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Autosomal dominant TLR3 deficiency has been identified as a genetic etiology of childhood herpes 
simplex virus 1 (HSV-1) encephalitis (HSE). This defect is partial, as it results in impaired, but not 
abolished induction of IFN- and - in fibroblasts in response to TLR3 stimulation. The apparently 
normal resistance of these patients to other infections, viral illnesses in particular, may thus result 
from residual TLR3 responses. We report here an autosomal recessive form of complete TLR3 
deficiency in a young man who developed HSE in childhood but remained normally resistant to 
other infections. This patient is compound heterozygous for two loss-of-function TLR3 alleles, 
resulting in an absence of response to TLR3 activation by polyinosinic-polycytidylic acid (poly(I:C)) 
and related agonists in his fibroblasts. Moreover, upon infection of the patient’s fibroblasts with 
HSV-1, the impairment of IFN- and - production resulted in high levels of viral replication and 
cell death. In contrast, the patient’s peripheral blood mononuclear cells responded normally to 
poly(I:C) and to all viruses tested, including HSV-1. Consistently, various TLR3-deficient leukocytes 
from the patient, including CD14+ and/or CD16+ monocytes, plasmacytoid dendritic cells, and in 
vitro derived monocyte-derived macrophages, responded normally to both poly(I:C) and HSV-1, 
with the induction of antiviral IFN production. These findings identify a new genetic etiology for 
childhood HSE, indicating that TLR3-mediated immunity is essential for protective immunity to 
HSV-1 in the central nervous system (CNS) during primary infection in childhood, in at least some 
patients. They also indicate that human TLR3 is largely redundant for responses to double-
stranded RNA and HSV-1 in various leukocytes, probably accounting for the redundancy of TLR3 
for host defense against viruses, including HSV-1, outside the CNS.
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Pérez de Diego et al., 2010). VSV was used despite its pre-
dominantly animal tropism and RNA genome because it is a 
potent inducer of IFNs in human fibroblasts, to which it is 
also highly cytopathic. The lack of cutaneous HSV-1 disease 
in children with HSE may result from a normal poly(I:C) re-
sponse in keratinocytes and leukocytes, as demonstrated in 
patients with AD TLR3 deficiency (Zhang et al., 2007b),  
restricting the dermal spread of HSV-1. It has also been sug-
gested that the lack of detectable viremia and overt disseminated 
disease reflects the redundancy of TLR3 in most leukocytes, 
including IFN-producing cells in particular (Casrouge et al., 
2006; Zhang et al., 2007b; Pérez de Diego et al., 2010).

Indeed, in the course of HSE, HSV-1 does not reach the 
CNS by crossing the blood brain barrier but via cranial nerves, 
the olfactory bulb, and the trigeminal nerve in particular 
(Whitley, 2006). The abundant and almost selective expression 
of functional TLR3 in the CNS, in both nonhematopoietic 
(neurons, oligodendrocytes, and astrocytes) and hematopoi-
etic (microglial cells) CNS-resident cells (Bsibsi et al., 2002, 
2006; Olson and Miller, 2004; Jack et al., 2005;  Préhaud et al., 
2005; Peltier et al., 2010), therefore provides a plausible mech-
anism of disease. We recently obtained preliminary data sug-
gesting that responses are essential to control HSV-1 in 
CNS-resident cells derived from patients’ induced pluripo-
tent stem cells (unpublished data). These data suggest that the 
CNS-restricted impairment of TLR3 responses underlies 
HSE. In this context, two key questions have emerged. First, 
taking into account that the known genetic etiologies have 
been found in only a few patients, is HSE in other children 
also caused by single-gene inborn errors of immunity? Sec-
ond, as children with AD TLR3 deficiency display a partial 
defect, and those with AR UNC-93B or AD TRAF3 defi-
ciency may display UNC-93B– or TRAF3-independent 
TLR3 responses, could residual TLR3 responses contribute 
to the broad resistance to other viruses of children with HSE? 
We describe in this study a new genetic etiology of HSE, in a 
patient with an AR and complete form of TLR3 deficiency. 
We used cells from this patient to document the redundant 
and nonredundant functions of TLR3 in cellular responses to 
poly(I:C) and viruses, including HSV-1.

RESULTS
Compound heterozygous mutations in TLR3  
in a patient with HSE
We investigated a 19-yr-old French patient (P) who had suf-
fered from HSE at the age of 8 yr. He had suffered no other 
unusually severe infectious disease, of viral origin in particular. 
High titers of antibodies against HSV-1, HSV-2, varicella zoster 
virus, Epstein-Barr virus, and influenza virus A were found in 
his serum. This patient had been immunized with live mea-
sles/mumps/rubella vaccine with no adverse effect and had 
undoubtedly also been exposed to at least 20 other known ubiq-
uitous viruses (Knipe and Howley, 2007). We found two com-
pound heterozygous mutations in his TLR3 gene. One of the 
alleles carried a substitution (C→T) at nucleotide position 
1660 (c.1660C>T), whereas the other carried a substitution 

Herpes simplex encephalitis, which was first described in 
1941 (Smith et al., 1941), is the most common sporadic viral 
encephalitis in the Western world (Whitley and Kimberlin, 
2005). It has an estimated incidence of two to four cases  
per million inhabitants per year (Sköldenberg et al., 1984;  
Najioullah et al., 2000; Puchhammer-Stöckl et al., 2001), 
peaking in children between the ages of 6 mo and 3 yr  
(De Tiège et al., 2008). Childhood HSV encephalitis is a rare 
complication of primary infection with HSV-1, which other-
wise infects >85% of young adults with few, if any, clinical 
consequences. The introduction of acyclovir in the 1980s  
decreased the mortality rates associated with HSV-1 encepha-
litis (HSE), but most survivors present profound neurological 
sequelae, including recurrent seizures and mental retardation 
(Gordon et al., 1990; McGrath et al., 1997). The improve-
ments in survival resulting from acyclovir treatment have 
made the long-term follow up of children with HSE possible, 
and studies of this type have indicated that HSE typically 
strikes otherwise healthy children with normal resistance to 
other common infections, including those caused by other 
viruses in particular (Abel et al., 2010). Remarkably, children 
with any of the many known inherited and acquired severe 
immunodeficiencies, including SCIDs impairing the devel-
opment of T lymphocytes and often other lymphocyte sub-
sets and HIV-driven AIDS, resulting in profound CD4 T cell 
lymphopenia, are not particularly prone to HSE (Buckley, 
2004; Sancho-Shimizu et al., 2007). These data suggested that 
the molecules produced by leukocytes and known to govern 
innate and adaptive immunity were not essential for immu-
nity to HSV-1 in the central nervous system (CNS). Child-
hood HSE has thus long remained a rare and devastating viral 
illness of unknown pathogenesis.

We recently showed that HSE may result from single-
gene inborn errors of TLR3-dependent, IFN-/– and IFN-
–mediated immunity, in at least some children. Mutations  
in STAT1 (Dupuis et al., 2003) and NEMO (Niehues et al., 
2004) were found in two children with an exceedingly rare 
phenotype combining mycobacterial disease and HSE. This 
led to the discovery of autosomal recessive (AR) UNC-93B 
deficiency (Casrouge et al., 2006), autosomal dominant (AD) 
TLR3 deficiency (Zhang et al., 2007b), and AD TRAF3 defi-
ciency (Pérez de Diego et al., 2010), each in patients with the 
more common, typical phenotype of isolated HSE. All three 
defects impair the TLR3-dependent induction of IFN-/ 
and - in the patients’ dermal fibroblasts, in response to stim-
ulation with extracellular polyinosinic-polycytidylic acid 
(poly(I:C); Casrouge et al., 2006; Zhang et al., 2007b). TLR3 
is a nonspecific receptor of the double-stranded RNA (dsRNA) 
intermediates generated during the replication of most viruses, 
including HSV-1, and mimicked by poly(I:C) (Jacquemont 
and Roizman, 1975; Weber et al., 2006). The infection of  
fibroblasts from UNC-93B–, TLR3-, and TRAF3-deficient 
patients with vesicular stomatitis virus (VSV) triggers the pro-
duction of only low levels of IFN- and -, resulting in levels 
of viral replication and cell death higher than those in  
normal cells (Casrouge et al., 2006; Zhang et al., 2007b;  
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patient, his father, and his two siblings all carry a common 
homozygous TLR3 single nucleotide polymorphism (SNP) 
c.1234C>T (rs3775291, an SNP of 0.329 ± 0.237 hetero
zygosity in the general population), resulting in the replace-
ment of the leucine residue in amino acid position 412 by a 
phenylalanine residue (L412F). The mother of the patient is 
heterozygous for the L412F SNP. No other missense SNP of 
TLR3 is present in the patient, his parents, or siblings. Sero-
logical tests showed that the parents and siblings had been  
infected with HSV-1, but they did not develop HSE. The 
compound P554S and E746X mutations in TLR3 may there-
fore define, in our patient, the first AR form of TLR3 defi-
ciency in humans.

Expression of the TLR3 mutant alleles
The E746X mutation is predicted to prevent translation of 
the TIR domain of TLR3. We studied the production of 
E746X TLR3 messenger RNA (mRNA) and protein, using 
the TLR3-deficient P2.1 fibrosarcoma cell line (Sun and 
Leaman, 2004) to generate P2.1 cells stably transfected with 
constructs encoding C-terminally hemagglutinin (HA)-
tagged WT or E746X TLR3. We also generated P2.1 cells 
stably transfected with HA-tagged TLR3 alleles carrying the 
P554S mutation or one of the two nonsynonymous SNPs  
in TLR3, N284I (c.851A>T, rs5743316), and L412F, which 
have been shown to decrease the activity of TLR3 in HEK293 
and COS-7 cells stimulated with poly(I:C) (Ranjith-Kumar 
et al., 2007; Gorbea et al., 2010). TLR3 mRNA species were 
detected in P2.1 cells stably transfected with the WT, P554S, 
E746X, N284I, or L412F allele (with a C-terminal HA tag) 
but not in untransfected P2.1 cells or in P2.1 cells transfected 
with a mock vector (Fig. 2 A). The WT, N284I, and L412F 
TLR3 proteins were detected with an antibody against TLR3 
or an antibody against HA at a molecular mass of 130 kD 
(Fig. 2 B). As previously reported, the P554S allele encoded a 
truncated form of TLR3 with a molecular mass of 80 kD 
(Fig. 2 B; Zhang et al., 2007b). The E746X TLR3 protein was 
detected with an antibody directed against the N terminus of 
TLR3, which detected two different forms, one with a mo-
lecular mass of 110 kD and the other with a molecular mass 
of 130 kD, neither of which was detected by an antibody 
against HA (which did not recognize the E746X TLR3;  
Fig. 2 B and Fig. S1). These results suggest that posttranslational 
modifications, such as N-glycosylation, of the C-terminally 
truncated E746X protein may be abnormal (Choe et al., 
2005; Sun et al., 2006). We tested this hypothesis by assessing 
production of the E746X protein upon treatment with endo-
glycosidase H (Endo-H) or PNGase F. Endo-H treatment re-
sulted in the disappearance of the 130-kD bands for the WT 
and E746X TLR3 proteins but not the 110-kD band for the 
E746X TLR3 protein (Fig. S1). The 130-kD WT and E746X 
TLR3 proteins were sensitive to Endo-H, but some of the 
N-linked glycans on the 110-kD truncated form of E746X 
TLR3 seemed to be resistant to Endo-H, suggesting that 
some of the truncated form of TLR3 had transited abnor-
mally through the Golgi compartment (Johnsen et al., 2006). 

(G→T) at nucleotide position 2236 (c.2236G>T; Fig. 1,  
A and B). The two mutant alleles were found in the patient’s 
genomic DNA (gDNA) and in cDNA from both leukocytes 
and fibroblasts. The c.1660C>T substitution is a missense muta-
tion, resulting in the replacement of the proline residue in 
amino acid position 554 by a serine residue (P554S). The 
P554S allele in the ectodomain of TLR3 has been reported to 
be loss-of-function and dominant-negative in other patients 
with HSE (Zhang et al., 2007b). The c.2236G>T substitution 
is a nonsense mutation, resulting in the replacement of the 
glutamic acid codon in position 746 by a termination codon 
(E746X). The resulting premature termination of translation 
in the linker region is predicted to prevent translation of the 
Toll/IL-1 receptor (TIR) domain of TLR3 (Fig. 1 C). We 
found no other unreported mutations elsewhere in the cod-
ing region or flanking intron regions of TLR3. No mutations 
were found in the coding region of UNC93B1. The E746X 
mutation in TLR3 was not found in 1,041 healthy controls 
(2,082 chromosomes), including 164 Europeans (328 chromo
somes) from the HGDP-CEPH (Human Genome Diver-
sity Project Center for the Study of Human Polymorphisms) 
panel, ruling out the possibility of this mutation being an  
irrelevant polymorphism. Moreover, no other nonsense muta
tions of TLR3 were found in various ethnic groups from  
the general population (Barreiro et al., 2009). Finally, the 
patient’s mother and two siblings carry the E746X allele, whereas 
his father carries the P554S allele (Fig. 1 A). In addition, the 

Figure 1.  Compound heterozygous mutations in TLR3 in a child 
with HSE. (A) Family pedigree with allele segregation. The patient, indi-
cated in black, carries the compound mutations P554S (red) and E746X 
(blue) in TLR3. The other family members heterozygous for the P554S or 
E746X mutation are indicated by vertical lines. TLR3 genotypes are indi-
cated under each individual. (B) Compound heterozygous c.1660C>T and 
c.2236G>T mutations in TLR3 in the patient. The sequences of the PCR 
products of gDNA from a healthy control (C) and from the patient (P) are 
shown. The c.1660C>T and c.2236G>T mutations were confirmed in gDNA 
and cDNA from leukocytes and fibroblasts. (C) Schematic diagram of the 
human TLR3 gene. The coding exons are numbered with Roman numerals 
and delimited by a vertical bar. The regions corresponding to the leader 
sequence (L), leucine-rich repeats (LRR), transmembrane domain (TM), 
linker region (LR), and the TIR domain are shaded in light gray and are 
delimited by dark gray lines. The two leucine-rich repeats with an inser-
tion are indicated by asterisks.

http://www.jem.org/cgi/content/full/jem.20101568/DC1
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the E746X TLR3 protein in P2.1 cells stably transfected with 
constructs encoding C-terminally HA-tagged E746X TLR3, 
comparing the results obtained with those for P2.1 cells stably 
transfected with the WT, P554S, N284I, or L412F allele. 
Transfection with the WT TLR3 construct rescued the re-
sponse to poly(I:C), in terms of IFN- and - mRNA induc-
tion (Fig. 2 C and Fig. S2) and IFN- production (Fig. 2 D), 
whereas transfection with the E746X or P554S TLR3 con-
struct had no such effect (Fig. 2, C and D; and Fig. S2). The 
N284I and L412F SNPs of TLR3 have been shown to de-
crease the activity of TLR3 in HEK293 and COS-7 cells 
stimulated with poly(I:C), as measured by the activation of 
NF-B– and ISRE-dependent reporter genes (Ranjith-Kumar 
et al., 2007; Gorbea et al., 2010). Interestingly, the transfection 
of P2.1 cells with N284I or L412F TLR3 alleles also rescued 
the response to poly(I:C), which reached levels similar to those 
for the WT TLR3, in terms of IFN- and - mRNA induc-
tion (Fig. 2 C and Fig. S2) and IFN- production (Fig. 2 D). The 
N284I and L412F TLR3 alleles are therefore hypomorphic in 

Moreover, treatment of the WT and E746X TLR3 proteins 
with PNGase F decreased the molecular mass of the 130-kD 
WT TLR3 protein to 100 kD, and that of the 130- and 110-kD  
E746X TLR3 proteins to 70 kD (Fig. S1), strongly suggest-
ing that abnormal glycosylation of the C-terminally trun-
cated E746X protein accounts for the detection of mutant 
proteins of two different molecular masses. The E746X TLR3 
protein thus lacks the TIR domain and is abnormally glyco-
sylated, and a proportion of this protein is mislocated.

Both the P554S and E746X TLR3 alleles  
are loss-of-function
We previously showed that the P554S TLR3 protein fails to 
respond to poly(I:C) in the TLR3-deficient P2.1 cell line 
(Sun and Leaman, 2004; Zhang et al., 2007b). We also showed 
this protein to have a dominant-negative effect in both TLR3-
expressing dermal fibroblasts from a healthy control and 
TLR3-deficient P2.1 cells, at least for the induction of IFN- 
and - (Zhang et al., 2007b). We thus studied the function of 

Figure 2.  P554S and E746X TLR3 alleles are loss-of-function. (A) TLR3 mRNA levels were determined by RT-qPCR in P2.1 TLR3-deficient fibrosar-
coma cells not transfected (P2.1) or stably transfected with WT TLR3 (P2.1-TLR3 WT), P554S (P2.1-TLR3 P554S) or E746X (P2.1-TLR3 E746X) mutant TLR3, 
N284I (P2.1-TLR3 N284I) or L412F (P2.1-TLR3 L412F) TLR3 variant, or mock vector (P2.1-mock). -Glucuronidase (GUS) was included for normalization. 
The results shown are representative of three independent experiments. (B) TLR3 expression, assessed by immunoblotting (IB) after immunoprecipitation 
(IP), in P2.1 TLR3-deficient fibrosarcoma cells not stably transfected (P2.1) or transfected with WT TLR3, P554S or E746X mutant TLR3, N284I or L412F 
TLR3 variant, or mock vector, with an anti-TLR3 N-terminal (N) antibody and an anti-HA C-terminal tag antibody. The experiment shown is representative 
of three experiments performed. TLR3 protein extracted from HEK293T cells transfected with human WT TLR3 was included as a positive control. We used 
-tubulin as an internal expression control for immunoblotting. (C) IL29 (IFN-1) mRNA induction, without stimulation (NS) or after 4 h of stimulation 
with poly(I:C), assessed by RT-qPCR, in P2.1 TLR3-deficient fibrosarcoma cells not transfected (P2.1) or transfected with WT TLR3, P554S or E746X mutant 
TLR3, N284I or L412F TLR3 variant, or mock vector. All transfections generated stable cell lines. -Glucuronidase was included for normalization. Mean 
values ± SD were calculated from two independent experiments. (D) IFN- production without stimulation (NS) or after 24 h of stimulation with poly(I:C), 
as assessed by ELISA, in P2.1 TLR3-deficient fibrosarcoma cells not transfected (P2.1) or transfected with WT TLR3, P554S or E746X mutant TLR3, N284I or 
L412F TLR3 variant, or mock vector. All transfections generated stable cell lines. One experiment representative of the three performed is shown. Mean 
values ± SD were calculated from triplicates in one experiment.

http://www.jem.org/cgi/content/full/jem.20101568/DC1
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manner after poly(I:C) stimulation in control fibroblasts (Fig. 3 A;  
Zhang et al., 2007b). As in fibroblasts from patients with  
AD TLR3 deficiency (Zhang et al., 2007b), TLR3 mRNA 
levels were normal in the patient’s cells, as shown by com-
parison with healthy controls (Fig. 3 B). However, unlike  
AD TLR3 fibroblasts, which displayed a residual response to 
high concentrations of poly(I:C) at late time points after stim-
ulation (Fig. 3 A; Zhang et al., 2007b), primary and simian  
virus 40 (SV40)–transformed fibroblasts from the patient dis-
played no induction of IFN-, IFN-, or IL-6 in response to 
any of the concentrations of poly(I:C) tested at any of the 
time points considered (Fig. 3 A and Fig. S3 A). Unlike P554S, 
the E746X TLR3 allele does not appear to be dominant, as 
fibroblasts from the patient’s mother, who is heterozygous for 
the E746X TLR3 mutation, displayed a normal response to 

poly(I:C) stimulation in terms of the induc-
tion of IFN- and IL-6 (Fig. S3 A), further 
suggesting that there is probably no haploinsuffi-
ciency at the TLR3 locus in dermal fibroblasts. 

HEK293 and COS-7 cells (Ranjith-Kumar et al., 2007; Gorbea 
et al., 2010) but apparently not in P2.1 cells, although it is dif-
ficult to compare these cells, as different readouts were tested. 
In any event, the E746X TLR3 allele, like the previously re-
ported P554S TLR3 allele (Zhang et al., 2007b), is loss- 
of-function for poly(I:C) responses in P2.1 cells.

Abolished TLR3 responsiveness in the patient’s fibroblasts
Human dermal fibroblasts display a TLR3-dependent re-
sponse to extracellular stimulation with poly(I:C) (Casrouge 
et al., 2006; Zhang et al., 2007b). As both the P554S and 
E746X TLR3 alleles are loss-of-function in P2.1 cells, we 
thus assumed that the patient’s fibroblasts would display a 
complete lack of TLR3 responsiveness. Indeed, IFN-, IFN-, 
and IL-6 were secreted in a dose- and time-dependent 

Figure 3.  Absence of response to TLR3 in the  
patient’s fibroblasts. (A) Production of IFN-, IFN-, 
and IL-6 by SV40-fibroblasts after stimulation with vari-
ous doses of poly(I:C) for 12 or 24 h, as assessed by 
ELISA, with cells from a healthy control (C), the patient 
(P), a patient with partial AD TLR3 deficiency (AD TLR3),  
a patient with complete AR UNC-93B deficiency (UNC-
93B/), and a NEMO-deficient patient (NEMO IP). The 
panels illustrate mean values ± SD for triplicates of one 
experiment, representative of three performed. (B) TLR3 
mRNA levels in SV40-fibroblasts were determined by RT-
qPCR on RNA samples from five healthy controls (C), the 
patient (P), an AD TLR3 patient, and a UNC-93B/ pa-
tient. -Glucuronidase (GUS) was used for normalization. 
One representative experiment of three performed is 
shown. (C) IL29 (IFN-1) and IFNB mRNA levels in SV40-
fibroblasts from a control, the patient, an AD TLR3 pa-
tient, and a UNC-93B/ patient, unstimulated (NS) and 
stimulated for 2, 4, 6, and 8 h with poly(I:C). The panels 
illustrate results from a single experiment, representative 
of three performed. (D) Production of IFN- and IL-6 by 
SV40-fibroblasts from a control, the patient, an AD TLR3 
patient, a UNC-93B/ patient, and a NEMO IP patient, 
unstimulated or after stimulation with the TLR3-specific 
agonist poly(A:U) for 12 and 24 h, as assessed by ELISA. 
The panels illustrate mean values ± SD for triplicates of 
one experiment, representative of three performed.  
(E) IRF-3 monomers and dimers in total cell extracts of 
SV40-fibroblasts from a control, the patient, an AD TLR3 
patient, and a UNC-93B/ patient, after stimulation 
with poly(I:C) for 1 and 2 h, as assessed by Western blot-
ting. The results shown are representative of three inde-
pendent experiments. (F) NF-B activation was assessed 
by monitoring expression of the NF-B luciferase re-
porter in SV40-fibroblasts from a control, the patient, an 
AD TLR3 patient, a UNC-93B/ patient, and a NEMO IP 
patient, unstimulated or after stimulation with poly(I:C) 
(top) and IL-1 (bottom) for 6 h. The panels illustrate 
mean values ± SD for three independent experiments.

http://www.jem.org/cgi/content/full/jem.20101568/DC1
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a patient with AR TLR3 deficiency, a patient with AD TLR3 
deficiency (Zhang et al., 2007b), a patient with AR UNC-
93B deficiency (Casrouge et al., 2006), and a patient with AR 
MyD88 deficiency (von Bernuth et al., 2008) were analyzed 
after 2 or 8 h of poly(I:C) or IL-1 stimulation. In control  
fibroblasts, 431 and 319 transcripts were found to be regulated 
after 2 h of stimulation with IL-1 and poly(I:C), respectively, 
and 713 and 1,350 transcripts were regulated after eight hours of 
stimulation with IL-1 and poly(I:C), respectively (Table S1). 
Unlike MyD88-deficient cells, which did not respond to  
IL-1 at either time point and responded normally to poly(I:C) 
at both time points, AR TLR3-deficient and UNC-93B– 
deficient cells did not respond to poly(I:C) at either time 
point, and AD TLR3-deficient cells displayed only a partially 
impaired response to poly(I:C) (Fig. 5, A and B; and Fig. S5 A). 
The response to IL-1 in AD TLR3-, AR TLR3-, and UNC-
93B–deficient cells was similar to that of control cells (Fig. S5 B). 
We then focused on the functional pathways regulated by 
poly(I:C) in control fibroblasts and in fibroblasts from patients. 
Control fibroblasts treated with poly(I:C) responded with a 
rapid increase in the mRNA expression of IFN-regulated 
genes (including ISG15, OAS1, OAS3, IRF7, IFIT1, IFIT3, 
and STAT1) and in the production of inflammatory cytokines 
(including TNF, TNFSF10, and TFNSF13B) and chemokines 
(including IL15 and CXCL10; Fig. 5 C and Fig. S5 C). Differ-
ences in the activation status of poly(I:C) functional networks 
between fibroblasts from patients and controls clearly identified 
a complete, specific lack of response to poly(I:C) as a defining 
characteristic of complete TLR3 and UNC-93B deficiencies 
in fibroblasts (Fig. 5, A–C; and Fig. S5 A).

Impaired IFN-dependent control of VSV and HSV-1  
in the patient’s fibroblasts
We previously showed that the production of IFN- and - 
was impaired in fibroblasts homozygous for UNC93B1-null 
alleles and in fibroblasts heterozygous for a dominant-negative 

Similar results were obtained for the induction of mRNA 
synthesis for IFN- and - in the patient’s fibroblasts (Fig. 3 C). 
This cellular phenotype is consistent with that of UNC-93B– 
deficient fibroblasts from another HSE patient (Fig. 3, A and C; 
Casrouge et al., 2006), in which UNC-93B–dependent TLR3 
signaling is completely abolished (Casrouge et al., 2006). The 
response to polyadenylic-polyuridylic acid (poly(A:U)), a 
noncommercial agonist of TLR3 known as IPH31 that ap-
parently stimulates TLR3 more specifically than poly(I:C), 
was also abolished in the fibroblasts of our patient (Fig. 3 D). 
The responsiveness of our patient’s cells to TLR3 stimulation 
was not restored by prior treatment with IFN- (Fig. S3 B), 
which normally increases TLR3 responses by up-regulating 
TLR3 expression (Tissari et al., 2005). The activation of both 
IRF-3 (IFN regulatory factor 3; Fig. 3 E) and NF-B (Fig. 3 F) 
in response to poly(I:C) was impaired in fibroblasts from the 
patient, which responded normally to IL-1 (Fig. 3 F). 
Moreover, the stable transfection of cells from the patient 
with a construct encoding C-terminally HA-tagged WT 
TLR3 restored the cellular response to poly(I:C) and poly(A:U), 
as assessed by measurements of IFN- and IL-6 production 
(Fig. 4 A and Fig. S4 A) and NF-B activation (Fig. S4 B).  
As a control, HA-tagged TLR3 was detected in stably trans-
fected cells, with an antibody directed against C-terminally 
tagged HA (Fig. 4 B). The fibroblastic phenotype thus con-
firmed that the compound P554S and E746X TLR3 alleles 
conferred complete functional TLR3 deficiency on the  
patient’s fibroblasts.

Genome-wide transcriptional evaluation of the TLR3 
pathway in fibroblasts
For identification of the TLR3-dependent genes targeted 
during stimulation with poly(I:C), we investigated the genome-
wide transcriptional profile upon poly(I:C) stimulation in  
fibroblasts with and without TLR3 pathway deficiencies. The 
transcriptional profiles of fibroblasts from healthy controls,  

Figure 4.  WT TLR3 expression rescues re-
sponsiveness to TLR3 in the patient’s fibro-
blasts. (A) Production of IFN- and IL-6 
unstimulated (NS) or after 24 h of stimulation 
with poly(I:C) with the presence of Lipofectamine 
(poly(I:C)+L) or without Lipofectamine (poly(I:C)), 
as assessed by ELISA, in SV40-fibroblasts from a 
control (C), a NEMO-deficient patient (NEMO IP), 
the patient (P), and in SV40-fibroblasts from P 
transfected with an empty vector (P-mock) or the 
C-terminal HA-tagged pUNO-TLR3 WT vector  
(P-TLR3 WT). All transfections generated stable 
cell lines. The panels illustrate mean values ± SD 
for triplicates of one experiment, representative 
of three. (B) TLR3 expression in SV40-fibroblasts 
from the patient without transfection (P) or after 
stable transfection with human WT TLR3 (P-TLR3 
WT) or mock vector (P-mock) was assessed by 

immunoblotting (IB) with an anti-HA C-terminally tagged antibody (C) after immunoprecipitation (IP) with an anti-TLR3 N-terminal (N) antibody. One 
experiment representative of the three performed is shown. TLR3 protein extracted from HEK293T cells transfected with human WT TLR3 was included as 
a positive control. We used -tubulin as an internal expression control for immunoblotting.
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deficient, AD TLR3-deficient, and healthy control fibroblasts. 
Fibroblasts from the patient, like AR UNC-93B–deficient 
and AD TLR3-deficient fibroblasts, produced less IFN-  
and - in response to VSV and HSV-1 than healthy control cells 
(Fig. 6, A and B; and Fig. S6, A and B)but normal levels of 
IFN- and - in response to the other viruses tested (Fig. 6 C). 
Moreover, the impaired response to VSV was rescued, at least 
in terms of IFN- production, by the stable expression of a 
WT TLR3 construct in the patient’s fibroblasts (Fig. S6 C). 
Fibroblasts with AR complete TLR3 deficiency therefore dis-
played impaired production of IFN- and - in response to VSV 
and HSV-1. We have previously shown that the impairment 

TLR3 allele in response to both HSV-1 and another neuro-
tropic virus, VSV, which is highly cytopathic and a potent IFN 
inducer in human fibroblasts (Casrouge et al., 2006; Zhang  
et al., 2007b). The other viruses tested, including measles  
virus, parainfluenza III virus (Para III virus), Sindbis virus, and 
encephalomyocarditis virus (EMCV), induced normal levels 
of IFN- and - production in AR UNC-93B–deficient and 
AD TLR3-deficient fibroblasts (Casrouge et al., 2006; Zhang 
et al., 2007b). We then studied the responses of the patient’s 
fibroblasts to infection with various viruses, including Para III 
virus, EMCV, Sindbis virus, measles virus, HSV-1, and VSV, 
and compared these responses with those of AR UNC-93B–

Figure 5.  Genome-wide transcriptional evaluation of the TLR3 pathway in fibroblasts. (A) Cumulative fold change (FC) score (top) and heat maps 
(bottom) of the transcripts regulated by 2 h (left) or 8 h (right) of stimulation with poly(I:C) in primary fibroblasts from three healthy controls (C), the 
patient (P), a UNC-93B/ patient, a patient with AD TLR3 deficiency (AD TLR3), and a patient of MyD88 deficiency (MyD88/). The cumulative score is 
the sum of all the fold change values >1.5 (up- or down-regulation). Heat maps show a hierarchical clustering of transcripts differentially expressed upon 
poly(I:C) stimulation (based on 100 differences in intensity and 1.5-fold changes compared with nonstimulated condition in healthy controls). Changes 
with respect to the unstimulated condition are shown by a color scale: red, up-regulated; blue, down-regulated; yellow, no change. The probes displaying 
differences of >100 in intensity were used to calculate the cumulative score. (B) Ranking of the 302 transcripts up-regulated after 8 h pf poly(I:C) stimu-
lation, with a fold change of at least 2 in all three controls tested, in primary fibroblasts from three healthy controls (C), the patient (P), a UNC-93B/ 
patient, an AD TLR3 patient, and an MyD88/ patient. (C) Networks generated from differentially expressed transcripts (up-regulated) in fibroblasts from 
control (C), the patient (P), a UNC-93B/ patient, an AD TLR3 patient, and an MyD88/ patient after 8 h of poly(I:C) stimulation with Ingenuity Pathway 
Analysis software. Eligible genes or gene products regulated by these factors are represented as nodes, and the biological relationship between two nodes 
is represented as an edge (line). Solid and dashed lines indicate direct and indirect relationships, respectively. All edges are supported by at least one  
reference from the literature. Nodes are arranged according to the cellular distribution of the corresponding gene products. Up-regulated transcripts  
are represented in red, and down-regulated transcripts are represented in green.
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to other infectious diseases, including viral illnesses such  
as, paradoxically, HSV-1–related diseases outside the CNS 
(Casrouge et al., 2006; Zhang et al., 2007b; Abel et al., 2010; 
Pérez de Diego et al., 2010). The response to poly(I:C) and 
viruses in PBMCs was normal in AD TLR3-deficient patients 
(Zhang et al., 2007b). This could be interpreted as reflecting 
TLR3-independent responses to dsRNA mediated by MDA5 
(Gitlin et al., 2006) or RIG-I (Yoneyama et al., 2004) and, 
possibly, other pathways, residual TLR3 responses in cells with 
AD TLR3 deficiency, or both. The lack of infections other 
than HSE in AD TLR3-deficient patients may thus be caused 
by their residual TLR3 responses. Likewise, UNC-93B– 
independent TLR3 responses might account for the narrow 
infectious phenotype of patients with complete UNC-93B 
deficiency (Casrouge et al., 2006) or partial TRAF3 defi-
ciency (Pérez de Diego et al., 2010). We thus investigated the 
response to poly(I:C) and viruses in PBMCs from the patient 
with complete AR TLR3 deficiency. PBMCs from the pa-
tient responded normally to poly(I:C) and 10 viruses, includ-
ing BK virus, Newcastle disease virus (NDV), measles virus, 
Para III virus, mumps virus, Sendai virus, EMCV, Sindbis  
virus, HSV-1, and VSV, in terms of IFN- production (Fig. 8 A 
and Fig. S7 A). We further analyzed transcriptional profiles of 
PBMCs from the patient and from controls after 2 or 8 h of 
stimulation with poly(I:C) or IL-1. In control PBMCs, 347 
and 26 transcripts were regulated by 2 h of stimulation with 
IL-1 and poly(I:C), respectively, and 410 and 446 transcripts 
were regulated by 8 h of stimulation with IL-1 and poly(I:C), 
respectively (Table S2). The response to 2 or 8 h of IL-1 
stimulation or 8 h of poly(I:C) stimulation was similar in cells 
from the patient and in cells from controls (Fig. 8, B–D; and 
Fig. S7, B and C). The regulation of several genes (IFIT1, 
IFIT2, and IFIT3) appeared to be TLR3 dependent after 2 h 
of poly(I:C) stimulation but not after 8 h of stimulation (Fig. 8,  
B and C; and Fig. S7 D), suggesting that the TLR3-dependent 
and -independent dsRNA-responsive pathways may be acti-
vated in a time-dependent manner in PBMCs. An analysis of 

of virus-induced IFN production leads to high levels of  
VSV replication and cell death upon VSV or HSV-1 infection 
in AR UNC-93B–deficient, AD TLR3-deficient, and AD 
TRAF3-deficient fibroblasts (Casrouge et al., 2006; Zhang  
et al., 2007b; Pérez de Diego et al., 2010). We thus studied the 
control of VSV and HSV-1 in fibroblasts from the patient. 
Cells from our patient (P) and from patients with AR STAT1, 
AR UNC-93B, and AD TLR3 deficiencies displayed higher 
levels of VSV or HSV-1 replication than WT cells (Fig. 7,  
A and B). When cells from P, AR UNC-93B–deficient, and 
AD TLR3-deficient cells were treated with IFN- before  
viral infection, complementation was observed, with the nor-
mal containment of viral replication, similar to that observed 
in healthy control cells (Fig. 7, A and B). No such comple-
mentation was observed for AR STAT1-deficient cells, which 
have impaired responses to IFN-, -, and - (Fig. 7, A and B; 
Chapgier et al., 2009). Fibroblasts from P had markedly 
lower survival rates than control cells after 24 h of VSV infec-
tion or 72 h of HSV-1 infection (Fig. 7, C and D). The patient’s 
cells behaved like the cells of patients with AD TLR3, AR 
UNC-93B, and AR STAT1 deficiencies for VSV infection 
(Casrouge et al., 2006; Zhang et al., 2007b). Prior treatment 
with exogenous IFN- complemented the phenotypes of 
AR TLR3-deficient, AD TLR3-deficient, and AR UNC-
93B–deficient cells equally well, but not that of AR STAT1-
deficient cells (Fig. 7, C and D). Thus, complete AR TLR3 
deficiency results in the impairment of IFN- and - pro-
duction in response to VSV and HSV-1, resulting in higher 
levels of viral replication and cell death, as observed for AR 
UNC-93B–deficient and AD TLR3-deficient cells. By infer-
ence, this fibroblastic phenotype may account for the molec-
ular pathogenesis of HSE in CNS-resident cells in patients 
with inborn errors of TLR3 immunity.

Normal response to poly(I:C) and viruses in PBMCs
Patients with HSE in general, and patients with HSE and 
TLR3 pathway deficiencies in particular, are normally resistant 

Figure 6.  IFN production after virus stimulation in fibroblasts from the patient. (A–C) Production of IFN- (top) and IFN- (bottom) after 24 h  
of stimulation with VSV (A), HSV-1 (B), Para III virus, EMCV, Sindbis virus, and measles virus (MeV; C), or left unstimulated (NS), as assessed by ELISA,  
in SV40-fibroblasts from a control (C), patient (P), an AD TLR3-deficient patient (AD TLR3), and a UNC-93B/ patient. The panels illustrate results from a 
single experiment, representative of three performed. Mean values ± SD were calculated from triplicates in one experiment.
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the functional pathways regulated by poly(I:C) in control 
PBMCs and in PBMCs from the AR TLR3-deficient patient 
revealed that a poly(I:C) functional network similar to that of 
the fibroblasts was activated in the PBMCs of controls and of 
the patient with AR TLR3 deficiency after 8 h of stimulation 
with poly(I:C) (Fig. 8 D), indicating that the activation of 
TLR3-independent dsRNA-responsive pathways may com-
pensate for the TLR3 defect and lead to the regulation of these 
networks in PBMCs. Overall, TLR3 was redundant for responses 
to poly(I:C) and all viruses tested in circulating leukocytes.

Normal response to poly(I:C) and HSV-1 in different 
leukocyte subsets
We further investigated whether TLR3 was required for re-
sponses to poly(I:C) and HSV-1 in different subsets of ex vivo 
isolated or in vitro differentiated leukocytes. We previously 
investigated the response to poly(I:C) in various leukocyte 
subsets (Zhang et al., 2007b). However, the response to viruses, 
including HSV-1 in particular, has previously been investi-
gated only in the fibroblasts and PBMCs of AD TLR3-deficient 
patients. The NK and CD8+ T cells of AD TLR3-deficient 
patients have been shown to display impaired responses to 
poly(I:C) under the conditions tested (Zhang et al., 2007b). 
Some recent data have suggested that TLR3-dependent and  
-independent dsRNA-responsive pathways may contribute 
to the response to poly(I:C) in CD8+ T and NK cells (Zhang  
et al., 2007b; McCartney et al., 2009; Perrot et al., 2010; Wang  
et al., 2010) and that TLR3 may contribute to the generation 
of CD8+ T cell responses to HSV-1 (Davey et al., 2010). 
However, NK and CD8+ T cells are unlikely to play a major 
role in the pathogenesis of HSE, as neither CD8- nor HLA-I– 
deficient patients are prone to HSE (Cerundolo and de la 
Salle, 2006). Indeed, even patients lacking all NK and T cell 
subsets (T cell2, NK cell2, SCID) do not develop HSE upon 
infection with HSV-1 (Buckley, 2004). Overall, the lymphoid 
cell types in which TLR3 seems to be important for poly(I:C) 
responsiveness are not key players in immunity to HSV-1 in 
the CNS. The lack of other viral infections in HSE patients 
further indicates that the TLR3 pathway in such cell types is 
largely redundant for antiviral immunity. The response to 
poly(I:C) in other leukocytes studied, including plasmacytoid 
DCs (PDCs) and myeloid DCs, was normal in AD TLR3- 
deficient patients (Zhang et al., 2007b). This may be inter-
preted as reflecting TLR3-independent responses to dsRNA, 
residual TLR3 responses in cells with AD TLR3 deficiency, or 
both. The lack of infections other than HSE in AD TLR3-
deficient patients may thus be caused by their residual TLR3 
responses. PDCs (Yoneyama et al., 2005) and macrophages 
(Mogensen, 1979) are thought to play an important role in im
munity to HSV-1. We therefore investigated the response to 
poly(I:C) and HSV-1 in PDCs, CD14+CD16, CD14dimCD16+, 
and CD14+CD16+ monocytes, and in monocyte-derived 
macrophages (MDMs) from the patient with complete AR 
TLR3 deficiency. Upon stimulation with HSV-1, PDCs iso-
lated from the PBMCs of the AR TLR3-deficient patient dis-
played normal IFN- production (Fig. 9 A). Upon stimulation 

Figure 7.  Impaired IFN-dependent virus control in fibroblasts from 
the patient. (A) VSV titers, estimated on Vero cells, in SV40-fibroblasts from a 
healthy control (C), the patient (P), an AD TLR3-deficient patient, a UNC-
93B/ patient, and a patient with complete AR STAT1-deficiency (STAT1/) 
at various times after VSV infection, without (left) or with (right) 18 h of prior 
treatment with IFN-2b. The panels illustrate results from a single experi-
ment, representative of two performed. (B) HSV-1 replication, quantified by 
GFP measurement, in SV40-fibroblasts from a healthy control, the patient, an 
AD TLR3-deficient patient, a UNC-93B/ patient, and a STAT1/ patient at 
various times after HSV-1 GFP infection, without (left) or with (right) 18 h of 
prior treatment with IFN-2b. (C) Viability, estimated by resazurin oxido
reduction, of SV40-fibroblasts from a healthy control, the patient, and a 
STAT1/ patient 24 h after infection with VSV at various MOIs. The cells were 
not treated (left) or were subjected to prior treatment (right) with recombi-
nant IFN-2b for 18 h. (D) Viability, estimated by resazurin oxidoreduction, of 
SV40-fibroblasts from a healthy control, the patient, an AD TLR3-deficient 
patient, a UNC-93B/ patient, and a STAT1/ patient 72 h after infection 
with HSV-1 at various MOIs. The cells were not treated (left) or were subjected 
to prior treatment (right) with recombinant IFN-2b for 18 h. (B–D) Panels 
illustrate results from a single experiment, representative of three performed. 
Mean values calculated from triplicates in one experiment are presented.
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manner and that PBMCs, PDCs, and MDMs do not require 
an intact TLR3 pathway for antiviral IFN induction in re-
sponse to HSV-1. Overall, these data provide an explanation 
for the lack of disseminated disease during the course of HSE 
and the absence of other viral illnesses in patients with inborn 
errors of TLR3 immunity, including this patient with com-
plete TLR3 deficiency in particular.

DISCUSSION
The discovery of AR UNC-93B deficiency, AD TLR3 defi-
ciency, and AD TRAF3 deficiency in children with HSE  
provided proof-of-principle that childhood HSE may re-
sult from single-gene inborn errors of immunity (Casrouge  
et al., 2006; Zhang et al., 2007b; Pérez de Diego et al., 2010). 

with poly(I:C) or HSV-1, no IFN production was detected 
by ELISA, in CD14+CD16, CD14dimCD16+, and CD14+ 
CD16+ control monocytes. However, similar amounts of 
mRNA were detected for the IFN-inducible genes OAS1 
and MX1 in CD14+CD16, CD14dimCD16+, and CD14+CD16+ 
monocytes from the patient and controls after poly(I:C) or 
HSV-1 stimulation (Fig. S8, A and B). MDMs from the AR 
TLR3-deficient patient responded normally to poly(I:C) or 
HSV-1 stimulation, in terms of the production of IFN- mRNA 
and protein (Fig. 9 B and Fig. S8 C). These data, together with 
our previous observations for cells from AD TLR3-deficient  
patients (Zhang et al., 2007b), strongly suggest that PBMCs, 
CD14+CD16, CD14dimCD16+, and CD14+CD16+ mono-
cytes, and MDMs respond to dsRNA in a TLR3-independent 

Figure 8.  Normal IFN response to poly(I:C) and genome-wide transcriptional evaluation of the poly(I:C) responses in PBMCs. (A) Production 
of IFN- after 24 h of stimulation with poly(I:C) in PBMCs from two healthy controls (C) and the patient (P). The PBMCs were incubated in RPMI 1640 
medium supplemented with 10% FCS (top) or 1% human serum (SAB; bottom). Mean values ± SD were calculated from three independent experiments. 
(B) Cumulative fold change (FC) score (top) and heat maps (bottom) of the transcripts regulated by 2 h (left) or 8 h (right) of stimulation with poly(I:C) in 
PBMCs from three healthy controls (C+) and the patient. The cumulative score is the sum of all the fold change values >1.5 (up- or down-regulation). 
Heat maps represent a hierarchical clustering of transcripts differentially expressed upon poly(I:C) stimulation (based on a difference in intensity of 100 
and a 1.5-fold change with respect to baseline in healthy controls). Changes with respect to unstimulated conditions are represented by a color scale:  
red, up-regulated; blue, down-regulated; yellow, no change. Probes giving a difference in intensity >100 were used to calculate the cumulative score.  
(C) Induction of IFIT1, IFIT2, IFIT3, and IL29 mRNA after 2 or 8 h of poly(I:C) stimulation in PBMCs from two healthy controls and the TLR3/ patient. Results 
from one experiment representative of the two performed are shown. (D) Networks generated from differentially expressed transcripts (up-regulated) in 
control and patient PBMCs after 8 h of poly(I:C) stimulation with Ingenuity Pathway Analysis software. Eligible genes or gene products regulated by these 
factors are represented as nodes, and the biological relationship between two nodes is represented as an edge (line). Solid and dashed lines indicate direct 
and indirect relationships, respectively. All edges are supported by at least one reference from the literature. Nodes are arranged according to the cellular 
distribution of the corresponding gene products. Up-regulated transcripts are represented in red.
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the reference. No signs of HSE were recorded when TLR3-
deficient mice were challenged with HSV-1 by skin infection 
(Davey et al., 2010). However, HSE is a neurotropic infection, 
and the corresponding intranasal and intracerebral modes of 
inoculation have not been tested in TLR3-deficient mice, 
making it impossible to draw firm conclusions as to the vul-
nerability of TLR3-deficient mice to neurotropic HSE. The 
recent identification of an AD TLR3 allele in a CVB3 myo-
carditis patient (Gorbea et al., 2010) is consistent with the 
vulnerability of TLR3-deficient mice to related viruses (Negishi 
et al., 2008; Richer et al., 2009). However, human TLR3 ap-
pears to be largely redundant in host defense against other 
primary infections in childhood, including, in particular, the 
viruses to which TLR3-deficient mice are particularly vul-
nerable. Consistent with these observations, PBMCs and fibro
blasts from AD and AR TLR3-deficient patients produced 
normal levels of IFN-, -, and - in response to nine and 
four viruses other than HSV-1 tested, respectively, including 
BK virus, VSV, NDV, measles virus, Para III virus, mumps virus, 
Sendai virus, EMCV, and Sindbis virus, the only exception 
being VSV in fibroblasts. These data further suggest that 
TLR3-independent dsRNA-responsive pathways (Yoneyama 
et al., 2004; Gitlin et al., 2006) or other antiviral immune 
pathways (Takaoka et al., 2007) may contribute to the control 
of viruses other than HSV-1 in patients with TLR3 pathway 
deficiencies. This situation is reminiscent of the discordance 
between IRAK-4– and MyD88-deficient mice and humans 
(Yang et al., 2005; Ku et al., 2007; von Bernuth et al., 2008; 
Casanova et al., 2011) and, more generally, between the mouse 
model of experimental infections and the human model of 
natural infections (Casanova and Abel, 2004, 2007; Quintana-
Murci et al., 2007). TLR3 thus shows considerable redun-
dancy in host defense in natura.

Strikingly, TLR3 is also redundant for protective im
munity to HSV-1 outside the CNS. The patient lacking TLR3,  
like other children with HSE, suffered from no other overt 
clinical disease caused by HSV-1, even during the course of 
HSE. In the French cohort, almost none of the children with 
HSE suffered from herpes labialis (unpublished data), the 
most common clinical symptom of HSV-1 infection in the 
general population (Stanberry et al., 1997; Abel et al., 2010). 
HSV-1 viremia was never documented during the course of 
childhood HSE in the conditions used to detect HSV-1 in 
the cerebrospinal fluid (CSF; Whitley, 2006). Consistent with 

This identification of AR TLR3 deficiency as a new genetic 
etiology of childhood HSE confirms the requirement of the 
TLR3–IFN signaling pathway for protective immunity to 
HSV-1 primary infection in the CNS, in at least some chil-
dren. These results also suggest that genetic defects affecting 
other molecules of the TLR3–IFN signaling pathway may be 
involved in the pathogenesis of HSE in other children. Our 
preliminary identification of children with HSE and AD or 
AR TRIF deficiency (unpublished data) or AD TBK1 defi-
ciency (unpublished data) is consistent with this hypothesis. 
As observed in patients with AR UNC-93B deficiency,  
AR TLR3 deficiency leads to a complete lack of TLR3 re-
sponse, associated, in fibroblasts, with impaired control of 
VSV and HSV-1. Our preliminary observations suggest that 
the phenotype of fibroblasts recapitulates that of some CNS-
resident cells (unpublished data). Consistent with its distinc-
tive signature of purifying selection (Barreiro et al., 2009; 
Casanova et al., 2011), human TLR3 is essential for host de-
fense, in at least some individuals, for protection against HSV-1. 
Complete AR TLR3 deficiency provides the first example  
of an inherited, complete, morbid deficiency involving a  
human TLR. The severe, but narrow and transient infectious 
phenotype in our AD TLR3-deficient patients and in this 
AR TLR3-deficient patient, consisting of susceptibility to 
HSE, indicates that the TLR3–IFN pathway is vital for pro-
tective immunity to primary HSV-1 infection in the CNS, in 
at least some children, but may otherwise be largely redun-
dant for host defense.

How do these observations compare with the mouse 
model? TLR3-deficient mice are susceptible to some viruses 
(Edelmann et al., 2004; Tabeta et al., 2004; Rudd et al., 2006; 
Hardarson et al., 2007; Negishi et al., 2008; Richer et al., 
2009) but normally resistant or more resistant to others (Table S3; 
Edelmann et al., 2004; Wang et al., 2004; Gowen et al., 2006; 
Le Goffic et al., 2006; Hutchens et al., 2008). TLR3-deficient 
mice are susceptible to EMCV (Hardarson et al., 2007), mouse 
CMV (Tabeta et al., 2004, Edelmann et al., 2004), respiratory 
syncytial virus (Rudd et al., 2006), CVB3 (Negishi et al., 
2008), and CVB4 (Richer et al., 2009) but have normal resis-
tance to lymphocytic choriomeningitis virus, VSV, and reo
virus (Edelmann et al., 2004), and enhanced resistance to Punta 
Toro virus (Gowen et al., 2006),  influenza virus (Le Goffic et al., 
2006), West Nile virus (Wang et al., 2004), and vaccinia virus 
(Hutchens et al., 2008) infections, taking TLR3 WT mice as 

Figure 9.  Normal responses to poly(I:C) and HSV-1 in 
different leukocyte subsets. (A) Production of IFN-, un-
stimulated (NS) or after 24 h of stimulation with HSV-1, in 
PDCs from five healthy controls (C), the patient (P), and the 
father (-P) and the mother (-P) of the patient. The values 
from two independent experiments are presented. (B) Pro-
duction of IFN- unstimulated or after 24 h of stimulation 
with poly(I:C) or HSV-1 in MDMs from three healthy controls 
and the patient. Mean values ± SD were calculated from two 
independent experiments.

http://www.jem.org/cgi/content/full/jem.20101568/DC1
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predisposition to HSE, with incomplete penetrance, in other-
wise healthy children, although TLR3 is largely redundant in 
host defense in natura. Beyond HSE, these findings suggest 
that other severe, sporadic viral diseases in otherwise healthy 
children may result from other single-gene inborn errors  
of immunity (Casanova and Abel, 2007; Alcaïs et al., 2010; 
Casanova et al., 2011).

MATERIALS AND METHODS
Patient
The patient was born in France to nonconsanguineous Polish parents and 
developed HSE at the age of 8 yr. The clinical signs of HSE were high fever 
(39°C), vomiting, and confusion. CSF evaluation on day 1 showed meningitis 
(36 cells/µl, 94% lymphocytes, and 0.78 g/liter proteins). Electroencephalo-
gram (EEG) showed a diffuse decrease in activity. Cerebral magnetic reso-
nance imaging (MRI) showed a hypersignal in the right temporal lobe on 
day 1 and necrotic lesions in the right temporal lobe on day 21. HSE was  
diagnosed on the basis of the detection by PCR of HSV-1 in the CSF on  
day 16 and the presence of IgM and IgG antibodies against HSV-1 in a serum 
sample collected on the same day. IFN- activity in the CSF was 12 IU/ml on 
day 3. Clinical signs were well controlled by acyclovir treatment (60 mg/kg/d/ 
i.v. for 3 wk). The patient presented herpes labialis before and after the  
episode of HSE. His father and one of his brothers had developed herpes  
labialis at some time in their lives, but neither of the patient’s parents and none  
of his brothers developed HSE after serologically documented HSV-1 infection. 
The patient has suffered from major neurological sequelae since the episode 
of HSE, including epilepsy and cognitive and motor disabilities. Nevertheless, 
he has experienced no subsequent acute events or other severe infectious 
diseases. He is now 20 yr old. He has been exposed to HSV-2, varicella zoster 
virus, Epstein-Barr virus, and influenza virus A, as shown by positive serologi-
cal results, without the occurrence of acute events. He was also immunized 
with live measles/mumps/rubella vaccines with no adverse effect. This pa-
tient resided in France, where he was followed up and informed consent was 
obtained, in accordance with local regulations, with institutional review 
board approval. The experiments described in this study were conducted in 
the United States, in accordance with local regulations and with the approval 
of the Institutional Review Board of the Rockefeller University.

Molecular genetics
DNA was isolated by phenol-chloroform extraction. We extracted RNA 
from immortalized fibroblast cell lines (SV40-fibroblasts) using TRIZOL  
(Invitrogen) according to the manufacturer’s instructions. RNA was reverse 
transcribed directly, with oligo (dT) (Invitrogen). PCR was performed with 
Taq polymerase (Invitrogen) and the GeneAmp PCR System 9700 (Applied 
Biosystems). The exons of TLR3 were amplified by PCR. The PCR prod-
ucts were purified by ultracentrifugation through Sephadex G-50 Superfine 
resin (GE Healthcare) and sequenced with the BigDye Terminator Cycle Se-
quencing kit (Applied Biosystems). Sequencing products were purified by 
centrifugation through Sephadex G-50 Superfine resin, and sequences were 
analyzed with an ABI Prism 3700 apparatus (Applied Biosystems). The muta-
tion was confirmed by the analysis of gDNA extracted from leukocytes and 
SV40-transformed fibroblasts.

Cell culture
Primary cultures of human fibroblasts obtained from biopsies performed on 
patients or healthy controls were established in DME (Invitrogen) supple-
mented with 10% FCS. They were transformed with an SV40 vector, as pre-
viously described (Zhang et al., 2007b), to create immortalized fibroblast cell 
lines: SV40-fibroblasts. The TLR3-deficient P2.1 fibrosarcoma cell line was 
provided by D.W. Leaman (University of Toledo, Toledo, OH; Sun and Leaman, 
2004). NEMO-deficient fibroblasts were obtained from a fetus with inconti-
nentia pigmenti (NEMO IP; Smahi et al., 2002). SV40-fibroblasts were stim-
ulated in 24-well plates at a density of 105 cells/well for 24 h (or the amount 
of time indicated in the poly(I:C) kinetic experiments). PBMCs, freshly isolated 

these observations, PBMCs from AD and AR TLR3-deficient 
patients produced normal levels of IFN-, -, and - in  
response to HSV-1. Moreover, PDCs and MDMs from the pa-
tient with AR complete TLR3 deficiency displayed normal 
IFN responses to HSV-1 infection, probably because of TLR3-
independent dsRNA-responsive pathways in these cells. These 
data again suggest that TLR3-independent dsRNA-responsive 
pathways (Yoneyama et al., 2004; Gitlin et al., 2006) or other 
antiviral immune pathways (Takaoka et al., 2007) may con-
tribute to the control of HSV-1 outside the CNS in patients 
with TLR3 pathway deficiencies. In any event, this description 
of a patient with complete AR TLR3 deficiency and HSE 
clearly indicates that the residual TLR3 responses documented 
in patients with partial AD TLR3 deficiency do not account 
for the apparently normal control of viruses, including HSV-1 
infections outside the CNS, in these patients.

Remarkably, TLR3 seems to be less necessary for the con-
trol of latent HSV-1 infection in the CNS, as HSE recurred 
only once, in one of the two AD TLR3 patients, and viral re-
currences are reported only rarely in other children with HSE, 
in <10% of affected children (Valencia et al., 2004; Spiegel  
et al., 2008; Abel et al., 2010). This probably reflects the com-
pensatory role played by adaptive immunity, as in IRAK-4– and 
MyD88-deficient children (Picard et al., 2003, 2010; Ku et al., 
2007; von Bernuth et al., 2008; Bousfiha et al., 2010; Casanova  
et al., 2011). Moreover, the clinical penetrance of the TLR3 
pathway defects in HSE is incomplete during primary HSV-1 
infection (Casrouge et al., 2006; Zhang et al., 2007b). Only 
two of eight HSV-1–infected P554S heterozygotes developed 
HSE. Seven of these heterozygotes belong to two previously 
reported kindreds (Zhang et al., 2007b), whereas the eighth is 
the father of the patient described in this study. The clinical 
penetrance of AR TLR3 deficiency for HSE may also be in-
complete, like that of AR UNC-93B deficiency (Zhang et al., 
2007a,b). All the cases of HSE in the French cohort were 
sporadic, despite 14% parental consanguinity (Abel et al., 2010), 
further suggesting that incomplete clinical penetrance is com-
mon in children with inborn errors of immunity conferring 
a predisposition to HSE. There is probably also incomplete 
penetrance for the development of CVB3 myocarditis, as only 
one of the 10 known individuals with AD or AR TLR3 defi-
ciency developed CVB3 myocarditis (Gorbea et al., 2010),  
although the degree of exposure of these patients to various 
enteroviruses is unknown. Paradoxically, this incomplete pen-
etrance even suggests that the TLR3 pathway may be com-
pletely redundant in host defense in most individuals. However, 
we cannot estimate the actual penetrance of these rare geno-
types because of the sporadic nature of their associated phe-
notypes and their absence from the healthy kindreds tested. 
Overall, with only two children with HSE and AD TLR3 de-
ficiency, another with AR TLR3 deficiency, and an adult pa-
tient with AD TLR3 deficiency and CVB3 myocarditis, it is 
too early to define firmly the role of human TLR3 in antiviral 
immunity. We need to search for TLR3 defects in patients 
with various viral illnesses and in the healthy population. How-
ever, we can already conclude that TLR3 deficiency confers 
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10 µg/ml polymyxin B (Sigma-Aldrich) at 37°C for 30 min before activa-
tion. For viral stimulation, we used (a) dsDNA viruses: HSV-1 (strain KOS-1; 
multiplicity of infection [MOI] = 1) and BK virus (an isolate from a patient, 
provided by P. Lebon; MOI = 0.02); (b) ss()RNA viruses: VSV (strain Indi-
ana; MOI = 1), NDV (strain BR24 444; MOI = 0.5), measles virus (strain 
Edmonston; MOI = 0.004), Sendai virus (strain E92; MOI = 12.5), Para III 
virus (strain EA102; MOI = 0.04), and mumps virus (vaccine strain Urabe; 
MOI = 0.04); and (c) ss(+)RNA viruses: Sindbis virus (strain VR1248 ATCC; 
MOI = 0.2) and EMCV (MOI = 0.25). In some experiments, cells were 
treated with IFN-2b (Intron A; Schering-Plough) at a concentration of  
105 IU/ml for 18 h before stimulation. Cell supernatants were recovered, and 
their cytokine concentrations were determined by ELISA.

Cytokine determinations
The production of IFN-, -, and - and of IL-6 was assessed by ELISA. 
Separate ELISAs were performed for each of IFN- (AbCys SA), IFN- 
(TFB; Fujirebio, Inc.), and IL-6 (Sanquin) according to the kit manufacturer’s 
instructions. The ELISA for IFN- was performed as previously described 
(Casrouge et al., 2006).

Signal transduction experiments in fibroblasts
Cell nuclear extracts were prepared from SV40-fibroblasts after incubation 
with or without poly(I:C) or IL-1. For NF-B luciferase, 2.5 × 105 human 
SV40-fibroblasts grown in six-well plates were transiently transfected in the 
presence of Lipofectamine LTX reagent (Invitrogen), with the NF-B– 
dependent reporter plasmid pGL4.32 (Promega), together with the Renilla 
luciferase plasmid as an internal control. 24 h after transfection, cells were 
stimulated with 100 µg/ml poly(I:C) or 20 ng/ml IL-1 for 6 h. The cells 
were then lysed, and luciferase activity was assessed with the dual luciferase 
assay kit (Promega). For the detection of IRF-3 dimerization, whole-cell  
extracts were prepared from SV40-fibroblasts with or without 25 µg/ml poly(I:C) 
treatment for 1 or 2 h. The IRF-3 monomers and dimers were separated  
by native PAGE in the presence of 1% sodium deoxycholate (DOC; Sigma- 
Aldrich). Total cell extracts (50 µg of protein) were diluted 1:5 in nondena-
turing sample buffer (312.5 mM Tris–HCl, pH 6.8, 50% glycerol, 0.05% 
bromophenol blue, and 5% DOC) and separated by electrophoresis in a 7.5% 
polyacrylamide gel in 25 mM Tris and 192 mM glycine, pH 8.4, with  
1% DOC present in the cathode chamber only. The separated proteins were 
transferred onto a membrane, which was then probed with the anti–IRF-3 
antibody (FL-425; Santa Cruz Biotechnology, Inc.) followed by a horseradish 
peroxidase–conjugated anti–rabbit IgG as the secondary antibody.

Viral infection and quantification in fibroblasts
For VSV infection, 105 SV40-fibroblasts were plated in individual wells of 
24-well plates and infected with VSV, at an MOI of 10, in DME supple-
mented with 2% FCS. After 30 min, cells were washed and incubated in 500 µl 
of medium. Supernatants were obtained at the 0.5-, 3-, 6-, 8-, and 24-h time 
points and frozen. VSV titers were determined by calculating the 50% end 
point (TCID50), using the Reed and Muench method, after the inoculation 
of Vero cell cultures in 96-well plates. For HSV-1 GFP infection, 104 SV40-
fibroblasts were plated in individual wells of 96-well plates and infected with 
HSV-1–GFP (strain KOS; Desai and Person, 1998), at various MOIs, in DME 
supplemented with 2% FCS. After 2 h, cells were washed and incubated in 
100 µl of culture medium. The GFP fluorescence of the samples was quanti-
fied at the 2-, 8-, 18-, 24-, and 48-h time points. For assays of cell protection 
upon viral stimulation, cells were treated with 105 IU/ml IFN- for 18 h  
before infection, as appropriate.

Cell viability assay
The viability of SV40-fibroblasts was assessed by resazurin oxidoreduction 
(TOX-8; Sigma-Aldrich). Cells were plated in triplicate in 96-well flat-bottomed 
plates (2 × 104 cells/well) in DME supplemented with 2% FCS; 24 h later, 
cells were infected for 24 h with VSV or for 72 h with HSV-1 at the indi-
cated MOI. Resazurin dye solution was then added (5 µl per well) to the 
culture medium, and the samples were incubated for an additional 2 h at 

by Ficoll-Hypaque density gradient centrifugation from healthy controls and 
patients, were incubated in RPMI 1640 medium supplemented with 10% 
FCS. All cells were grown at 37°C, under an atmosphere containing 5% CO2. 
For the generation of MDMs, fresh (from controls) or cryopreserved (from 
controls and the patient) PBMCs were incubated with CD14-coated micro-
beads (Miltenyi Biotec). CD14+ monocytes were then selectively purified on 
MACS separation columns (Miltenyi Biotec) and cultured with 50 ng/ml 
M-CSF for 1 wk to obtain MDMs.

For the purification of PDCs and monocytes, PDCs and monocyte sub-
sets were obtained from cryopreserved PBMCs of the patient, his parents, and 
healthy volunteers, by FACS (FACSAria II; BD). PBMCs were thawed, 
washed, and labeled with PerCP-conjugated anti–HLA-DR antibody (L243; 
BD), PECy7-conjugated anti-CD16 (3G8; mouse IgG1; BD), Pacific blue–
conjugated anti-CD14 antibody (M5E2; BD), APC-conjugated anti-CD11c 
antibody (S-HCL-3; BD), FITC-conjugated anti-BDCA2 (CD303) anti-
body (AC144; Miltenyi Biotech), and PE-conjugated anti-CD3 (UCHT1; 
BD), anti-CD15 (VIMC6; Miltenyi Biotech), anti-CD19 (4GT; BD), and 
anti-NKp46 (BAB281; Beckman Coulter) antibodies. PDCs were sorted  
as HLA-DR+BDCA2+CD11cCD16CD14Lin (CD3, CD15, CD19, 
NKp46). Monocytes were characterized as being HLA-DR+Lin, and 
CD14+CD16, CD14dimCD16+, and CD14+CD16+ subsets were sorted. 
Sorted cells were analyzed for purity (≥99%). Cells were dispensed in a  
96-well round-bottom plate at a density of 104 cells/well and cultured for  
24 h in OptiMem medium (Invitrogen) supplemented with 10% fetal bovine 
serum (Invitrogen) and 1% penicillin-streptomycin (Sigma-Aldrich), plus  
10 ng/ml IL-3 (R&D Systems) for PDCs, at 37°C in a 5% CO2 atmosphere.

Determination of mRNA levels by quantitative RT-PCR (RT-qPCR)
Total RNA was extracted from SV40-fibroblasts, PBMCs, and P2.1 cells. 
RNA was reverse transcribed directly, with oligo (dT), to determine mRNA 
levels for TLR3, IFN-, IFN-, IFIT1, IFIT2, and IFIT3. RT-qPCR was 
performed with Assays-on-Demand probe/primer combinations (Applied 
Biosystems) and 2× universal reaction mixture in an ABI PRISM 7700 Se-
quence Detection System. The gene of  -glucuronidase (GUS) was used for 
normalization. Results are expressed according to the Ct method, as de-
scribed by the manufacturer. To determine mRNA levels for OAS1 and 
MX1, RT-qPCR was performed with 2× SensiMix SYBR green (Bioline) 
in a Corbett Rotor-Gene Q cycler (QIAGEN). MX1 mRNA and OAS1 
mRNA primers were purchased from Sigma-Aldrich. GAPDH (Quantitect 
Primer Assay; QIAGEN) was used for normalization. Results are expressed  
according to the relative quantification method, as described by the manufacturer.

Western blots
Total cell extracts were prepared from SV40-fibroblasts and P2.1 cells, either 
not transfected or stably transfected with the pUNO-hTLR3 vector (Invivo-
Gen) containing no insert, the C-terminally HA-tagged WT TLR3 cDNA, 
the P554S mutant insert, the E746X mutant insert, the N284I insert, or the 
L412F insert. Extracts from cells transfected with the WT TLR3 or E746X 
TLR3 construct were subjected to 12 h of Endo-H (New England Biolabs, 
Inc.) treatment. Equal amounts of protein from each sample were subjected 
to immunoprecipitation with a goat anti–human TLR3 antibody directed 
against the human TLR3 ectodomain (R&D Systems) and separated by SDS-
PAGE and blotted onto polyvinylidene difluoride membrane (Bio-Rad Lab-
oratories). These polyvinylidene difluoride membranes were then probed 
with a goat anti–human TLR3 antibody directed against the human TLR3 
ectodomain (R&D Systems). Anti-HA (InvivoGen) antibodies were also 
used. Membranes were stripped and reprobed with an antibody against -tubulin 
(Sigma-Aldrich) to control for protein loading. Antibody binding was de-
tected by enhanced chemiluminescence (GE Healthcare).

TLR3 agonists, cytokines, and viral stimulation
We used the following TLR agonists: a synthetic analogue of dsRNA (poly(I:C), 
a TLR-3 agonist, at a concentration of 25 µg/ml) and IPH31 (an optimized 
poly(A:U) dsRNA, specific agonist of TLR3; provided by Innate-Pharma). 
For all stimulations of PBMCs with TLR agonists, cells were incubated with 
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in control fibroblasts and PBMCs, respectively. Table S3 shows in vivo viral 
infection in TLR3-deficient mice. Online supplemental material is available 
at http://www.jem.org/cgi/content/full/jem.20101568/DC1.
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1,500 ng cRNA for 16 h with Sentrix Human-6 V2 BeadChip arrays (49,295 
probes; Illumina). Beadchip arrays were then washed, stained, and scanned on 
a BeadStation 500 (Illumina) according to the manufacturer’s instructions.

Data preprocessing. After background subtraction, the raw signal values ex-
tracted with Beadstudio version 2 software (Illumina) were scaled according to 
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Online supplemental material
Fig. S1 shows the production of E746X TLR3 protein in P2.1 cells.  
Fig. S2 shows that the P554S and E746X TLR3 alleles are loss-of-function.  
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patient’s fibroblasts. Fig. S5 shows genome-wide transcriptional evaluation of 
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mal IFN production by the patient’s PBMCs upon stimulation with various 
viruses and genome-wide transcriptional evaluation of poly(I:C) responses  
in PBMCs. Fig. S8 shows normal IFN production by the patient’s leukocytes 
upon stimulation with poly(I:C) or HSV-1. Tables S1 and S2 list the number of 
transcripts differentially expressed upon stimulation with poly(I:C) or IL-1 
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