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Simple Summary: Oral health is increasingly recognized as an important part of overall health.
Tooth loss is a contributor to overall musculoskeletal frailty and is closely associated with increased
morbidity in the elderly population. Limited intervention exists to alleviate tooth loss associated with
periodontitis, other than antibiotics. Mounting evidence suggests that targeting cellular senescence
could slow down the fundamental aging process, and thus alleviate a wide range of age-related tissue
dysfunctions, likely including tooth loss. Therefore, we feel it might be valuable to review the current
understanding of the role and potential mechanisms of senescent cells in oral health with aging.

Abstract: Periodontitis is a chronic inflammatory disease which increases in prevalence and severity
in the older population. Aging is a leading risk factor for periodontitis, which exacerbates alveolar
bone loss and results in tooth loss in the elderly. However, the mechanism by which aging affects
periodontitis is not well understood. There is considerable evidence to suggest that targeting cellular
senescence could slow down the fundamental aging process, and thus alleviate a series of age-related
pathological conditions, likely including alveolar bone loss. Recently, it has been discovered that
the senescent cells accumulate in the alveolar bone and promote a senescence-associated secretory
phenotype (SASP). Senescent cells interacting with bacteria, together with secreted SASP components
altering the local microenvironment and inducing paracrine effects in neighboring cells, exacerbate
the chronic inflammation in periodontal tissue and lead to more alveolar bone loss. This review
will probe into mechanisms underlying excessive alveolar bone loss in periodontitis with aging and
discuss potential therapeutics for the treatment of alveolar bone loss targeting cellular senescence
and the SASP. Inspecting the relationship between cellular senescence and periodontitis will lead
to new avenues of research in this field and contribute to developing potential translatable clinical
interventions to mitigate or even reverse the harmful effects of aging on oral health.
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1. Introduction: Periodontitis and Aging

Periodontitis is caused by bacterial infection and progresses with inflammatory de-
struction of the tooth-supporting alveolar bone and soft tissue, which stems from com-
plicated interactions between the subgingival microbiota and the host [1–4]. The 2017
World Symposium provided a more nuanced definition of periodontal disease staging and
grading, and the discussion proposed four stages of periodontitis defined according to
severity and complexity of management [4]. Clinical research shows that the prevalence
and severity of periodontitis increase with aging [5–8]. It is quite common that moderate
loss of alveolar bone and periodontal attachment occurs in the elderly [9]. In fact, aging
causes most of the chronic diseases which restrict the quality of survival, independence,
and prosperity [10]. Elderly populations exhibit increased susceptibility to several chronic
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disorders (cancers, atherosclerosis, diabetes, autoimmune or infectious diseases), including
periodontitis [11,12]. Inextricably linked to aging, cellular senescence is the body’s reaction
to DNA damage brought on by a variety of factors, including reactive oxygen species
(ROS), telomere erosion, and other mitogenic and metabolic stresses [13]. However, it
is highly controversial whether alveolar bone loss can be caused by aging alone in the
absence of chronic periodontal inflammation [14]. The loss of alveolar bone and periodon-
tal attachment as a result of aging is usually believed to be caused by a separate process;
however, these changes are rather minor and of little clinical relevance. In other words,
severe periodontitis is not a natural consequence of aging [15]. Yet it is worth noting that
aging as a risk factor for periodontal disease affects periodontal tissues to exacerbate bone
loss in elderly patients with periodontitis [9,12,14].

The underlying processes by which aging may impact periodontal inflammation and
hence susceptibility to periodontitis have only been partially studied. Aging is associated
with a state of low-grade “sterile” inflammation in the absence of overt infection [16].
Systemic chronic inflammation is a common hallmark of the aging process and has also
been implicated in many age-related diseases, aggravating the pathology of these diseases.
As a result, osteoporosis and other co-morbidities of aging are frequently observed to
coexist with a periodontal disease of greater severity [17]. Other hypotheses suggest that
the increased susceptibility to periodontitis in older individuals is the result of longer expo-
sure to periodontal bacteria, shifts in subgingival microbiota composition, or age-related
alterations in the immune response (immunosenescence) [12,14,18]. Immunosenescence is
an age-related modification of both the adaptive and innate immunity, which impairs its
appropriate function, also called “immune aging” [19,20]. It has been speculated that the
absence of a well-regulated immune response contributes to older individuals developing
an increased systemic chronic inflammatory state [16,21]. Recent studies show that both
molecules and cells of the innate and adaptive immune response are adversely impacted
by aging, combined with low-grade chronic inflammation, together to alter immunocom-
petence and promote the pathogenesis of a large number of diseases including in the oral
cavity [22]. However, little is known about the source of the chronic inflammation that
accelerates most major age-related diseases.

Cellular senescence is a fundamental mechanism of aging, which contributes to var-
ious age-related conditions [23]. Cellular senescence refers to the essentially irreversible
growth arrest, yet remains metabolically active and undergoes distinct phenotypic alter-
ations [11,24–26]. Common markers of senescent cells include p16 and p21, while the
discovery of new senescence markers suggests the increasing importance of senescence
heterogeneity [27]. Senescent cells may be one of sources of chronic systemic inflammation:
The senescence-associated secretory phenotype (SASP) is a group of proinflammatory
cytokines, chemokines, and proteases secreted by senescent cells [28–30], which collectively
alter the local environment [31–33]. Arrested cell proliferation, resistance to apoptosis and
a complex SASP are three hallmarks of senescent cells [29]. Senescent cells accumulate
in multiple tissues with aging [34,35]. Through their SASP, which is widely acknowl-
edged as the probable link between senescence and age-related tissue failure, these cells
can have significant deleterious impacts on tissue function [11,36,37]. In recent decades,
the involvement of senescent cells in the pathophysiology of many age-related disor-
ders has been widely researched, including life-shortening [38,39], cognitive decline [40],
physical function decline [39,41,42], metabolic dysfunction [43–45], renal dysfunction [38],
vasomotor dysfunction [46], atherosclerosis [47], stem cell dysfunction [48,49], joint degen-
eration [50–52] and osteoporosis [53]. However, the role of cellular senescence in disease
onset, progression and remission in periodontitis is not well understood. Inspecting the link
between cellular senescence and alveolar bone loss will provide new avenues of research
in this field and help us to find potential paths to develop clinical interventions to reverse
or mitigate the effects of aging on periodontitis.
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2. Age-Associated Alterations in the Periodontal Microenvironment

Aging is linked to changes in tissues and cells as a result of the buildup of different
chemicals and cellular damage over time, resulting in compromised homeostasis and a
decreased ability to respond correctly to injuries or stresses. The anatomical and functional
changes in periodontal tissues associated with the aging process have been well reviewed
by Huttner [9]. It includes age-related alterations of osteoblasts and osteoclasts, dysreg-
ulated responses of periodontal tissue cells to the oral microbiota, and other common
age-related biologic changes that can alter bone and tissue homeostasis. For example,
lipopolysaccharide-stimulated PGE2, IL-1β, IL-6 and plasminogen activator production
was lower in young human gingival fibroblasts than older cells [54]. The aged periodon-
tal ligament cells produce increased quantities of PGE2 in response to forces caused by
occlusal trauma, which may affect the severity of inflammation and subsequent tissue
degradation [55]. In addition, histological studies have shown that compared with younger
rats, the collagen density in the gingival tissues of old rats reduced and the degradation of
collagen increased [56]. Another study confirmed this finding, revealing that aging causes
gradual atrophy of the tooth-supporting tissues in rats [57]. These findings suggest that
destruction of the periodontium in older individuals may be attributed to the progression
of periodontitis as well as increased inflammatory changes and reduced tissue resilience
induced by intrinsic alterations in aged periodontal tissues (Table 1).

Table 1. The effects of aging on periodontium.

Age-Related Changes

Tissue

Gingiva: a thinning of the epithelium; diminished keratinization.
Periodontal ligament: the fiber and cellular contents decrease; uneven and irregular Sharpey’s fibers insertions.
Cementum: cementum volume increases.
Alveolar bone: bone formation steadily declines and loss of bone mass.

Cell

Gingival fibroblasts (GFs): collagen production decreases; release more inflammatory cytokines such as
prostaglandin E2 (PGE2), interleukin (IL)-1, IL-6 and plasminogen activator (PA); a reduction in mRNA levels; an
increase in the production of PGE2, Cox-2 and IL-1 mRNA.
Periodontal ligament cells: a significant reduction in chemotaxis, motility, proliferation rates and differentiation
ability; a decrease in osteoblast proliferating precursors or synthesis and secretion of essential bone matrix proteins;
an increase in the production of PA, PGE2, IL-1, and IL-6; enhanced RANK expression on osteoclast progenitors and
RANKL expression in the mesenchymal stromal cells.
Immune cells: immune senescence occurs and the secretion of associated SASP creates an environment conducive to
inflammation and bacterial development, promoting dysbiosis of the oral flora and leading to accelerated
degeneration of the alveolar bone.

Molecule Type I collagen decreases; increased IL-1, PA, and the plasminogen activator inhibitor-2 (PAI-2) release in gingival
crevicular fluid.

Another explanation for the age-related degeneration of periodontal tissues could be
cellular senescence [58]. The activation of the tumor-suppressor pathways, p16/retinoblastoma
protein (Rb) and/or p53/p21, is linked to the establishment of “stable” growth arrest [11].
Therefore, cellular senescence is initially considered to be a mechanism of tumor suppres-
sion. However, mounting evidence indicates that accumulation of senescent cells in various
tissues with advanced age could also negatively affect tissue function and homeostasis,
and eventually lead to tissue pathology.

Age-related chronological senescence increases the number of senescent cells in many
tissues [34,35]. Though they are relatively low in number (~1–10%), senescent cells cause
tissue dysfunction through three major pathways: (i) The cellular function is dramatically
impaired when cells become senescent. Thus, accumulation of senescent cells may impair
tissue function in an autocrine manner [59]. (ii) Senescent cells could impair the function of
neighboring cells either by making them senescent [39] or by damaging their differentiation
potential [43,60]. Thus, senescent cells can impair tissue function in a paracrine manner.
(iii) Regardless of how cellular senescence is induced, senescent cells are active in secreting
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SASP components, which potentially is one major mechanism for the etiology of age-
related diseases and frailty [11]. The SASP constitutes a critical feature of senescent cells
and mediates many of their pathophysiological effects. Happily, SASP factors mediate
embryogenesis [61,62], wound healing [63], and activate immune responses to eliminate
senescent cells [64,65]. Unfortunately, the SASP contributes to inflammaging (as cytokines
and chemokines are significant features of the SASP) [22]. Furthermore, by distributing
toxic substances to nearby bystander cells, the SASP can contribute to increased senescent
cell accumulation and tissue dysfunction [30,31,39]. Thus, the SASP can explain some of the
deleterious, pro-aging effects of senescent cells. In a word, cellular senescence has become
a potential unifying mechanism of aging, age-related diseases, and frailty.

One plausible mechanism affecting periodontal tissues is the growth of senescent cells
in the periodontal milieu with aging, specifically those cells that produce the SASP, which
contributes to alveolar bone loss and enhancing susceptibility to periodontitis in the elderly.
The load of senescent osteocytes rises in alveolar bone in a time-dependent way, accord-
ing to a recent analysis [66]. Senescent osteocytes produce a pro-inflammatory substance
called a SASP, which interacts with bacterial substances linked to periodontal inflamma-
tion and heightens the production of cytokines that are important in the development of
inflammation. Additionally, these cytokines and matrix-degrading enzymes produced
by senescent osteocytes transmit senescence to nearby cells in addition to harming the
immediate microenvironment. Conditioned media from senescent osteocytes aggravate the
lipopolysaccharide (LPS)-induced inhibition of osteocyte differentiation, decrease the mi-
gration of osteoprogenitor cells, and impair mineralization in vitro. These findings suggest
that through influencing nearby osteoblast precursors, the SASP from senescent osteocytes
may reduce bone regenerative potential in elderly persons [66]. Taken together, these
findings suggest that the accumulation of senescent cells contributes to the deterioration
of the periodontal environment by potentiating local inflammation induced by bacterial
components, increasing extracellular matrix remodeling, and reducing regeneration in
old age.

In the mouse skeleton, senescent osteocytes do not develop until around 18 months of
age [67]. Unexpectedly, a significant number of defective senescent osteocytes (30%) were
present at 6 months, probably as a result of prolonged exposure to periodontal pathogens
and their toxins. These osteocytes appear to exist before the initiation of alveolar bone
loss [68]. The bacterial-derived LPS not only plays a role in the obtaining of “premature” cel-
lular senescence, but also may promote the secretion of the SASP that aggravates localized
inflammation, eventually leading to alveolar bone loss [68]. It is important to know that
LPS is not the only factor associated with periodontal disease; other virulence factors could
also influence the production of proinflammatory cytokines that activate osteoclastogenesis.
More bacterial products in dental disease need to be further explored. The abnormally high
senescent cell burden in young alveolar bone may be a new pathogenic mechanism that
contributes to oral bacteria promoting inflammatory alveolar bone destruction.

3. Cellular Senescence and Immune Function

Periodontitis is a chronic inflammatory disease in which tissue damage results from
dysregulated and long-term inflammatory responses to the persisting subgingival biofilm.
In order to determine if the aging-related change in immune function may be relevant to
the etiology of periodontitis, consideration of this issue is important.

Recently, in an in vitro experiment, Porphyromonas gingivalis (Pg) was found to
infect dendritic cells (DCs), activate related SASPs (e.g., IL-1β, IL-6, IL-8) and exosomes
(EXO), and induce DCs senescence, while affecting surrounding DCs through secreted
SASPs and EXO, expanding the senescence range and affecting periodontitis [69]. And
the success of DCs exosomes in the treatment of alveolar bone degeneration suggests a
correlation between alveolar tissue aging and immunity [70]. In vivo mechanistic studies
in mice revealed that the senescence biomarkers beta galactosidase (SA-β-Gal), p16, p21,
IL6, TNFα and IL1β expression were elevated in aged and periodontitis, and that bone
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marrow-like CD11c+ and T cells were prone to senescence in vivo, with Pg-induced EXO
of DCs being the main causative agent of alveolar bone loss and immune senescence.
These experimental results suggest that periodontitis is associated with and exacerbated
by immune senescence with old age, and presumably its secretion of associated SASPs
creates an environment conducive to inflammation and bacterial development in mice,
promoting oral flora dysbiosis and causing accelerated alveolar bone degeneration [71].
The relationship between aging and immunity in periodontitis remains to be further
investigated, and it is now speculated that periodontitis may be associated with immune
aging. Since age-associated innate and adaptive immunity alterations in periodontal
diseases have been extensively reviewed [12,14,72,73], in this section we will look at how
cellular senescence and SASPs affect immune cell destiny and function.

The immune system is crucial in the fight against microbial infections. However, there
is evidence that as people age, both the innate and adaptive arms of the immune system may
change, making them more susceptible to infection [12,74]. Age-related changes in immune
function might not be necessarily equivalent to immunodeficiency, but to dysregulation
of the immune response [75,76]. Such changes most likely result in a decreased ability to
regulate infections, which promotes chronic pathogen persistence and increases the number
of defense cells in the periodontal tissues. This can then result in additional tissue damage
and illness [76].

The expression and function of senescence markers such as p16 in murine bone
marrow-derived macrophages (BMDM) and human adipose tissue macrophages are well
understood, as is the scientific development [77,78]. In vitro, the levels of p16 expressed
by IL-4-polarized human M2 macrophages were lower than IFN-γ-polarized M1 [77,78].
Furthermore, in murine and human macrophages, p16 expression suppresses LPS-induced
IL-6 production [79]. Therefore, p16, as a cellular senescence marker, is involved in the
differentiation of monocytes into inflammatory macrophages.

The expression levels of both p16 and p14/p19 increased with aging in all B lineages,
especially in pro-B, pre-B, and IgM+ mature B cells [80,81]. Ectopic expression of p16 or
p14/p19 in young pro-/pre-B cells mimics the effect of aging by reducing cell growth and
survival. Downregulation of the CDKN2A gene, on the other hand, boosts these cells’
proliferative ability [82]. Individuals’ proportions of senescence-like CD4+ T cells tend
to rise with age [83,84]. Senescent T cells are metabolically active, producing a variety of
cytokines. Non-senescent cells can be affected negatively or positively by pro-inflammatory
substances found in the SASP of senescent T cells. This inhibition is thought to be a
pro-tumor mechanism since it necessitates intercellular interaction [85].

Cellular senescence is found in hematopoietic progenitors as well as in particular
specialized immune cells. Studies have shown that murine hematopoietic stem cells (HSCs)
accumulate DNA damages and senescence markers with aging [86,87]. As a result, immune
system homeostasis is impacted by replicative and age-induced HSC senescence.

In addition to the inherent senescence of immune cells, immune cells are also modu-
lated by their aging microenvironment. The SASP may interact with the immune system
extensively. The SASP promotes the migration of immune cells that help remove senescent
cells [88]. This secretome influences the types and amounts of immune cells recruited, as
well as their cell fate determination. During liver fibrosis, for example, p53-expressing
senescent liver satellite cells produce IFN- and IL-6, skewing the polarization of resident
Kupffer macrophages and newly recruited macrophages toward the proinflammatory M1
phenotype [89]. However, tissue macrophage response appears to wane with age, which
may contribute to the accumulation of senescent cells in old age. Immune surveillance
may be hampered by senescent cells interfering with immune activity [90]. Chronic IL-6
exposure reduces macrophage activity, and SASP proteases may degrade the FAS ligand
or other cell surface proteins necessary for efficient immunological function, supporting
this idea [91]. When young macrophages were challenged with aged serum, macrophages
reduced secretion of TNFα and increased basal levels of IL-6 [92]. Furthermore, injecting
young peritoneal macrophages into the peritoneal cavities of elderly mice resulted in de-
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creased phagocytosis and elevated T and B cell numbers [93]. This suggests that the aging
microenvironment has a significant impact on macrophage function. More mechanistic
insights are needed to understand how senescent cells and their SASP affect the immune
system as well as whether lowering the senescent cell load improves immune responses
to infections.

These data show that aging affects the immune system by impairing progenitor self-
renewal and shifting pluripotency toward myeloid lineages. Additionally, an increase in the
number of senescent cells in the immune system and tissues will result in the age-related
decrease in tissue function. Immune cells can be controlled in a variety of ways, which
may be part of a more dynamic interplay between intrinsic senescence processes, the aging
milieu, and other cell types in the surrounding area.

4. Cellular Senescence and Bone Metabolism

One cause of bone loss during aging is impaired homeostasis of bone metabolism.
Alveolar bone is highly active in metabolism and remodeling, and is the main structure
supporting teeth in periodontal tissue. In the pathophysiology of bone loss with age,
complicated interactions between cells of the osteoclast and osteoblast lineages play a
significant role [94]. The former is a supply of cells for bone repair, whereas the latter
represents inflammatory processes and bone resorption. Both lineages are weakened
with aging due to a combination of inherent and environmental influences, resulting in a
considerable loss in osteogenic capacities [95].

The non-human primate model shows that the gingival transcriptome environment in
aging healthy tissues reflects a more general osteogenic homeostasis and the potential for
regulating osteoclast and osteoblast functions to control dysregulated microbial stimulation
from the accretion of oral biofilms [96]. Changes in gene expression in periodontitis,
especially in aged animals, were skewed toward creating an environment with substantial
osteoclastogenic potential consistent with increased bone resorption in periodontitis [72].
These data indicate that local bone resorption is up-regulated under the condition of aging,
creating a destructive environment.

This new work extracts and analyzes ex vivo highly enriched populations of bone and
hematopoietic lineage cells from mouse bone marrow. It shows that a range of cell types in
the bone microenvironment become senescent with chronological age, and that senescent
myeloid cells and senescent osteocytes are the major sources of the SASP [67]. Either ge-
netic or pharmacological means to eliminate senescent cells in the bone microenvironment
could prevent age-related bone loss in mice. This study additionally demonstrates that the
senescent-cell conditioned medium (containing SASP) impaired osteoblast mineralization
and enhanced osteoclast-progenitor survival in vitro, leading to increased osteoclastogene-
sis [53]. These data collectively establish a causal role for senescent cells and their SASP
in skeletal bone loss with aging, and demonstrate that targeting senescent cells has both
anti-resorptive and pro-anabolic effects on bone.

5. Cellular Senescence and Healing Capacity

Various studies have identified obvious defects in the wound healing of aged peri-
odontal tissues [97–99]. Changes in the susceptibility to periodontitis with aging could be
explained by exposure to pro-inflammatory conditions and changes in the healing capacity
of cells and tissues [9]. In response to signals from injured tissues, mesenchymal stem cells
(MSCs) can migrate from the perivascular region into the blood circulation. MSCs circulat-
ing in the bloodstream may then collect in damaged tissues and assist in the regeneration
process [100,101]. However, aged MSCs contain more senescent cells [41], which have a
negative impact on their immunomodulatory and differentiation capacities [102]. Stolzing
et al. [103] found that the number and cell proliferation of MSCs extracted from older
humans decreased, and their capacity to undergo osteogenic differentiation was impacted.
Aged mice presented fewer PDGFRα+ MSCs compared to young mice after ligation, with
an increase in the amount of inflammatory T and B cells at the periodontitis site [104]. The
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decreased immune tolerance and increased bone degradation at the periodontitis site may
be linked to the functional impairment of older MSCs.

Osteoblast precursor recruitment is necessary for bone reconstruction following bone
resorption, and senescent cells have a potent paracrine influence on the cells around
them. It has been demonstrated that senescent osteocytes can produce substances that
inhibit the recruitment of osteoprogenitor cells, hence interfering with the process of
bone production [66]. In addition, continuous exposure to SASP factors and continual cell
replacement to repair injured osteocytes throughout life may possibly propagate senescence
toward progenitor cells, hastening their premature exhaustion, reducing their proliferative
capacity, and causing problems in alveolar bone regeneration [68]. Thus, aging-induced
phenotypic alterations in MSCs or osteoprogenitor cells may be linked to a decline in
periodontal tissue regeneration capabilities in older people (Figure 1).
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Figure 1. Mechanisms underlying excessive alveolar bone loss in periodontitis with aging. Due
to advancing age or long-term exposure to bacterial products (e.g., LPS), the senescent osteocytes
accumulate in the alveolar bone and develop a proinflammatory SASP (IL-6, IL-8, IL-1β, TNF-α, etc.),
which can exacerbate the chronic inflammation of periodontal tissue. Pro-inflammatory cytokines
and matrix-degrading enzymes secreted by senescent cells can damage the local microenvironment
and induce bystander effects in neighboring cells. Owing to intrinsic senescence and the aging
microenvironment, the dysregulation of immune responses may lead to the chronic persistence of
pathogens and increased accumulation of immune cells in the periodontal tissues. Consequently, the
homeostasis between osteoblasts and osteoclasts is disrupted, and the immunomodulatory effects,
migratory ability and differentiation potential of MSCs are impaired, both of which lead to defective
alveolar bone regeneration. All of these factors could result in more alveolar bone loss in periodontitis
with aging.

6. Interventions Targeting Senescent Cells and the SASP

In light of osteocytes orchestrating bone remodeling, the high number of dysfunctional
senescent osteocytes and other types of senescent cells in alveolar bone may compromise
tissue homeostasis. Therefore, targeting senescent cells could be a novel approach to
alleviate alveolar bone loss.
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Interfering with pathways that lead to senescence, eliminating senescent cells, and
targeting the SASP to minimize the detrimental consequences of senescent cells are all
being studied as techniques to attenuate the adverse effects of senescent cells [11]. The first
strategy is to inhibit the formation of senescent cells through targeting the cell stresses or
signaling pathways which lead to senescence-associated growth arrest. However, inter-
fering with tumor suppressor pathways such as Rb, p16INK4A or p53, could compromise
fundamental anti-cancer mechanisms and be likely to promote cancer [105,106].

The second method, which involves removing senescent cells that have already devel-
oped, could help to minimize tissue inflammation and organ malfunction as people age.
Senescent cells’ unique shape, secreted protein patterns, and gene expression profiles indi-
cate the feasibility of this method [107]. Genetic clearance of p16Ink4a (i.e., the INK-ATTAC
”suicide” transgene encoding an inducible caspase 8 expressed specifically in senescent
cells [108]) has been demonstrated to help with age-related health and longevity [108],
as well as osteoporosis [53]. In physiological aging, the pharmacological clearance of
senescent cells with a senolytic medication cocktail containing dasatinib and quercetin is
also beneficial in repairing bone integrity [53]. Clinical trials evaluating the effectiveness
of senolytic medicines in the treatment of age-related comorbidities, such as osteoporosis,
are either underway or planned. The capacity to selectively target senescent cells with
biological or small chemical “senolytic” therapy without generating serious side effects is
necessary for the translation of these results to patients.

The third strategy aims to stop the SASP from developing or lessen its consequences.
The possibility exists to disrupt the SASP without affecting the anti-oncogenic pathways
engaged in senescent cells [11,109]. For example, inhibiting the JAK-STAT pathway sup-
presses the SASP in preadipocytes and endothelial cells as well as SASP-induced adipose
tissue inflammation in vitro, and also attenuates age-related adipose tissue and systemic
inflammation together with frailty in vivo [30]. JAK inhibitors and ruxolitinib can help with
age-related osteoporosis by suppressing particular factors including IL-6, IL-8, and PAI-1,
which have been proven to promote osteoclast production [53]. A range of pharmacological
therapies, including metformin, rapamycin, and NFB inhibitors, have been demonstrated
to reduce the SASP in addition to JAK inhibitors [26].

Targeting senescent cells is likely to be beneficial in the treatment of alveolar bone loss
in periodontitis with age, making it fundamentally distinct from all other periodontal treat-
ments now available. Eliminating senescent cells and/or inhibiting their proinflammatory
secretome also improves the cardiovascular function [46], alleviates osteoporosis [53] and
reduces frailty [30] in old mice. Thus, targeting cellular senescence represents a novel ther-
apeutic strategy to prevent not only alveolar bone loss but potentially multiple age-related
diseases simultaneously.

7. Challenges Ahead

To clarify the biological mechanisms by which aging can affect periodontitis, several
key difficulties need to be overcome.

Firstly, it is difficult to distinguish the effects that are caused by environmental factors
or intrinsic aging, due to the direct contact of the oral cavity with the external environment
and risk factors [110]. Secondly, studies in mice are not always conserved for humans.
Many important discoveries in mice have been successfully translated to humans, but
many others have not. This may be due to inherent biological differences between mice and
humans [111]. Besides, in vitro studies may not always be relevant to the in vivo setting.
The aging-associated in vivo microenvironment may further contribute to the complexity of
both innate immune and adaptive functional deficits [12]. In vivo, these innate and adaptive
immune cells interact with stromal cells in the periodontal tissues, leading to different
outcomes under similar stimulation [76]. Thirdly, the genetic heterogeneity among human
subjects is a challenge for any type of biomedical research. Humans are characterized by
great genetic heterogeneity, which plays a key role in disease susceptibility, lifespan and an
individual’s response to drugs [111].
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Lastly, the interaction of aging and inflammation is a highly complex process without
well-understood causality or directionality. Currently, it would be difficult to investigate
whether age-related processes have caused or resulted from inflammation, or whether they
are bidirectional [14].

8. Summary

In conclusion, the prevalence and severity of periodontitis increase with aging. The
elucidation of cellular senescence in the periodontal microenvironment may help to under-
stand the role of aging in periodontitis. Senescent cells such as osteocytes are abundant
in the aged periodontium, and can damage local microenvironment and influence neigh-
boring cells through the SASP. In addition, senescent cells could interact with subgingival
bacteria to exacerbate persistent inflammation in old age. As a result of a combination of
intrinsic senescence and an aging milieu, cells and chemicals in the periodontium that are
involved in immune response, bone metabolism, and tissue regeneration were disrupted,
which eventually leads to the further development of periodontitis. Targeting cellular
senescence to prevent excessive alveolar bone loss holds promise for a novel treatment
strategy for periodontitis.
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