a 100-fold
increased risk for the development of EA [7].

The gastric adenocarcinoma accounts for approximately
95% of cases of gastric malignancies. It is classified by
histopathological characteristics in diffuse and intestinal
subtypes [8] and occurs as distinct clinical and epidemiolog-
ical entities. The gastric cancer (GC) can progress through
of multistep process from a chronic gastritis frequently
resulting from Helicobacter pylori infection to gastric atrophy,
intestinal metaplasia, dysplasia, and finally to carcinoma [9].
This bacterium, due the inflammatory process in gastric
mucosa is considered the major risk factor of GC. It is present
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in 77% of noncardia gastric cancers [10] and in 90% of
all chronic gastritis patients, so has been associated with
increased risk of cancer up to nine times [11, 12].

Although different genetic and epigenetic alteration
involving oncogenes activation, tumor suppressor genes
mutations, DNA repair genes, microsatellite instability,
loss of heterozygosity (LOH) have been reported in both
esophageal and gastric cancers [2, 3, 13, 14], genetic alter-
ations in TP53 tumor suppressor gene are fundamental
events related in both early stage and advanced tumor.

In this study, we summarize the main molecular alter-
ations of the TP53 gene in esophageal and gastric carcino-
genesis reported in literature and also our contribution to
studies of this gene in precancerous and malignant lesions
of the esophagus and stomach, such as frequency and types
of TP53 mutations, LOH, overexpression of the mutant
p53 protein, and consequently loss of p53 function, which
may act as important biomarker of the prognosis and
treatment response. In addition, we also focused on the role
of TP53 codon 72 polymorphism, which has been extensively
studied in relation to risk for esophageal and gastric cancer
development.

2. TP53 Gene

TP53 gene mapped on 17p13.1 [15] is one of more
important tumor suppressor gene composed by 11 exons
(∼20 KB), which genomic integrity of exons 5–8 is parti-
cularly important for its activity [16, 17]. TP53 gene
encodes a nuclear p53 protein of 393 amino acids, which
acts as a potent transcription factor with key role in the
maintenance of genetic stability [18]. This protein regulates
the expression of hundreds of genes and noncoding RNAs,
as well as the RNA processing complexes activity. When
activated, in response to cellular stress (Figure 1), p53 trig-
gers adequate cellular response, including cell-cycle arrest,
DNA repair and programmed cell death (apoptosis) [19],
and preventing the multiplication of damaged cells [20],
being named “the guardian of the genome” [21]. The p53
protein has also others biological functions: senescence, DNA
metabolism, angiogenesis, cellular differentiation, and the
immune response [22].

The function of TP53 gene is usually altered through
LOH, mutations, and rarely by DNA methylation. Over
50% of human cancers present inactivated TP53, due loss
of function mutations [23], among 95% of them occurred
within the genomic region encoding the sequence-specific
DNA-binding domain of TP53. These mutations disrupted
the proper conformation of that sequence so mutant forms
of TP53 lacked the sequence-specific transactivation ability.
Thus, impaired TP53 activity promotes the accumulation of
DNA damage in cells, which leads to a cancer phenotype.

In general, TP53 exons 5–9 are investigated because
they contain the zinc-finger domain and the transactivating
domain, which are mutational hotspots; by the way, more
than 80% of TP53 mutations are clustered there [24]. The
TP53 mutations consist of primarily missense substitutions

(75%) nonrandomly distributed along the molecule, partic-
ularly the central DNA-binding-domain [25]. These single
aminoacid changes affect TP53 transcriptional activity to
various degrees. The TP53 mutational spectrum is charac-
terized by the presence of mutations at six discrete hotspot
codons within the DNA binding domain of the molecule:
codons 175, 245, 248, 249, 273, and 282 [26]. Furthermore,
other alterations include frameshift insertions and deletions
(9%), nonsense mutations (7%), silent mutations (5%), and
some infrequent alterations [27]. More than 27,000 somatic
mutation data of TP53 appear in the International Agency
for Research on Cancer (IARC) TP53 database version R15
[25, 28].

For the p53 protein expression, the wild type has short-
life and the mutant forms have a longer half-life [29, 30],
and show the dominant-negative behavior toward wild type
[31, 32], so overexpression and accumulation of mutant
p53 protein by immunohistochemistry assay has been widely
used as marker for detection of p53 abnormalities in
neoplasms.

More than two decades after the TP53 gene discovery
and knowledge about its function in cell cycle control and
normal cells homeostasis, mutations of this gene remain the
prevalent genetic alteration involved in cancer etiology.

3. Mutations of TP53 Gene in Esophageal and
Gastric Carcinogenesis

3.1. Esophageal Adenocarcinoma (EA) and Esophageal Squa-
mous Cell Carcinoma (ESCC). The EA is a multistep process,
in which the metaplastic epithelium characteristic of Barrett’s
esophagus (BE) is thought to sequentially develop low-grade
dysplasia, high-grade dysplasia, early EA, and, eventually,
invasive carcinoma [33, 34].

The genetic and epigenetic alteration more common
in BE is the inactivation of CDKN2A on chromosome 9p
[35, 36]. However, the loss of TP53 is an important event in
BE progression [37, 38], because patients with LOH in TP53
are 16 times more likely to progress to EA [39], since both
mutations and LOH in TP53 appear to provide a competitive
advantage to the mutant clone [40]. Mutations in TP53 can
be a predictor of significantly reduced postoperative survival
following surgical resection of EA and would appear to
be a clinically useful molecular prognostic biomarker. In a
study that assessed the prognostic value of TP53 mutations
in EA was observed that 47% of the tumors analyzed had
TP53 mutations, predominantly G:C to A:T transitions at
CpG dinucleotides. Such mutations have been associated
with overexpression of p53 protein, tumor differentiation,
and significantly reduced postoperative survival following
surgical resection of EA [41].

Many studies has also focused on genetic alterations in
ESCC at different loci of the chromosomes, because some
of the microsatellite markers may be useful for the early
detection of this type of cancer. The LOH was found in at
least one of the eight markers, including TP53. However,
the most of the 38 microsatellite markers analysis did not
display microsatellite instability, suggesting these regions are
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Figure 1: The p53 signaling pathway: In normal conditions (black arrows), p53 is maintained at very low levels. p53 is downregulated by
MDM2 (murine double minute 2) and MDMX (Mdm4 p53 binding protein homolog mouse). MDM2 is an E3 ubiquitin ligase, which
controls p53 proteasomal degradation. MDMX lacks the E3 ligase function and suppresses the transcriptional activity of p53, which
is independent of MDM2. It also forms a heterodimeric complex with MDM2 and stimulates MDM2-mediated p53 degradation. The
expression of MDM2 is controlled by p53 itself through a negative feedback loop. In stress conditions (red arrows) p53 responds to a range
of environmental and intracellular stresses, including agents that cause DNA damage, ultraviolet radiation, and oxidative stress. In damage
response are activated several kinases (ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR)), which cause
conformational changes in p53, MDMX, and MDM2 blocking their interactions and resulting in p53 stabilization. Activated p53 protein
subsequently transactivates expression of several target genes, such as the cyclin-dependent kinase inhibitor protein p21WAF1, which induce
G1/S arrest, proapoptotic genes particularly those involved in the mitochondrial pathway of apoptosis, such as BAX, and genes involved in
DNA repair, such as GADD45/PCNA.

possible targets of genomic instability in early-stage ESCC
carcinogenesis [42].

The esophagus is most frequently exposed to carcinogens
as the stomach or colon, such carcinogens present in food or

dietary factors act as inducers of TP53 mutations in ESCC
in some areas considered high risk, such as China, Southern
Brazil, and Taiwan [43]. A high frequency of TP53 mutations
and p53 protein expression in the ESCC has been reported,
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and loss of p53 function would be the early events in ESCC
development [44]. The study performed in ESCC patients
in Japanese population reported mutations in exons 5–9 of
the TP53 gene in 48% of them, whereas transversions were
the most prevalent, followed by transitions. Transversion
G:C to T:A occurred preferentially at codons 157, 248,
and 273, considered known sites of adducts formation on
DNA. Among the sources of transversion, oxidative DNA
damage, and metabolites of benzo(a)pyrene are associated
with esophageal carcinogenesis, since smoking is the major
risk factor for the development of this neoplasm and the fact
that this substance is an important component of cigarette
smoke [43].

One of the highest incidences of ESCC in the world is
found in northeastern Iran, Golestan Province, with rates
over 50 per 100,000 person-years in both genders [45]. In
this high-risk geographic area was found a total of 120
TP53 mutations in 107/119 cases (89.9%), including 11
patients with double or triple mutations, which mutation
pattern was heterogeneous with infrequent mutations at
common TP53 “hotspots,” but with frequent transversions
attributable to environmental carcinogens forming bulky
DNA adducts, including 40% at bases known as site of
mutagenesis by polycyclic aromatic hydrocarbons (PAHs).
The authors no observed relation of the mutation pattern
with ethnicity, tobacco or opium use, and alcoholic beverage
consumption or urban versus rural residence. Thus, the
multiple environmental carcinogens seem to be the cause of
this heterogeneous mutation pattern [45].

Our research group, in a small sample of ESCC patients
of southeastern Brazil described two novel mutations in
the TP53 exons 5 (codon 147) and 6 (codon 197) in 2/10
cases of ESCC, but no mutation was found in the 30 cases
of chronic esophagitis assessed. While one of them was
a silent mutation (codon 147) the other was a missense
mutation (codon 197) resulting in a change from valine
to alanine that could affect the structure and function
of the p53 protein [46]. In addition, Egashira et al. [24]
identified several mutations in exons 2, 3, 10, and 11 of
TP53 gene in ESCC and some of these mutations might be
deleterious because they are expected to lead to a truncated
protein. A significant correlation between the presence of
TP53 gene mutation and LOH was found, whereas there
was no significant correlation between LOH and protein
expression.

Recently, 10 esophageal cancer cell lines and 91 surgically
resected specimens were examined for LOH at the TP53
using microsatellite analysis, CGH (comparative genomic
hybridization), FISH (fluorescence in situ hybridization),
and SNP-CGH (single nucleotide polymorphism-CGH)
[47]. It was verified that LOH without copy number change
at the TP53 locus was observed in TP53 mutant ESCC,
suggesting that copy-neutral LOH occurring as a result of
chromosomal instability might be the major mechanism for
inactivation of the intact allele in esophageal squamous cell
carcinogenesis associated with TP53 mutation. These results
emphasize the pivotal role of genetic alterations in TP53 in
the esophageal carcinogenesis, with serious consequences for
the deregulation of the cell cycle.

3.2. Gastric Carcinogenesis. Molecular studies have supplied
important information on the genetic events in GC involving
a number of genetic and epigenetic alterations including
oncogenes as amplification of c-MYC, c-ERBB2, c-MET, E-
cadherin (CDH1), tumor suppressor genes with mutations
of APC, TP53, and cell cycle regulators, cell adhesion
molecules and DNA repair genes [13, 48, 49]. Other genetic
factors, such as DNA polymorphisms and genetic instability,
may also be implicated in the two distinct major genetic
pathways of gastric carcinogenesis [50]. However, LOH at
chromosome 17p and TP53 mutations are implicated in
the development of both intestinal and diffuse type gastric
cancer [50].

TP53 mutation is one of the most prevalent genetic
alterations in GC. More than one mutation may be present
in a single tumor resulting in heterogeneity of the TP53
mutational status. There are conflicting results with respect
to the prevalence of TP53 mutations and their relationship
to histological type or tumor stage of GC. Some studies
showed that mutations tend to affect mainly intestinal-type
tumors, while others found that the incidence of mutation
is similar in both intestinal and diffuse-type tumors, ranging
between 25% and 40% of the cases studied. According tumor
stage, TP53 abnormalities appear to occur early in intestinal-
type cancers, but some studies showed that the frequency of
TP53 mutation in both early and advanced intestinal-type
is consistent at around 40% each, similar to that observed
in advanced diffuse-type, while in early diffuse-type TP53
mutations are uncommon [43, 51–53].

In Japanese patients with GC, Oki et al. [43] found
TP53 mutations in 16% (18/112) of the cases, more often
in intestinal-type. The TP53 mutational spectrum was wide,
including in a decreasing order of frequency, codons 175,
248, 273, 282, 245, and 213, all of which are CpG sites.
Transitions of the G:C to A:T are the most common type of
mutation, regardless of the histological type of the tumor,
followed by transversions. Interestingly, it appears to be a
difference in the frequency of G:C to A:T and A:T to G:C
transitions in European compared to Asian populations [53].
The observed pattern of mutations are consistent with that
for dietary mutagens associated with the metabolism of
nitrogenous compounds involved in gastric carcinogenesis,
thus resulting in the deamination of nucleic acids. C to
T mutations are also induced by nitric oxide, a substance
produced during infection by H. pylori bacterium [54].

Similarly, in Chinese population, Chen et al. [55]
reported TP53 mutations in GC occurring in four exons
affecting codons 131, 132, 133, 135, 149, 151, 162, 167, 173,
174, and 175 of exon 5, codons 193, 197, 213, and 215
of exon 6, codons 245, 246, 248, 249, and 270 of exon 7,
and codons 271, 272, 273, and 282 of exon 8. Among the
mutations, G:C to A:T transitions was the highest (41.7%),
followed by A:T to G:C (25%), G:C to C:G (11.1%), G:C
to T:A (8.3%), A:T to T:A (2.8%), and frameshift mutation.
The authors also reported an association between TP53
mutation and patients with high/high-middle differentiated
type-GC, indicating that these mutations are responsible for
the initiation stages of gastric carcinoma, rather than the
slowing of differentiation.
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The tumor suppressor functions of p53 protein are
largely demonstrated by its apoptosis-inducing ability that
may be dependent or independent of de novo gene transcrip-
tion. As a transcription factor, p53 targets multiple elements
involved in the apoptotic pathway [56].

Apart from transcriptionally targeting elements, p53 is
also able to mediate transcription-independent apoptosis.
Under cellular stress, p53 accumulates in the cytosol or mito-
chondria and leads to the direct activation of proapoptotic
Bcl-2 family members, such as Bax and/or Bak [57, 58], so it
selectively activates p53-mediated apoptosis. This selectivity
may help to avoid the unwanted side effects associated with
conventional p53 treatment based on transcription [59, 60].

Several studies have assessed the relationship between
apoptosis and TP53 alterations. In gastric epithelium a
balance between cell proliferation rate and programmed cell
death or apoptosis maintain the homeostasis. An imbalance
of these two processes leading to increased proliferation of
the gastric epithelial cells may enhance the effect of carcino-
gens on DNA, increasing the risk of mutational changes, and
the development of gastric cancer [61, 62].

In focus, we investigated the association of apoptosis
with infection by H. pylori in benign gastric lesions and
GC [63]. Although not observed significant differences
in apoptotic index (AI) between the different groups of
benign gastric lesions, whether by the TUNEL technique
or by the CPP32 (caspase-3 activated) antibody, the CAG
(chronic atrophic gastritis) group showed a statistically
increased AI, compared to normal mucosa (NM), as well
as a higher number of TUNEL-positive cases. Furthermore,
the CG (chronic gastritis) group had a statistically higher
AI than did the NM, as well as a higher number of CPP32-
positive cases. However, the GC group displayed a low AI,
and no significant differences were found regarding the
histological subtypes, intestinal or diffuse. Also in this study,
was found statistically higher AI in individuals infected
by H. pylori in GU (gastric ulcer) and IM (intestinal
metaplasia) groups compared to NM from patients without
infection. In general, this study showed high AI in both
groups of CG and CAG regardless of infection by H.
pylori, aneuploidy, and overexpression of the protein p53.
However, the precise involvement of H. pylori infection in
the balance between apoptosis and proliferation has yet to be
elucidated.

Regarding the histological subtypes of GC, Triantafyllou
et al. [64] investigated both apoptotic and proliferation
indices and found higher AI in advanced intestinal type
tumors, as well as p53 protein expression significantly higher
in advanced cancers and in the nondysplastic tissue adjacent.
According to the authors these data indicate similar cell
turnover during tumorigenesis between both tumors types.

Considering the variation of the prognosis among
patients with the same tumor stage, Liu et al. [65] assessed
the relationship between some apoptotic markers, such as
p53, bcl-2, bax, and c-myc expression to clinicopathological
characteristics and their prognostic significance in GC. The
authors observed a strong correlation between the expression
of p53, bax, and c-myc, as well as with histological grade,
but a reverse correlation between histological type and p53

expression, so demonstrating that deregulation of p53 might
result in uncontrolled proliferation in gastric cancer.

So far, many efforts have been applied for understanding
the mechanisms involving TP53 mutations in carcinogenesis
and development of the gastrointestinal tract; it is clear
participation of TP53 gene alterations in early stages and
progression of these tumor types.

4. p53 Protein Overexpression in Esophageal
and Gastric Carcinogenesis

The expression analysis on p53 protein level by immuno-
histochemical staining has been performed on routine
paraffin embedded material and the overexpression and an
accumulation of protein is used as an indicator of mutant
form of TP53 gene, which has been shown to be a powerful
marker of malignancy.

One of the most common abnormality detected in
EA is overexpression of p53 protein, that is restricted to
more advanced areas of dysplasia and malignancy [66, 67].
Among 137 primarily resected EA samples, after immuno-
histochemical staining, showed accumulation of p53 in 52%
cases [68]. Increased p53 expression, as measurement of
TP53 mutations, was observed also in BE with high-grade
dysplasia (HGD) and in BE-associated to EA suggesting
the involvement of the TP53 in the pathogenesis of this
entity [69]. Moreover, p53 expression confirmed multifocal
dysplasia in BE esophageal mucosectomies and the patients
displayed increased aneusomy for chromosome 17 along the
sequence of cancer progression [70].

Other esophageal precursor lesions have also evidenced
alterations in p53 expression. For example, study performed
by researchers of our laboratory [71] observed that the
proportion of p53-positive cases increased progressively
according to the severity of the esophageal pathology.
Positive immunostaining for p53 protein was observed in a
few cells in the normal mucosa, which was interpreted as
expression of wild-type p53 protein. However, a progressive
increase of p53 protein expression was observed as fol-
lows: chagasic megaesophagus (26.1%), chronic esophagitis
(52.2%), and ESCC (100%). A strong and diffuse nuclear
staining in the ESCC probably arose from the high expression
of mutant p53 protein, whereas in chronic esophagitis and
chagasic megaesophagus, it was not possible to indicate
p53 as mutated protein. It may also have been due to the
expression of wild-type p53 that accumulates in the cells
as a consequence of the physiological and inflammatory
processes in the esophageal epithelium [71].

To characterize p53 alterations in multiple esophageal
carcinomas and to study their roles in carcinogenesis, p53
immunohistochemical and mutation analyses using laser
capture microdissection on surgically resected were per-
formed in esophageal carcinomas. p53 protein accumulation
was observed in 72.7% of tumors. In the 9 cases of multiple
esophageal carcinomas, TP53 mutations were detected in
the whole tumor in 1 (11.1%) case, in the microdissected
tumor samples of main lesions in 3 (33.3%) cases, and in the
microdissected tumor samples of concomitant lesions in 3
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(33.3%) cases. For the microdissected tumor samples, there
was a 54.5% (12/22) concordance rate between the results
of immunostaining and molecular analysis. The finding of
different TP53 gene mutations among multiple esophageal
carcinomas suggests further evidence of multicentric or field
carcinogenesis of the esophagus [72].

In ESSC, the aberrant expression of p53 protein has been
observed during the tumoral progression and appears to be
associated with lymph node metastasis [73, 74]. When p53
protein expression was examined in 148 ESCC cases using
immunohistochemistry combined with tissue microarray,
Lin et al. [75] showed p53 protein accumulation in 86%
high-grade dysplasia/carcinoma in situ (HGD/CIS), 81%
of low-grade dysplasia (LGD), and in none of reactive
atypical epithelium (RAE) and normal epithelium (NE).
Of HGD/CIS and LGD with p53 protein accumulation,
similar percentages had mutations (83% and 82%, resp.).
p53 expression has also been reported in 65.5% lymph
node metastasis, whereas p53 was in 50% of cases of ESCC,
with the specificity of 90.9% and sensitivity rate of 65.5%
in detected lymph node metastasis and positive predictive
value was 95%. Expression of p53 was significantly correlated
with stage and lymph node metastasis, suggesting that
when preoperative staging has been insufficient in ESCC,
immunohistochemical analysis of p53 in tissues could be an
aid to clinicians regarding lymph node metastasis [73].

The p53 status, both gene mutation and immunohis-
tochemical staining, was assessed as potential predictive
markers of chemotherapy response and prognosis for ESCC
[76]. The results of retrospective study showed mutant TP53
and p53-positive protein in 46.8% and 55.8% of patients,
respectively, which was not associated with clinicopathologi-
cal findings of patient including initial tumor stage. Response
to chemotherapy was observed in only 16.7% of patients with
mutation of TP53 gene, which showed significantly poorer
prognosis. However, there was no correlation of p53 protein
status with response to chemotherapy, curative resection
rate, or prognosis. These parameters were also investigated
in a group of patients in the prospective study. Similarly to
the retrospective study, TP53 mutation was associated with
poorer response to chemotherapy and prognosis. Thus, these
findings showed that TP53 genotype is a potentially useful
predictor of poorer response to chemotherapy and prognosis
in ESCC patients.

In gastric benign lesions and gastric cancer, our research
group assessed the p53 overexpression and occurrence of
aneuploidy for chromosome 17 and TP53 gene deletion [77,
78]. In intestinal metaplasia (IM) from cancer-free patients,
immunohistochemistry revealed p53 overexpression in 12%
of the analyzed cases, as well as TP53 gene deletion in 60%
of the cases. All GC cases presented higher frequencies of
trisomy or tetrasomy of chromosome 17 and TP53 deletion,
and immunohistochemistry detected overexpression of p53
protein in 80% of the assessed cases. These results suggest
that IM and GC may share the same genetic alterations [77].
Similarly, Khayat et al. [79] evidenced positive immunoreac-
tivity of p53 in IM samples and, in these cases, the frequency
of cells with two chromosome 17 and two TP53 signals was
higher than in p53-negative cases. In other benign lesions

as chronic gastritis (CG) and gastric ulcer (GU) has also
been reported p53-positive immunoreactivity, that is, in 45%
and 12% of cases, respectively [78]. In this study, trisomy
of 17 was increasingly found from CG to GU, but no TP53
deletion was found in these gastric lesions. The occurrence
of aneuploidies in benign lesions evidences chromosomal
instability in early stages of gastric carcinogenesis.

Overexpression of p53 protein and aneuploidy of chro-
mosome 17 has been observed in GC and nontumoral tissues
in others studies. Lu et al. [80] showed that in tumor
tissues aneuploidy of chromosome 17 occurred in 58.6% of
cases and 45.5% of GC samples overexpressed p53 protein,
significantly higher than those in nontumor strict mucosa
(0 and 12.1%, resp.). The expression of p53 in nontumor
gastric mucosa with dysplasia was significantly higher than
that in the mucosa without dysplasia. Overexpression of p53
protein was associated with the size of tumors that may help
in diagnosis and prognostic prediction of GC [80].

In addition, association of p53 expression with the
tumor biological behavior and prognosis of GC patients
was also reported. However, the prognostic impact of p53
abnormalities in this neoplasm remains controversial. It was
described that the degree of p53 expression correlates with
the proliferative rate of the gastric cancer. Furthermore, a
significant association between p53 overexpression and the
metastatic spread to lymph nodes or shortened survival has
been described by some studies on GC, but not by others
[81, 82].

Although H. pylori eradication has some inhibitory
effects on the subsequent development of GC, there are
sporadic cases of malignant progression even after successful
eradication. The pathogenesis of GC emerging after H.
pylori eradication remains to be clarified. Iijima et al. [83]
assessed the relationship of the acid secretion pattern to the
occurrence site of GC emerging after bacterial eradication in
order to estimate the individual cancer risk. The p53 protein
frequently was accumulated in non-acid-secreting areas,
suggesting that genetic alteration such as TP53 mutation
seems to be already present in the residual non-acid-secreting
areas that could be the origin site of gastric carcinogenesis
even after eradication.

Esophageal and gastric carcinomas show multiple and
distinct molecular alterations, which indicate that progres-
sion of cancer is a multistep complex process with many
different pathways and accumulation of various alterations.
Presumably, it is not only one molecular factor that can
predict the biological behavior of these cancers, but patterns
of TP53 mutations and protein overexpression would appear
to be an useful biomarker of tumor progression, prognosis,
and prediction of response to treatment of gastroesophageal
cancer patients.

5. TP53 Polymorphisms and Risk of
Esophageal and Gastric Cancer

The tumor suppressor TP53 pathway plays a crucial role in
preventing carcinogenesis, thus single nucleotide polymor-
phisms (SNPs) of TP53 gene naturally occurring in human
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populations are expected to cause measurable perturbation
on p53 function [84]. It is known that functional polymor-
phisms can impact tumor biology and have been implicated
in the development and prognosis of several cancers, being
highlighted as a potential candidate of the susceptibility for
cancer development [85–89]. These genetics variants in TP53
may modulate cancer risk because they are also supposed to
influence cell cycle progression, apoptosis, and DNA repair
[90].

At least 85 SNPs are described on TP53 [25]. However,
the most investigated polymorphism in this gene is a nonsyn-
onymous single base pair change in a proline-rich domain
located in exon 4 codon 72 (TP53 Arg72Pro, rs 1042522),
which consists in a substitution of cytosine (C) for guanine
(G) and results in the substitution of arginine (Arg72—
CGC) by proline (Pro72—CCC) [91].

The Arg72Pro polymorphism shows differences in its
biochemical or biological functions [92, 93]. This change in
amino acid sequence may alter the ability of p53 to bind
to response elements in target genes and thus induce gene
transcription, its interaction with p73 and its targeting of
the proteasome. In addition, alter recognition motifs for
posttranslational modifications or p53 stability, and still the
susceptibility to degradation by human papillomavirus E6
protein [94, 95]. It may also modulate the apoptosis at dif-
fering rates [94] and modify sensitivity to chemotherapeutic
agents [96]. The Pro72 variant exhibits decreased apoptotic
potential than the Arg72 variant [87, 91, 93, 97], indicating
that the two polymorphic variants of TP53 are functionally
distinct, which may influence the cancer risk or treatment
[88, 97].

Some studies have reported the identification of
Arg72Pro polymorphism and its role in many kinds of
cancers such as cervical [98], lung [99–102], breast [103–
108], colorectal [109, 110], esophageal [111–113], and gastric
[114].

Even if TP53 gene is highly polymorphic, the TP53 codon
72 polymorphism is the only whose role has been extensively
studied in relation to esophageal and gastric cancer and the
results have been inconsistent (Table 1). Some studies in
esophageal and gastric cancer of different populations have
evidenced association of the Pro72 variant with cancer risk,
while others with the Arg72 variant.

5.1. Association with Esophageal Cancer. In the last decades,
several studies had been focused in the association between
Arg72Pro polymorphism and esophageal cancer (EC) sus-
ceptibility, but the results are still conflicting and heteroge-
neous [88, 111–113, 115–119, 121, 132].

Some studies showed that in EC, the Pro allele was
associated to protection [93] or that the Arg allele was
associated with increased risk of EC [112], but others found
the opposite, that Arg allele was associated to protection
[88], or that the Pro allele was associated with increased risk
of this disease [46, 87, 111, 113, 117, 120, 121]. Moreover,
maintaining this functional change had been associated not
only with increased risk, but also with earlier age of onset,
reduced response to chemotherapy, and early recurrence in

a variety of cancers [85, 87]. However, other studies did not
find any association between Arg72Pro polymorphism and
susceptibility to ESCC [118, 132], either to EA, age of onset
and stage of disease at the time of the diagnosis detection
[74].

Piao et al. [120], in South Korea population, observed the
Arg72Pro polymorphism was associated with an increased
risk of EC and also found that smoking status changed the
association between the Arg72Pro polymorphism and the
risk of this cancer, so that the Odds Ratio of the Arg/Pro
genotype was higher in ever-smokers than in never-smokers.
Another study had indicated significant association between
this polymorphism and smoking with risk of development
of ESCC being the highest risk in smokers carrying Pro/Pro
genotypes [111]. In addition, a study in a Chinese mainland
population found that the Pro/Pro genotype was significantly
associated with an increased risk of ESCC and the association
was especially noteworthy in women and in younger patients
[113].

Besides, Cescon et al. [87] showed that, among all EC
patients treated with standard therapy, the Pro/Pro genotype
was associated with shorter overall survival and progression,
independent of standard clinical prognostic features, thus
the authors suggest that TP53 could help the prediction
of prognosis in EC, identifying high-risk patient’s sub-
groups that might benefit themselves from new thera-
peutic strategies. Some recent meta-analyses have focused
on Arg72Pro polymorphism on EC risk. For example,
Jiang et al. [88] verified a significantly reduced risk of
EC associated with TP53 genotypes (Arg/Arg + Arg/Pro
versus Pro/Pro) and their analysis was restricted to well-
designed studies. Moreover, the Arg allele was significantly
associated with decreased EC risk. Other meta-analysis
showed that the Arg72Pro was associated with an increased
risk of EC (Pro/Arg + Pro/Pro versus Arg/Arg) and the
authors have observed no heterogeneity between the studies
[133]. However, when the authors performed a stratified
analysis by ethnicity, the increased risk of EC associated
with Arg72Pro polymorphism (Pro/Arg + Pro/Pro versus
Arg/Arg) was more evident in Asian group, thus their results
suggest that Arg72Pro polymorphism may contribute to EC
development, especially in Asians.

Despite of various studies assessing the functional TP53
Arg72Pro polymorphism in relation to EC susceptibility, the
results remain conflicting probably due to methodological
errors such as selection bias, inappropriate specimens used
for genotyping, or limited statistical power [88] and also
ethnicity. Therefore, additional well-designed large studies
still are required for the validation of this association.

5.2. Association with Gastric Cancer. Similarly to studies of
association with EC, the relationship between the Arg72Pro
polymorphism, and GC susceptibility is also controver-
sial. Studies performed in southern China [122] and in
Venezuela [134] suggest that Arg allele-carriers could be
associated with the development of GC. In contrast, studies
in Korea reported that Pro/Pro genotype was associated with
increased risk of this neoplasm [95, 126]. While in a Chinese
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Table 1: Frequency distribution of TP53 codon 72 polymorphism genotype and association with risk of the gastric and esophageal cancers
in the worldwide.

Tumor site Country (Ethnicity) Case/Control (n)
Genotype frequency case/Control (%)

Reference
Arg/Arg Arg/Pro Pro/Pro

Esophagus

China (Asians) 758/1420 26.2/29.9 44.9/51.5 28.9/18.6 [111]

China (Asians) 435/550 85.7/49.6 4.4/35.8 9.9/14.6 [112]

China (Asians) 673/694 24.2/28.1 45.5/52.7 30.3/19.2 [113]

China (Asians) 62/50 43.0/20.0 34.0/52.0 23.0/28.0 [115]

China (Asians) 120/232 24.0/29.0 50.0/52.0 27.0/18.0 [116]

China (Asians) 218/415 20.1/30.1 43.6/45.8 36.3/24.2 [117]

Japan (Asians) 102/241 36.3/37.7 50.0/44.4 13.7/18.0 [118]

South Africa (Africans) 73/115 36.0/32.0 56.0/54.0 7.0/14.0 [119]

South Korea (Asians) 340/1700 39.4/43.2 45.6/45.6 15.0/11.2 [120]

Taiwan (Asians) 90/254 22.2/37.0 51.1/45.7 26.7/17.3 [121]

United States (Caucasians) 312/454 53.0/57.0 39.0/35.0 8.0/8.0 [89]

Stomach

China (Asians) 324/317 29.6/29.6 55.6/50.5 14.8/19.9 [122]

China (Asians) 140/125 15.7/25.6 60.0/54.4 24.3/20.0 [123]

China (Asians) 500/1000 24.6/31.6 49.0/48.6 26.4/19.8 [124]

Japan (Asians) 144/239 35.4/37.7 48.6/44.4 16.0/18.0 [118]

Japan (Asians) 117/116 41.9/43.1 44.4/44.8 13.7/12.1 [125]

Korea (Asians) 2213/1700 42.4/43.2 44.1/45.6 13.4/11.2 [95]

Korea (Asians) 292/216 34.6/41.2 43.1/47.7 22.3/11.1 [126]

Korea (Asians) 84/43 35.7/39.5 50.0/41.9 14.3/18.6 [127]

Taiwan (Asians) 123/126 28.5/34.1 58.5/42.1 13.0/23.8 [128]

Italy (Caucasians) 114/295 62.3/57.3 29.8/34.6 7.9/8.1 [129]

United States (Caucasians) 155/134 33.1/36.3 46.8/45.5 20.1/18.2 [130]

United Kingdom (Caucasians) 120/277 47.6/45.1 45.1/46.6 7.3/8.3 [131]

population, Ke-Xiang et al. [123] showed that Arg/Pro +
Pro/Pro genotypes increased risk of GC. Corroborating these
data, a recent meta-analysis suggests that the Pro/Pro geno-
type was associated with several types of cancer, including
GC [93].

In contrast, other recent meta-analysis with 21 case-
control studies did not associate the Arg72Pro polymor-
phism with the risk of GC. However, when subgroups were
assessed according to anatomical site, it was found that
Pro/Pro genotype was significantly associated with increased
risk of cardia GC [89]. Others case-control studies performed
in Asian [122, 124, 127, 132, 135] and Mexico [136] showed
a higher frequency of Pro allele in cardia GC [124, 135]
and of Arg allele in noncardia GC [122, 127, 136]. On the
other hand, studies performed in United Kingdom revealed
an increase in the frequency of the Arg allele in patients with
cardia GC [131, 137], suggesting an effect of ethnical group
beyond of location region in the stomach.

Corroborating these findings, recent meta-analyses about
the distributions of the two polymorphic variants of TP53
codon 72 and their effect on the risk of GC indicated that
the anatomical site of tumor and ethnicity may contribute to
the differences in the risk of gastric tumorigenesis [89]. The
meta-analyses study by Zhou et al. [114] performed among
eight studies in Asians and four in Caucasians showed that
cardia GC had a significantly higher frequency of Pro/Pro
genotype among Asians.

Another variable that should also be considered in the
studies on association of the Arg72Pro polymorphism is the
histological type of the GC. Whereas some authors found
no relationship [126, 127, 129, 138], studies performed in
China [139] and Korea [95] observed that the Pro allele
carriers had a higher risk of developing the intestinal-type
GC and others studies performed in Japan [125] and United
States [130] found that this polymorphic allele was associated
with an increased risk of developing the diffuse-type GC.
The exact biological mechanism underlying the association
between Arg72Pro polymorphism with the histological type
is still unclear [95]. However, it has been suggested that the
intestinal-type predominates in high-risk geographic areas
such as East Asia, and it is related to the prevalence of
H. pylori infection among the elderly, whereas the diffuse-
type is found more uniformly worldwide and is apparently
unrelated to H. pylori prevalence [140].

Although the potential effects of Arg72Pro polymor-
phism and their interactions with location, histology, eth-
nicity, and environmental exposures on GC risk have been
assessed in several studies in different population worldwide,
their exact effect are still unknown. The genetic susceptibility
to gastric carcinogenesis related to TP53 polymorphisms may
be attributed to several factors, including the accumulation
and interaction of SNPs [124, 129], gene-environmental
interactions [93], age [128, 131], H. pylori infection [123],
bile or acid reflux, and smoking [137].
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In general, these data suggest that the TP53 polymor-
phism alone is insufficient to explain its effect on risk of
cancer, but together with others genetic polymorphisms and
environmental factors may modulate the individual risk of
developing cancer.

6. Conclusions

In this study we focused on the participation of genetic
alterations of TP53 gene, such as mutational inactivation,
LOH, SNPs, and expression of mutant form of p53 protein
in the esophageal and gastric carcinogenesis. The studies
emphasize the fundamental role of molecular alterations of
“the guardian of the genome” in these neoplasms, with seri-
ous consequences for the deregulation of the cell cycle, loss of
proapoptotic function and reduced sensitivity for anticancer
drugs. Considering the involvement of TP53 alterations both
in early stages as in tumor progression, it is an important
biomarker for the diagnosis, tumor progression, and poor
prognosis associated with lymph nodes metastasis.

Recent studies have demonstrated another pathway of
participation of the TP53 gene in carcinogenesis, through
the regulation of miRNAs. TP53 regulates the transcription
expression and the maturation of a group of miRNAs. On the
other hand, miRNAs can regulate the activity and function
of TP53 through its direct repression or its regulators in
cells. Thus these findings have demonstrated that miRNAs
are important components in the TP53 network [141].

Despite major advances and growing number of pub-
lications on the role of TP53 tumor suppressor gene in
carcinogenesis, still several other functions has emerged as
cell metabolism, stem cells renewal and the occurrence of
p53 isoform variants that may alter the function of wild-type
p53. Therefore, p53 and other members of its family as p63
and p73 act in an intricate regulatory network controlling the
expression of hundreds of target genes that regulate the cell
cycle for the maintenance of genetic stability and preventing
cancer formation.
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