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Abstract: This study aims to investigate the wound-healing effectiveness of the phenolic compound,
naringin, both in vitro and in vivo. Male mice were shaved on their dorsal skin under isoflurane,
a biopsy punch was made in four symmetrical circular resection windows (6 mm) to induce a
wound. These excision wounds were used to study the topical effects of naringin in terms of various
biochemical, molecular, and histological parameters. We observed a significant recovery in the wound
area. Increased levels of MMP-2, 9, 14, TIMP-2, VEGF-A, and VEGF-R1 were induced by naringin in
the HaCaT cells. The time course experiments further revealed that levels of VEGF-A and B increased
within 36 h; whereas levels of VEGF-C decreased. In line with this, VEGF-R3 levels, but not VEGF-R1
and 2 levels, increased soon after stimulation; although the increase subsided after 36 h. Additionally,
naringin cream upregulated wound healing in vitro. The blockage of VEGF by Bevacizumab abolished
the function of naringin cream on cell migration. Histological alterations in the wounded skin were
restored by naringin cream, which accelerated wound healing via upregulated expression of growth
factors (VEGF-A, B, and C and VEGF-R3), and thus increased MMP-2, 9, 14 expressions.

Keywords: naringin; wound healing; MMPs; VEGFs; VEGFRs

1. Introduction

The healing of a skin wound presents a complex process involving a cascade of
cellular functions. Immediately after an injury, multiple biological functions are activated
and respond in a synchronized manner. The wound repair process commonly leads to the
substitution of the superficial epidermis, mucosa, or fetal skin, and skin repair displays
an unspecific form of healing, wherein the wound is healed by a non-functional mass of
fibrotic tissue known as scar tissue [1–4]. In fact, approximately 400 million people suffer
from acute wounds annually, including traumatic wounds, burns, and surgical wounds [5].
Wounds can take longer to heal in patients with diabetes, resulting in increased risks of
infection and of developing dangerous symptoms [6–8]. In addition, chronic wounds fail
to heal by not following a predictable or expected healing pathway. The care of chronic
wounds has thus evolved into its own specialty, with physicians often using a variety of
therapies, including engineered skin, growth factors, pressure wound therapy (NPWT),
and negative extracellular matrices (ECMs) [9].

Diminished production of vascular endothelial growth factor (VEGF) and decreased
angiogenesis are thought to contribute to impaired tissue repair in diabetic patients [9,10].
Therefore, the potential use of therapeutic angiogenesis to improve wound healing has
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attracted great interest. Vascular endothelial growth factors (VEGFs) are considered power-
ful therapeutic tools for proangiogenic and pro-lymphangiogenic therapy for the treatment
of several diseases [11]. The VEGF family of growth factors currently contains five other
known members, including Placenta Growth Factor (PLGF), VEGFA, VEGFB, VEGFC,
and VEGFD, which are key regulators of physiological and pathological vasculogenesis,
angiogenesis, lymphangiogenesis, and vascular permeability [12–15]. These functional
effects are controlled via the class III subfamily of tyrosine kinase receptors VEGFR1 (Flt-1),
VEGFR2 (KDR/Flk-1), and VEGFR3 (Flt-4). Of these, VEGFR1 and VEGFR2 play major
roles in angiogenesis, whereas VEGFR3 is primarily involved in lymph-angiogenesis [16].
Recent studies have reported that overexpression of VEGF-C via an adenoviral vector could
improve the healing of full-thickness punch biopsy wounds in genetically diabetic (db/db)
mice [17]. Indeed, when the function of endogenous VEGF-C/VEGF-D is blocked with
a specific inhibitor, wound closure is delayed even further [17]. Phenolic compounds, in-
cluding naringin, are characterized by suppressive effects on reactive oxygen species (ROS)
generation and pro-inflammatory cytokines’ production [18–23]. Naringin is an active
flavanone glycoside extracted from tomatoes, grapefruits, and related citrus fruits, which
has been reported to exert protective effects against atherosclerosis development, with
hepato-protective [24], cardio-protective [25], reno-protective [26], and neuro-protective
effects [27]. Further investigations are necessary to validate the effectiveness of naringin in
wound healing and inflammation. Thus, the present study aims to investigate the thera-
peutic value of naringin as a potential candidate to activate the VEGF pathway, thereby
contributing to wound healing.

2. Results
2.1. Naringin Cream Improves Wound Healing in a Mouse Model

To investigate the effects of naringin cream on wound healing in vivo, we applied the
naringin cream topically to full-thickness excisional wounds. Two different naringin doses
were used (2.5 and 5 mg/wound). As shown in Figure 1, naringin treatment consistently
accelerated wound closure, particularly at day 5, as compared with the control group.
The naringin cream formulation also exhibited good homogeneity and extrudability. Our
data suggest that naringin cream plays a positive role in the healing process of acute
wound injuries.

2.2. Naringin Cream Treatment In Vivo

In Figure 2A, histological examination demonstrated that all groups treated with
naringin showed significant closure as compared to the control and Gentermay treated
wounds. The IHC results showed that on day 7, when wound healing was almost complete
after naringin treatment, both the proteins of Ki67 and proliferating cell nuclear antigens
(PCNA) had decreased expressions. The vessel number and CD31 level showed that the
5 mg naringin treatment group had the highest vessel numbers of the three treatment
groups (Figure 2B). These results suggest that the enhanced wound healing provided by
naringin cream treatment may be achieved via stimulating regeneration, including blood
vessels. The expressions of VEGFA, VEGFB, and VEGFC were all increased in the skin
wound tissues (Supplementary Figure S1).
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Figure 1. Naringin accelerates the closure of full-thickness punch biopsy wounds. (A) Morpholog-
ical representation of mice wound showing various phases of wound healing; (B) Diagram of the 
kinetics of wound closure in mice treated with different conditions. Each point represents the mean 
percentage of regenerated wound size. Scale bar = 6 mm. Data are expressed as mean ± SEM and 
analyzed by one-way ANOVA analysis. n ≥ 5, ** p < 0.05 as compared with the vehicle control 
group. 
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Figure 1. Naringin accelerates the closure of full-thickness punch biopsy wounds. (A) Morphological
representation of mice wound showing various phases of wound healing; (B) Diagram of the kinetics
of wound closure in mice treated with different conditions. Each point represents the mean percentage
of regenerated wound size. Scale bar = 6 mm. Data are expressed as mean ± SEM and analyzed by
one-way ANOVA analysis. n ≥ 5, ** p < 0.05 as compared with the vehicle control group.
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Figure 2. Naringin treatment showed better wound closure via examining dermal histopathologi-
cal sections. (A) Representative HE staining images at day 7. Evaluation of granulation tissue area 

Figure 2. Naringin treatment showed better wound closure via examining dermal histopathological
sections. (A) Representative HE staining images at day 7. Evaluation of granulation tissue area
and thickness was noted. Scale bar = 1 mm; (B) IHC evaluation of the wound-healing quality.
Wound sections were evaluated on day 7 by staining with anti-PCNA, Ki67 and CD31antibodies.
Scale bar = 200 µm. Data are expressed as mean ± SEM and analyzed by one-way ANOVA analysis.
n ≥ 5, * p < 0.05 as compared with the vehicle control group.
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2.3. Upregulated Expressions of VEGFs and VEGFRs via Naringin Cream Treatment

To further assess the relevance of the results related to improve wound healing, we
examined the levels of MMPs and the VEGF axis. HaCaT keratinocytes were used in the
study, representing an in vitro model of proliferating and migrating keratinocytes. After
exposure to the indicated dose of naringin, protein levels of MMP 2, 9 and 14, and VEGFA
were increased; however, TIMP-2 and VEGF-R1 were only increased in response to 10 µM of
naringin (Figure 3A,B). The level of TIMP-1 remained unchanged upon naringin treatment.
Expressions of VEGFA and VEGFB were increased in a time-dependent manner at 36 h,
but subsequently decreased at 48 h. In contrast, production of VEGFC increased soon after
stimulation but subsided after 24 h, while VEGFD remained unchanged in response to
naringin (Figure 4). As VEGF family production rates changed profoundly and dynamically,
the levels of their receptor VEGFR3 also changed substantially.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 13 
 

 

and thickness was noted. Scale bar = 1 mm; (B) IHC evaluation of the wound-healing quality. 
Wound sections were evaluated on day 7 by staining with anti-PCNA, Ki67 and CD31antibodies. 
Scale bar = 200 μm. Data are expressed as mean ± SEM and analyzed by one-way ANOVA analy-
sis. n ≥ 5, * p < 0.05 as compared with the vehicle control group. 

2.3. Upregulated Expressions of VEGFs and VEGFRs via Naringin Cream Treatment 
To further assess the relevance of the results related to improve wound healing, we 

examined the levels of MMPs and the VEGF axis. HaCaT keratinocytes were used in the 
study, representing an in vitro model of proliferating and migrating keratinocytes. After 
exposure to the indicated dose of naringin, protein levels of MMP 2, 9 and 14, and 
VEGFA were increased; however, TIMP-2 and VEGF-R1 were only increased in response 
to 10 μM of naringin (Figure 3A,B). The level of TIMP-1 remained unchanged upon nar-
ingin treatment. Expressions of VEGFA and VEGFB were increased in a time-dependent 
manner at 36 h, but subsequently decreased at 48 h. In contrast, production of VEGFC 
increased soon after stimulation but subsided after 24 h, while VEGFD remained un-
changed in response to naringin (Figure 4). As VEGF family production rates changed 
profoundly and dynamically, the levels of their receptor VEGFR3 also changed substan-
tially. 

 
Figure 3. Naringin increases expression levels of VEGF-A, MMP-2, MMP-9 and MMP-14. (A) Ha-
CaT cells were treated with or without naringin for 24 h and then the lysates were subjected to 
Western blot with specific antibodies; (B) Bar graphs show fold change compared to the intensity of 
β-actin in untreated samples from 3 independent experiments. Data are expressed as mean ± SEM 
and analyzed by one-way ANOVA analysis. * p < 0.05 as compared with the vehicle control group. 

Figure 3. Naringin increases expression levels of VEGF-A, MMP-2, MMP-9 and MMP-14. (A) HaCaT
cells were treated with or without naringin for 24 h and then the lysates were subjected to Western
blot with specific antibodies; (B) Bar graphs show fold change compared to the intensity of β-actin
in untreated samples from 3 independent experiments. Data are expressed as mean ± SEM and
analyzed by one-way ANOVA analysis. * p < 0.05 as compared with the vehicle control group.
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from 3 independent experiments. Data are expressed as mean ± SEM and analyzed by one-way 
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Figure 4. Naringin dynamically regulates VEGFA, B, and C. (A) HaCaT cells were treated with
naringin for indicated times, and then the lysates were subjected to Western blot with specific
antibodies; (B) Bar graphs show fold change compared to the intensity of β-actin in untreated
samples from 3 independent experiments. Data are expressed as mean ± SEM and analyzed by
one-way ANOVA analysis. * p < 0.05 as compared with the vehicle control group.

2.4. Naringin Activates HaCaT Keratinocytes Migration

Aside from providing physical protection, wound dressings must interact with the
wound and improve the healing process. To evaluate the effects of naringin on wound
closure, human keratinocyte HaCaT cells were used. A cell proliferation assay (CCK-8)
demonstrated that naringin did not affect HaCaT cell proliferation with 24 h treatment
(Supplementary Figure S2). As shown in Figure 5, the in vitro scratch-wound healing
assay and migration assay showed that naringin significantly enhanced migration and the
narrowing of the scratch area by 24 h. Considering the function of naringin on VEGFs,
the anti-VEGF antibody bevacizumab (Avastin) was used to block the effect of naringin
on VEGFs. After exposure to bevacizumab, the increased wound-healing and migration



Molecules 2022, 27, 1695 7 of 13

effects were lost. These results indicate that VEGFs play a critical role in the migration of
upregulated keratinocytes induced by naringin.
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Figure 5. Naringin enhances migration of HaCaT cells. (A) Naringin-induced cells migration was
tested by scratch healing assays. The images in 16 h and 24 h were analyzed for gap area over time;
(B) Representative transwell migration from cells treated with different conditions. Bevacizumab
functions as an inhibitor for VEGF. Data are expressed as mean ± SEM and analyzed by one-way
ANOVA analysis. * p < 0.05 as compared with the vehicle control group.

3. Discussion

The acute skin wound-healing process may be summarized into four overlapping
phases: hemostasis, inflammation, proliferation, and tissue remodeling [28]. In most mam-
mals, the natural wound healing process, including scar formation and tissue fibrosis, is a
highly evolved tissue-scale attempt to restore the critical barrier functions necessary for
survival. There are several types of wounds, depending on a variety of factors including the
source of the wound and any underlying issues that may lead to it. Abrasions, lacerations,
punctures, burns, and avulsions are common types of skin injury. While multiple factors
may impair wound healing, the factors influencing repair can generally be categorized into
local and systemic factors [29]. Local factors are those which directly influence the charac-
teristics of the wound itself, including oxygenation, infection, and venous sufficiency; while
systemic factors involve the overall health or disease state of the individual which may
impair the healing process [30]. Age and gender, sex hormones, nutrition, stress, ischemia,
diabetes, keloids, fibrosis, jaundice, uremia, obesity, immunocompromised conditions (can-
cer, radiation therapy, AIDS), and other issues could be systemic factors [31,32]. In recent
years, a growing body of research has been directed at understanding the critical factors
influencing poor wound healing. Further clarification of the influences exerted on the
repair process by these factors may contribute to the development of therapeutics to resolve
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impaired wounds. We evaluated the effects of naringin on different factors which affect
cutaneous wound healing and the potential cellular and molecular mechanisms involved.

Naringin, a flavanone glycoside containing the flavanone naringenin and the disac-
charide neohesperidose, has been one of the main active components in many Chinese
herbal medicines for hundreds of years. It has been experimentally revealed to possess
several biological properties such as anti-inflammatory, antioxidant, and anticancer activi-
ties. As shown in a recent study, naringin promotes osteoporotic fracture healing through
increasing the VEGF level by interacting with its receptor VEGFR-2 [33]. The present study
demonstrates the in vivo and in vitro effects of naringin, highlighting the potential pharma-
cological value of its activities. A previous study reported that naringin exerts a significant
effect on bone repair, where naringin may mimic estrogen and suppress osteoclastogenesis
by modulating OPG and RANKL expressions leading to increased bone mineral density
(BMD) and bone strength, as well as inhibition of urinary calcium excretion [34,35]. To
investigate potential effects beyond its positive functions on bone formation, we utilized
PEO and naringin to formulate a naringin cream, thereby discovering that naringin cream
could be greatly beneficial to wound healing. During treatment with the naringin cream,
the regenerative response was coupled with efficient wound closure, consistent with the
dynamic activation of the VEGFs’ pathway. In terms of VEGF-A and B production, we
noted a clear increase in the initial 36 h, followed by a decline until 48 h; while VEGF-C
increased only to 12 h. VEGF-D was not affected by naringin treatment. Of note, VEGFR3
expression was increased, but not that of VEGFR1 and 2, indicating that naringin treatment
predominantly induces expression of VEGFA, B, C, and VEGFR3. During wound regener-
ation, the tissues display alternations in the expressions of MMPs and TIMPs, and both
overproduction of MMPs or underproduction of its specific inhibitor TIMP-2 may result in
matrix degradation and regeneration. Concurrently increased expressions of MMP-2 and
MMP-9 were found within 12 h, after which point, they decreased. Meanwhile, the decrease
of TIMP-2, as an MMP-2 and MMP-9 inhibitor, suggests the existence of a complex mutual
interaction [36]. To explore the precise expression balance between MMPs and TIMPs, and
thereby further clarify their roles in ECM regeneration during wound healing, we observed
that TIMP-2 was decreased after naringin treatment at 12 h, and upregulated after 36 h.
The blockage of VEGF-mediated MMP activation by bevacizumab abolished or perturbed
the function of naringin in the wound healing assay and migration in vitro. These findings
suggest that activation of the VEGF signaling pathway and relatively higher expressions of
MMP-2 and 9 may contribute to the function of naringin serving as a prognostic initiator in
wound healing. Additionally, we found that the wound contraction was almost completed
in the 5 mg naringin-treated group at day 7. Thus, we choose day 7 to sacrifice the mice
for obtaining wound tissue. At day 7, the wound healing process in the naringin-treated
group was in the remodeling phase, we hypothesized that in this moment the cells had
passed from an uncommitted proliferation toward a specialized cell fate. For that reason,
we found higher CD31 but not PCNA and Ki67.

4. Materials and Methods
4.1. Animals and Cell Culture

Male C57BL/6 mice (20–25 g) were provided by the National Laboratory Animal
Center (NLAC), NARLabs, Taiwan. The mice were housed under a 12 h day/night cycle
with water and commercial pellet food ad libitum. Five mice were involved in each group
including control (cream only), 2.5 mg naringin, 5 mg naringin and Gentermay with three
independent experiments. All experiments were completed under the approval of the
Institutional Animal Care and Use Committee at China Medical University (Taichung,
Taiwan) (2019-188-1). Human keratinocyte cell line, HaCaT cells, were grown in DMEM
supplemented with 10% FBS and antibiotics at 37 ◦C in a 5% CO2 incubator.
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4.2. Preparation of Naringin Ointment

Naringin was purchased from Sigma Chemical Co (St. Louis, MO, USA). The naringin
(5/2.5 mg) ointment was composed of 70% of PEG400 (SCRC, Shanghai, China) and 30% of
PEG4000 (SCRC, Shanghai, China). The naringin, PEG400 and PEG4000 ingredients were
mixed and stirred until well-distributed at 80 ◦C, and then stirred into a semi-solid state at
room temperature. Gentermay, a product that contains gentamicin in a cream base, served
as the positive control. Gentermay was used at 5 mg/wound. The cream was applied to
the wounds once per day.

4.3. In Vivo Wound Model

The mice were shaved on their dorsal skin under anesthesia with 2% isoflurane carried
in oxygen, and then a biopsy punch made four symmetrical circular resection windows
(6 mm) to induce a wound. At days 1, 3, 5 and 7 past wounding, the wound regeneration
was recorded by macroscopic images. At the end point of the experiment, the animals
from each group were sacrificed with an overdose of isoflurane. For the histopathological
analysis, the skin tissue was fixed in 4% formaldehyde solution in phosphate buffered
saline (PBS) on ice for 10 min, dehydrated, and embedded in paraffin. The tissue paraffin
was cut into 5 µm sections. Fixed sections were then stained with hematoxylin and eosin
(HE). The sections were analyzed using an optical microscope (Nikon 80, Tokyo, Japan).
Immunohistochemical analyses were performed using anti-PCNA (13110, Cell Signaling),
Ki67 (ab16667, abcam) and CD31 (ab28364, abcam). The sections were incubated overnight
with Abs at concentrations of 0.5–5 µg/mL at 4 ◦C. After incubation with peroxidase-
conjugated secondary Abs, the chromogen diaminobenzidine tetrahydrochloride was
added. The sections were imaged with a transmission microscope (Karl Zeiss Axio Observer
Z1) at 200× magnification.

4.4. Histopathological Evaluation

Once the mice were sacrificed, the dorsal skins were fixed with 3.7% neutral buffered
formalin at room temperature for 24 h. Seven-micrometer serial sections were clipped and
stained with hematoxylin and eosin (HE), and examined for naringin ointment-induced
histopathological changes that were scored as the area of wound and mouse skin epidermis.
Skin thickness was measured using the Image J software (version 1.46; Madison, WI, USA,
National Institutes of Health).

4.5. Western Blot

The HaCat cells cultured with or without naringin were harvested and total cell
protein was extracted using whole cell lysis buffer. The protein concentrations were
determined by the Bradford method (Bio-Rad, CA, USA). Samples with an equal amount of
protein were subjected to 8–15% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred onto a polyvinylidene difluoride (PVDF) (Millipore, Bedford,
MA, USA) membrane. The membrane was incubated at room temperature in blocking
solution (5% nonfat milk) for 1 h followed by incubation for 2 h in blocking solution
containing an appropriate dilution of anti-MMP2 (ab86607, abcam), MMP-9 (ab76003,
abcam), MMP-14 (ab51074, abcam), TIMP-1 (MAB3300, millipore), TIMP-2 (ab180630,
abcam), VEGF-A (ab46154, abcam), VEGF-B(ab185696, abcam), VEGF-C (ab191274, abcam),
VEGF-D (ab155288, abcam), VEGF-R1(ab32152, abcam), VEGF-R2 (9698, cell Signaling),
VEGF-R3 (2485, cell Signaling), and β actin (E-AB-20058, Elabscience). After washing, blots
were then probed with appropriate secondary horseradish peroxidase (HRP)-conjugated
secondary antibodies (Jackson ImmunoResearch, West Grove, PA) and detected by an ECL
detection system (Millipore). β-actin served as internal control.
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4.6. Wound Healing Assay

In vitro migration was analyzed using Ibidi µ-Dish 35 mm (cat. No. 81176, Ibidi).
HaCaT cells (70 µL; concentration: 5 × 105 cells/mL) were added to a Culture-Insert well
and cultured for 16 h and 24 h. The proliferation of cells was inhibited by treating with
a proliferation inhibitor (actinomycin C). After removal of the Culture-Insert, cells were
cultured for 16 and 24 h. The migration distance of cells was recorded and measured using
Image J software.

4.7. Migration Assay

Cells were plated onto the Transwell® Boyden chamber with or without naringin
treatment on the upper chamber for migration assay. The chambers were incubated for
24 h with complete medium added in the lower chamber. Non-moved cells were removed
by cotton swabs and the chambers were stained with crystal violet. Photomicrographs of
three random regions were captured from duplicated assay chambers. The numbers of
cells were counted and normalized to the untreated control.

4.8. Statistical Analysis

All statistical analyses were performed using GraphPad Prism statistical software
(version 6, GraphPad Software, Inc., San Diego, CA, USA). Results were represented
as means ± standard deviation (SD). One-way ANOVA was carried out when multiple
comparisons were evaluated. Values were considered to be significant at p < 0.05. All
experiments were repeated independently at least three times.

5. Conclusions

The current study demonstrates the effectiveness of naringin to accelerate and thus
enhance the wound-healing process via several mechanisms. The in vivo wound-healing
model revealed higher levels of CD31 detected in the mice used in this study. Interestingly,
levels of PCNA and Ki67 in the naringin cream treated group were decreased compared
to the control group. We hypothesize that this could be due to the times at which the
analyses were performed after the puncture event. After seven days, regeneration was
nearly complete, thus the cell proliferation markers PCNA and Ki67 were decreased in
accordance with the wound size. However, CD31 is active in the later stages of the wound-
healing process in order to rebuild the blood vessels, which could explain why we identified
the dose-dependent increased level of CD31 via naringin. The exact mechanisms behind
our observed improvement in wound healing by naringin treatment based on in vitro, ex
vivo, and in vivo models could partially be explained by its combined ability to enhance
cell migration, activate the VEGFs pathways, and upregulate the downstream effectors
MMP-2 and 9 (Figure 6). We herein propose a possible association between VEGFs and
the cell-modulatory properties of naringin, although additional studies are required to
further elucidate the molecular mechanisms under different conditions, such as a burn or
diabetes model.
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