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Patients who receive transcatheter aortic valve replacement are at risk for leaflet
thrombosis-related complications, and can benefit from continuous, longitudinal
monitoring of the prosthesis. Conventional angiography modalities are expensive,
hospital-centric and either invasive or employ potentially nephrotoxic contrast agents,
which preclude their routine use. Heart sounds have been long recognized to contain
valuable information about individual valve function, but the skill of auscultation is
in decline due to its heavy reliance on the physician’s proficiency leading to poor
diagnostic repeatability. This subjectivity in diagnosis can be alleviated using machine
learning techniques for anomaly detection. We present a computational and data-
driven proof-of-concept analysis of a novel, auscultation-based technique for monitoring
aortic valve, which is practical, non-invasive, and non-toxic. However, the underlying
mechanisms leading to physiological and pathological heart sounds are not well-
understood, which hinders development of such a technique. We first address this by
performing direct numerical simulations of the complex interactions between turbulent
blood flow in a canonical ascending aorta model and dynamic valve motion in 29
cases with healthy and stenotic valves. Using the turbulent pressure fluctuations on the
aorta lumen boundary, we model the propagation of heart sounds, as elastic waves,
through the patient’s thorax. The heart sound may be recorded on the epidermal
surface using a stethoscope/phonocardiograph. This approach allows us to correlate
instantaneous hemodynamic phenomena and valve motion with the acoustic response.
From this dataset we extract “acoustic signatures” of healthy and stenotic valves
based on principal components of the recorded sound. These signatures are used to
train a linear discriminant classifier by maximizing correlation between recorded heart
sounds and valve status. We demonstrate that this classifier is capable of accurate
prospective detection of anomalous valve function and that the principal component-
based signatures capture prominent audible features of heart sounds, which have been
historically used by physicians for diagnosis. Further development of such technology
can enable inexpensive, safe and patient-centric at-home monitoring, and can extend
beyond transcatheter valves to surgical as well as native valves.

Keywords: aortic valve murmurs, TAVR, computational fluid dynamics, hemoacoustics, supervised learning,
anomaly detection
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INTRODUCTION

Heart diseases are the leading cause of death in the United States,
with more than 600,000 associated annual deaths (Kung
et al., 2008). Dysfunctions of the aortic valve are significant
contributors to the total heart disease burden of which aortic
stenosis (AS) is the most prevalent, affecting approximately 7%
of the population (Arora et al., 2017). Often valve repair is
not possible and the only recourse for patients is a complete
valve replacement. Historically, the gold standard of aortic
valve replacement has been surgical replacement (SAVR), but
it is limited to patients who can handle the trauma of an
open-heart surgery. In the last two decades, transcatheter
aortic valve replacement (TAVR) has emerged as a viable AVR
modality, especially for frail and high-risk patients. TAVR is
minimally invasive, requires relatively mild sedation and the
patient can be discharged within 48 h of implantation. Post-
implant patient management is also simplified with TAVR, as
recipients typically do not require lifelong anticoagulant therapy.
Through improvements in valve design, fabrication, and delivery
techniques, mortality risk reduction with TAVR has been shown
to be non-inferior to that with SAVR. Due to comparable
patient outcomes and a significant reduction in periprocedural
trauma, TAVR has recently been expanded to include moderate-
and low-risk patients. The bioprosthetic valves (BPV) employed
in TAVR are made of tissue grafted from porcine or bovine
pericardium, which are less thrombogenic and have overall better
hemodynamic characteristics, compared to mechanical valves,
even in low- and moderate-risk patients with severe AS (Reardon
et al., 2017; Kolte et al., 2019).

However, these BPVs are less durable compared to mechanical
valves and degenerate within 15 years of implantation, often
due to leaflet thrombosis, paravalvular leaks (Généreux et al.,
2013), leaflet tears (Gurvitch et al., 2011) or infective endocarditis
(Amat-Santos et al., 2015). Of these, leaflet thrombosis can result
in reduced leaflet motion (RLM), causing abnormal transvalvular
gradients and poor hemodynamic patterns. While its onset may
be asymptomatic, it can progress to clinical valve thrombosis and
increase the risk herat failure or thromboembolic events (Makkar
et al., 2015; Chakravarty et al., 2017). Thus, leaflet thrombosis
poses a serious threat to the patient, increasing both morbidity
and mortality. Incidence of early leaflet thrombosis (ELT) has
been seen in most TAVs on the market (De Marchena et al.,
2015; Makkar et al., 2015; Chakravarty et al., 2017) and the exact
mechanisms behind the progression/resolution of ELT remain
unknown (Rosseel et al., 2019). Therefore, there is an unmet need
for longitudinal monitoring of implanted valve, which can enable
proactive ELT detection.

Techniques commonly implemented in cardiac imaging, such
as transesophageal echo or 4D multidetector CT are expensive,
hospital-centric, may employ nephrotoxic contrast-enhancing
agents (Andreucci et al., 2014) and are either invasive or radiative.
All these issues preclude their routine use and ELT is only
incidentally detected during scheduled follow-up examinations
(Rosseel et al., 2019). Thus, TAVR recipients can benefit from
a novel, longitudinal monitoring modality which is patient-
centric, inexpensive, non-invasive, and non-toxic. Recent strides

in sensor-miniaturization, smart materials, telemetry, machine
learning have led to the proliferation of wearable, implantable
and embedded biosensor-based health monitoring devices. While
limited inroads have been made into sensor-based monitoring
techniques for cardiac health (Fonseca et al., 2006; Chen et al.,
2014; Hermans et al., 2018), very few developments address the
needs of TAVR patients. For instance, proof-of-concept analyses
of sensorized mechanical (Marcelli et al., 2018) and transcatheter
(Bailoor et al., 2021b) aortic valves have been recently proposed,
but these devices cannot assist patients with existing TAVs.
In this investigation, we seek to develop a safe and practical
valve monitoring modality which can be independently used by
patients with existing and future implants.

We employ cardiac auscultation, a safe, centuries-old
diagnostic technique, as the basis for our proposed modality.
Blood flow associated with many heart diseases, and particularly
heart valve diseases, generate characteristic sounds, called
“murmurs,” which can be accurately interpreted by a well-trained
physician. The technique is inexpensive, non-invasive, and can
be safely performed at home. Despite these advantages, this
seemingly essential skill has been in decline for the past few
decades (Alam et al., 2010), mainly due to its heavy reliance on
the physician’s acuity and proficiency. Studies and surveys have
shown that this decline is attributed to the lack of auscultation
training given to medical students and poor improvement in
their diagnostic accuracy following subsequent training (Dhuper
et al., 2007). These issues hamper repeatability of diagnosis.
Studies have also shown that low diagnostic accuracy of manual
auscultation is an international issue (Mangione, 2001). The
advent of digital stethoscopes facilitates noise-cancelation, signal
amplification and analysis to assist physicians. The dependence
of cardiac auscultation on the subjective judgment of a physician
can be considerably reduced for better diagnostic repeatability
by integrating modern sensing technology with machine learning
techniques for pattern recognition and anomaly detection.

Another issue with auscultation is that the underlying
causal mechanisms which lead to heart sounds are not well-
understood. This issue is compounded by inherent limitations of
performing simultaneous measurements of heart murmurs and
the underlying hemodynamics, due to which, in vivo and in vitro
experiments can only use very simple models. Some recent
studies (Dominguez-Morales et al., 2018; Chorba et al., 2021)
performed post-hoc analyses on human phonocardiographic
measurements using neural networks to detect different types
of heart valve diseases. However, they provide little description
of the underlying physical phenomena or their correlation
with pathological heart sounds. In silico modeling seems more
promising, in that there are no restrictions on the type and
number of concurrent measurements, and it is easy to use in
conjunction with machine learning. Some computational studies
have been performed on wave propagation in tissue-like materials
(Yazicioglu et al., 2005; Ozer et al., 2007), but they used prescribed
sound sources as opposed to coupling with physiological blood
flow. Recently Seo et al. developed a computational hemoacoustic
(CHA) solver (Seo et al., 2017) to study the generation and
propagation of flow-induced murmurs through tissue-like media
and showed how stenotic aortas, modeled as circular tubes
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with static constrictions, can result in detectable sound when
sound generation is coupled with hemodynamics. The authors,
however, do not account for dynamic valve motion or the
effects of flow pulsatility which influence transient blood flow
patterns in the aorta.

Through this investigation, we provide the first of its kind
description of physiologically realistic fluid-structure interaction
(FSI) inside the ascending aorta with healthy and stenotic TAVs
and the consequent sound generation and propagation in the
surrounding tissue-like material. Further, we present a proof-of-
concept analysis of a novel, data-driven, inexpensive, and safe
method to process such heart sounds recorded on a patient’s
thorax and subsequently infer the health of the valve. The paper is
organized as follows: In section 2, we present numerical methods
used to simulate blood flow inside the aorta, the resulting aortic
valve motion, and sound propagation in a homogenous medium.
Then in section 3, we use direct simulation to describe differences
in blood flow patterns and the corresponding heart sounds
resulting from healthy and stenotic TAVs, as recorded on at the
aortic valve port. Next, a data-driven methodology is developed
on a dataset of such simulations to extract statistically significant
differences between physiological and pathological heart sounds.
These differences are used to train a machine learning algorithm
to detect early leaflet thrombosis induced aortic stenosis. The
trained algorithm is tested on a new set of simulations to test
its predictive ability. In section 4, we discuss important temporal
features of the acoustic signals which are most relevant to
classification. Finally, in section 5 we present concluding remarks
and future of this research.

MATERIALS AND METHODS

Immersed Boundary Flow Solver
The work described in this manuscript builds upon methods
described in previous studies from our group (Mittal et al.,
2008; Seo et al., 2017, 2020; Bailoor et al., 2021a,b). The three-
dimensional, incompressible Navier-Stokes equations (1) are
integrated on a Cartesian grid, finite-difference based flow solver:

∇ ·
−→
U = 0

ρ0

[
∂
−→
U
∂t
+

(
−→
U · ∇

)
−→
U

]
= −∇P + µ0∇

2−→U (1)

In the above equation,
−→
U = (U,V,W) denotes blood flow

velocity vector and P represent its local pressure. Blood density
ρ0 and dynamic viscosity µ0 are set to 1,060 kg/m3 and
4 mPa · s, respectively. The immersed boundary is discretized
using triangular surface elements and the fluid-solid coupling
is handled by a sharp interface immersed boundary method
(Mittal et al., 2008). This solver has been extensively validated
and shown to accurately describe flow physics in a wide array
of cardiovascular applications, ranging from left ventricles (Seo
and Mittal, 2013; Vedula et al., 2014), aortas (Zhu et al., 2018;
Seo et al., 2020; Bailoor et al., 2021a), and coronary arteries

(Zhu et al., 2019). The interested reader is directed to these
references for details of this solver.

Aorta and Aortic Valve Model
We employ a canonical ascending aorta model, which includes
the left ventricular outflow tract (LVOT), the aortic annulus and
sinus, as shown in Figure 1A. The aortic valve is comprised of
three leaflets which are modeled as zero-thickness membranes
(Figure 1B). The cross-sections of the LVOT, annulus and aorta
are assumed to be smooth and circular and important dimensions
are based on anatomic measurements (Reul et al., 1990), listed in
Table 1.

In the next section, we describe how forces from the fluid
subsystem are used to drive valve leaflet motion through reduced
degree-of-freedom dynamics.

Reduced Degree-of-Freedom Valve
Dynamics
We employ a versatile reduced degree-of-freedom (rDOF) valve
model to facilitate generating efficient, high-fidelity simulations
for patient-specific anatomies. Beginning from an idealized
model with circular cross-section (Figure 2A), we use simple
mathematical transformations to adapt it to individual patient
annulus morphology. Since we are more interested in an accurate
description of transvalvular and ascending aorta hemodynamics
compared to stress distributions in the valve leaflets, some
simplifications in the aortic valve model can be made, if
important kinematic features of valve motion are incorporated.
Therefore, leaflet motion in our valve model follows a simple

FIGURE 1 | Three-dimensional models labeling important parts and
dimensions for (A) the ascending aorta and (B) aortic valve employed in this
study.

TABLE 1 | Important dimensions in our aorta and aortic valve models.

Component Measurement Value (mm)

LVOT Diameter (Do) 23.00

Aortic Root Root Diameter (DB) 35.65

Axial Length (LA) 23.00

Base Length (LB) 7.82

Ascending Aorta Diameter (DA) 28.50

Aortic Valve Leaflet Length (Lf) 15.00
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FIGURE 2 | (A) Idealized valve model with circular cross-section with leaflet centerline highlighted using a black line, (B) snapshots of leaflet centerline at several
instances during valve opening and (C) leaflet centerline at maximally opened and closed configurations, indicating the local range-of-motion vector,

−→
b (−→x ).

equation of motion (Equation 2), shown below:

α
∂−→vv

∂t
= 4p−→n − κ

(
−→
dv −
−→
dv,0

)
(2)

where,
−→
dv and −→vv represent instantaneous leaflet position

and velocity, respectively, and
−→
dv,0 is the fully closed leaflet

configuration. The valve model is parametrized using two
constants (α, κ) , relating to leaflet mass and stiffness, such
that equation (2) describes a balance between leaflet inertia
(α), driving pressure difference across leaflet surface (4p), and
restoring forces due to linear tissue elasticity (κ). Instantaneous
leaflet displacement is expressed in terms of a range-of-motion
vector,

−→
b
(−→x ), and a mapping function ξ

(−→x , c (t)
)
, as shown

in equation (3).

−→
dv
(−→x , t

)
=
−→
b
(−→x ) ξ (−→x , t

)
(3)

The range-of-motion vector is defined for each point on the
leaflet surface as the difference between its coordinates at
maximally open and closed configurations (equation 4). An
illustration of the same is shown in Figure 2 for the free end
of one leaflet centerline (shown using the dark black line in
Figure 2A). The motion of the centerline over several phases
during valve opening is shown in Figure 2B. From these, the fully
open and closed leaflet configurations are isolated in Figure 2C,
indicating the vector

−→
b
(−→x ) for its free edge.

−→
b
(−→x ) = −→xopen −

−→xclose (4)

The mapping function ξ is scalar-valued and depends on the
location on the leaflet surface and the instantaneous phase
in the cardiac cycle, via a lumped displacement c (t) [0 <
c (t) < 1]. The purpose of the mapping function is to compute
the instantaneous leaflet displacement via interpolation on the
range of motion vector using the lumped displacement and
appropriate distribution of the same over the leaflet surface
to obtain desired leaflet kinematic features. Here, ξ describes

FIGURE 3 | Examples of leaflet kinematic features which can be obtained by
tuning the mapping function, ξ : commonly observed opening mode shapes
can be obtained using simple mathemtical dependencies such as (A) linear
and (B) power relations between the mapping function and lumped
displacement.

the spatio-temporal dependence of opening/closing motion of
individual leaflets and thus governs leaflet opening/closing mode
shapes. To replicate commonly observed valve shapes, we tested
two mapping functions, one depending linearly, and the other
through a power-law relation, on c (t), as seen in equations (5)
(a) and (b), respectively. The corresponding leaflet mode shapes
are illustrated in Figures 3A,B.

ξ
(−→x , t

)
= c (t) (5a)

ξ
(−→x , t

)
= c(t)β(

−→x ) (5b)

Differentiating the ansatz for leaflet position we get an
expression for the local velocity, as shown in equation (6).

−→vv
(−→x , t

)
=

dc
dt
(t)
∂ξ

∂c
(−→x , c (t)

)
·
−→
b
(−→x ) (6)
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Next, we substitute the displacement and velocity ansatz in the
normal component of the leaflet equation of motion (equation 2)
and integrate over leaflet surface to obtain the following second-
order ODE for the lumped displacement:

d2c
dt2 =

FP − FS − Fm,V

α
∫ ( ∂ξ

∂c
−→
b · −→n ds

) , where

FP =

∫
1p ds

FS =

∫
κ
(
ξ
(−→x , t

)
− ξ

(−→x , 0
))−→

b · −→nds

Fm,V = α

∫
∂2ξ

∂c2

(
dc
dt

)2
−→
b · −→nds (7)

In the above equation, FP, FS, and Fm,V represent forces due
to pressure difference across the leaflet surface, restoring forces
due to tissue elasticity and inertial effects arising from non-
linear mapping functions, respectively. This model is capable of
mimicking observed bioprosthetic valve kinematics in terms of
opening shape as observed in Figure 4: we compare snapshots of
a valve with power mapping during three instants in opening with
corresponding valve configurations from high-speed imaging of
bioprosthetic valves (courtesy L.P. Dasi). The valve leaflets show
similar features in each configuration indicating that the mapping
function can be successfully tuned to achieve desired valve shapes.
The model, however, does not account for more complex features,
such as the sticking of valve leaflets (middle).

In addition to matching bioprosthetic valve kinematics, the
dynamics of its motion can also be accurately captured by
appropriate tuning of the model parameters (α, κ). For healthy
valve leaflets, leaflet inertia α = 40 kg/m2 and stiffness
κ = 10, 600 Pa/m. These parameters were determined by
matching the evolution of projected valve open area with
predictions from a detailed 3D nonlinear finite element model
(de Tullio and Pascazio, 2016; Bailoor et al., 2021a). Pathological
valve function in terms of aortic stenosis can be easily modeled
by increasing the value of leaflet stiffness (κ) or inertia (α)
parameters over their baseline healthy values. More details
about this fluid-structure-interaction solver, including solution
verification, valve model tuning and validation can be found in
our earlier work (Bailoor et al., 2021a,b).

Murmur Generation and Propagation
Model
Heart murmurs are propagated through biological tissue as elastic
(compression and shear) waves, which can be modeled using the
generalized Hooke’s law with the Kelvin-Voigt viscoelastic model.
The corresponding governing equations are shown below:

∂p
′

ij

∂t
+ λ

∂u
′

k
∂xk

δij + µ

(
∂u
′

i
∂xj
+

∂u
′

j

∂xi

)
= 0

ρs
∂u
′

i
∂t
+

∂p
′

ij

∂xj
= η

∂

∂xj

(
∂u
′

i
∂xj
+

∂u
′

j

∂xi

)
(8)

FIGURE 4 | Comparison of valve configuration at three instances during
leaflet opening using (top) high-speed imaging of in vitro experiments using
bioprosthetic valves and (bottom) present simulations.

In equation (8), p
′

ij and u
′

i represent local elastic stress and velocity
fluctuations, respectively. The surrounding organs, bones, blood
volume and other tissue are represented by a homogenous
medium with density ρs, Lamé parameters λ and µ, and viscosity
η. Finally, δij denotes the Kronecker delta. Equation (8) describes
the propagation and dissipation of compressive (bulk) and shear
waves within a homogenous viscoelastic medium. The tissue-air
interface on the epidermis is treated as a traction-free surface and
the corresponding boundary condition is:

p
′

ijnj = 0,

[
λ
∂u
′

k
∂xk

δij + µ

(
∂u
′

i
∂xj
+

∂u
′

j

∂xi

)]
nj = 0 (9)

In the above equation, nj represents the surface normal vector.
To simplify the boundary condition on the aorta-surrounding
tissue interface, the viscous shear stress induced by blood can be
assumed to be negligible compared to normal (pressure) forces.
The resulting boundary condition is specified as follows:

p
′

ijnj = P
′

ni,

[
λ
∂u
′

k
∂xk

δij + µ

(
∂u
′

i
∂xj
+

∂u
′

j

∂xi

)]
nj = −

∂P
′

∂t
(10)

In the above equation, P
′

= P − P is the hemodynamic
pressure fluctuation on the aorta lumen boundary. For the
homogenous medium described above, the compression wave
speed is given by cB =

√
K/ρs where K = λ+ 2µ/3 represents

the bulk modulus. Likewise, the shear wave speed is defined as
cS =

√
µ/ρs. The compression wave speed calculated above is

much larger than the characteristic blood flow velocity in the
aorta. Thus, conducting a coupled computational hemoacoustic
simulation would necessitate an excessively restrictive value of
time-step on the flow-solver. Moreover, the influence of shear
and compression waves on blood flow inside the aorta is expected
to be negligible. Thus, using a one-way coupling between the
FSI and acoustics can be justified, using hemodynamic forcing
on the elastic wave propagation simulation. At low frequencies
(<1000 Hz), the solution of equation (8) can be approximated by
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using the free space Green’s tensor in the frequency domain:

Gij
(−→r ,ω) = ikp

12π(λ+2µ)

(
δijh

(1)
0
(
kpr
)
+

(
δij − 3 xixj

r2

)
h(1)n

(
kpr
) )
−

iks
12πµ

(
−2δijh

(1)
0
(
ksr
)
+

(
δij − 3 xixj

r2

)
h(1)n

(
ksr
))
(11)

In the above equation, kp = ω/
√
(λ+ 2µ) /ρs is a longitudinal

wavenumber, ks = ω/
√

µ/ρs is a shear wavenumber, h(1)n is the
spherical Hankel function of the first kind, xj is the vector from
the source to the monitor point, and r is its magnitude. In clinical
practice, the aortic valve (AV) is auscultated near the right second
intercostal space, near the sternum (Figure 5A). We assume
this distance to be 4 cm downstream from, and 8 cm anterior
of, the aortic valve. The corresponding location of the monitor
point is shown in Figure 5B. We use the Green’s tensor to
model elastic wave propagation from pressure force on the aorta
surface to this point on the epidermis through a homogenous
medium representing surrounding tissue, characterized by tissue
parameters: ρs, λ, µ, and η. The aorta surface is discretized into
180 surface elements and the surface acceleration recorded at the
monitor point is computed as the superposition of the individual
contributions from these sources.

Thus, the ‘n’ component of surface acceleration is computed
as:

ân (ω) = 2
∑

k

(−iω)2Gnj
(−→r k,ω

)
Fj,k (ω) (12)

In the above equation, Fj,k (ω) = nj,kP̂k (ω)4A, where P̂k (ω)
is the hemodynamic pressure on the aorta lumen boundary in
the frequency domain from the kth element. Once the above
superposition is computed, the corresponding time series can
be obtained via its inverse transform. The transformations

between the time and frequency domains are achieved using Intel
Math Kernel Library (MKL) functions. A detailed description
of this method, including validation against experimental
measurements and 3D direct numerical simulations have been
previously described (Seo et al., 2017).

RESULTS

Simulation Setup
Our simulation dataset consists of 29 simulations with 7 healthy
and 22 stenotic valves. Aortic stenosis is induced by increasing the
stiffness parameter κ in one or more valve leaflet over its baseline
value such that area stenosis is at most mild. Details of individual
simulations, including leaflet mobility and area stenosis, are listed
in Supplementary Appendix A. Simulations are driven by a plug
velocity profile at the LVOT (Figure 6A) and a flow-rate profile
(Figure 6B) based on echocardiographic measurements from
patients with aortic stenosis (Barletta et al., 2018). Two stroke
volumes (60 and 72 ml) are tested, and heart-rate is assumed to
be 60 bpm, such that the corresponding cardiac outputs are 3.6
and 4.32 lpm. The outflow boundary uses a zero-gradient based
boundary condition to ensure global mass-conservation. A zero-
gradient pressure boundary condition is prescribed at the inflow
boundary, while pressure at any point in the aorta is measured
relative to that at the outflow boundary.

Figure 6B also shows the upper and lower bounds on the time-
varying projected valve open area (PVOA) from the complete
dataset and highlights three representative cases of different
types of valve conditions tested in the dataset. Of these, the first
describes a ‘Healthy’ case, in which all three leaflets exhibit full
range-of-motion (ROM), and the other two describe stenotic
cases, in which one or more leaflet experience reduced leaflet
motion (RLM). Thus, the first stenotic case is labeled ‘RLM1’

FIGURE 5 | (A) A realistic human thorax model comprising of an adult male torso, thoracic skeletal structures (white) and a patient-specific left ventricle (LV) and
thoracic aorta (red), showing the auscultation “post” for the aortic valve (blue) at the sternum, near the right second intercostal space. The torso and skeletal
anatomy were sourced from the Visible Human Project (An anatomical data set developed under a contract from the National Library of Medicine by the
Departments of Cellular and Structural Biology, and Radiology, University of Colorado School of Medicine https://www.nlm.nih.gov/research/visible/visible_
human.html, while the LV and aorta model were segmented from a de-identified patient-specific thoracic CT scan. (B) Schematic showing the corresponding
idealized aorta + thorax model employed for computational hemoacoustic modeling.
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FIGURE 6 | (A) Schematic showing simulation setup and (B) instantaneous upper and lower bounds on projected valve open area (PVOA) in the training dataset,
indicated by the blue shaded region, with three baseline simulations, indicated using solid, dashed and dashed-dot black lines. These simulations correspond to
cases 7, 13, and 20, respectively, from Supplementary Table 1 in Appendix A. Additionally, the secondary y-axis describes the instantaneous flow-rate profile used
to drive simulations.

with one leaflet stiffened compared to the other two and the
second is labeled ‘RLM2’ with two leaflets stiffened compared to
the third. Compared to the Healthy case, the RLM1 and RLM2
cases represent approximately 25 and 36% area stenosis, and
the three cases correspond to simulation numbers 7, 13, and
20, respectively, in Supplementary Table 1 of Appendix A. The
PVOA plots are examined in the context of the American Heart
Association’s guidelines for determining AS severity (Nishimura
et al., 2014), which indicates both RLM cases as being classified as
mildly stenotic (peak PVOA ≥ 1.5 cm2). In fact, all 29 simulated
cases are healthy or mildly stenotic, which is important since
early detection of AS onset is the goal of this investigation.
In the following section, differences in blood flow patterns
and the consequent acoustic response recorded at a monitoring
point are described.

Hemodynamics of Healthy and Stenotic
TAVs
Aortic valve hemodynamics play an integral role in assessing
valve performance and diagnosing valve health: transvalvular
gradient, peak jet velocity and their derivatives are commonly
used to infer aortic stenosis severity (Nishimura et al., 2014).
Changes in downstream flow features, such as jet trajectory, flow
kinetic energy and turbulence cause changes in local pressure
fluctuations on the aorta lumen boundary, which ultimately
defines the acoustic response from the aorta. Therefore, it is
important to understand post-valvular hemodynamic differences
resulting from healthy and stenotic valves. For the three
baseline simulations described above, flow features during early
deceleration (∼ t/T = 0.20) are illustrated in Figure 7.

In the healthy case the aortic jet, visualized as contours of
forward flow (red) in axial planes, appears circular symmetric

due to equal mobility on all three leaflets. The jet diffuses as
it propagates downstream and reattaches with the aorta lumen
boundary ∼ 6.0 cm from the aortic annulus. Upstream from
this reattachment point, the jet is surrounded by an annulus
of retrograde flow (blue) where turbulent vortex structures
are formed. These turbulent vortices are formed in the shear
layer between the aortic jet and the surrounding flow, due
to the adverse pressure gradient experienced by the flow
during deceleration.

In stenotic cases (RLM1 and RLM2), the aortic jet tilts
away from leaflets exhibiting RLM and shows significant shape
distortion as it impacts the aorta lumen boundary. Consequently,
jet reattachment point moves further away from the valve. At the
same time, regions of retrograde (or recirculating) flow develop
downstream from the RLM leaflets. Due to a smaller effective
orifice area, the jet velocity is larger in the stenotic cases as
opposed to the healthy case, as evidenced by larger downstream
travel of the jet in the same interval. The increased jet velocity,
tilting and distortion contribute to flow separation, in addition
to the adverse pressure gradient, resulting in significantly
more turbulent vortex structures. These differences ultimately
influence the sound generated by the cardiovascular unit and that
recorded by a sensor. A more detailed description of transvalvular
hemodynamics in healthy and stenotic valves, including peak jet
velocities, jet asymmetry and surface loading on lumen boundary,
can be found in our recent study (Bailoor et al., 2021a).

Acoustic Response Recorded on the
Thorax
The typical acoustic response from a healthy aortic valve is a
distinct “click” sound at the end of systole, indicating aortic
(and pulmonary) valve closure and is referred to as the second
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FIGURE 7 | Illustration of flow physics and aortic jet dynamics in (A) Healthy, (B) RLM1, and (C) RLM2 cases. In each case, the left panel shows contours of axial
velocity in five axial planes: 1.5, 3.0, 4.5, 6.0, and 7.5 cm from the aortic annulus and the right panel shows iso-surfaces of Q-criterion (Q = 104 m/s2) colored by
axial velocity. Red colors indicate antegrade flow and blue colors indicate retrograde flow. Large regions of forward flow in a section plane can be used to identify
aortic jet shape in that plane.

(or “S2”) sound. A stenotic aortic valve, on the other hand,
results in a harsh mid-systolic murmur (Grimard et al., 2016),
heard as a “whooshing” sound, which is loudest over the second
right intercostal space and radiates to the carotid arteries. Due
to the high-pressure gradient across stenotic AVs, this murmur
is usually higher in pitch compared to other cardiac murmurs
(Grimard et al., 2016). The stenotic valve murmur may be
accompanied by ejection clicks, 40–60 ms following the first heart
sound (or “S1”), at maximal valve opening (Jacobs, 1990) and
even diminished or absent second sound (Grimard et al., 2016).
We analyze acoustic signals from our simulations in the context
of these features.

The normalized surface acceleration recorded at the monitor
point shown in Figure 5B for the three cases described in
section 3.2 are illustrated in Figure 8 (right). The corresponding
valve sounds can be heard over 5 cardiac cycles using the
video files provided in the Supplementary Data. Due to the
strong coupling between instantaneous valve configuration and
valve sound, it is useful to examine these signals in relation to
the time-varying leaflet displacement, indicated using colored
dashed lines. A vertical black, dashed line is also plotted at
t/T = 0.12 to indicate peak systole. This helps separate the
phases of systolic ejection and explain surface acceleration in the
context of these phases.

In the Healthy case, the signal is observed to be quiet
during acceleration when flow is largely laminar. During
deceleration, the signal amplitude grows, starting right before the
onset of leaflet closure (∼ t/T = 0.20) and continuing until
∼ t/T = 0.30. At this point, the leaflets are halfway closed, and
the acoustic response shows strong oscillations. Finally, when
the leaflets close ∼ t/T = 0.38, large amplitude spikes are
observed which correspond to the second (S2) sound. In both

stenotic cases, several common features are observed: an almost
linear increase in the amplitude (or crescendo) of the signal
with time, starting around mid-acceleration (∼ t/T = 0.06)
through early deceleration (∼ t/T = 0.18), followed by a
period of decreasing amplitude (or decrescendo) starting around
t/T = 0.18 and extending through the end of systole. Thus, this
time interval shows the presence of the characteristic diamond-
shaped murmur of stenotic valves, indicated by shaded triangles.
Moreover, the first click sound occurs early in acceleration
(∼ t/T = 0.06). Compared to the stenotic cases, this sound
is significantly less pronounced and is in fact inaudible in the
Healthy case. Its occurrence, following the onset of systolic
ejection (or end of diastole/S1), is consistent with the timing of
ejection clicks in stenotic valves. However, contrary to the belief
that ejection clicks occur at maximum valve opening (Jacobs,
1990), we observe they coincide with the instant the stiffest leaflet
in the valve first changes direction of travel (opening-closure).
Another interesting observation is the splitting of the S2 sound,
occurring due to the early closure of the stiffer leaflets and the
delayed closure of the healthy leaflets. Ordinarily, S2-splitting is
attributed to asynchronous closure of aortic and pulmonic valves,
but our results show that asynchrony in leaflet closure in the same
valve can also cause multiple sounds. Another notable feature
of the stenotic valves is the relatively weak acoustic response
immediately preceding the final S2 sound. Due to a differential
in leaflet stiffness, closure of healthy leaflets shows a significant
time-lag compared to that of stiffer leaflets. For instance, in the
RLM1 case, leaflets 2 and 3 close at ∼ t/T = 0.42, which is
160 ms behind the closure time for leaflet 1, whereas in the
RLM2 case, leaflet 3 closes 120 ms after leaflets 1 and 2, at
∼ t/T = 0.42. Contrast this with the healthy case, in which
all leaflets close together at ∼ t/T = 0.38. Systolic ejection
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FIGURE 8 | (left) Peak systolic valve configuration and (right) systolic surface acceleration measurement at the monitor point in the representative (A) Healthy,
(B) RLM1, and (C) RLM2 cases. The colored dashed lines show instantaneous displacement of the three leaflets in each case and the vertical dashed black line
denotes the instant of peak systole. Key instances of systolic heart sounds are also indicated: EC- ejection click, S2- “dub”/second heart sound, shaded triangles
are used to mark the crescendo/decrescendo of the stenotic valve murmur.

takes place when t/T ∈ [0.00− 0.35], and the strong acoustic
response in the Healthy case occurs when all leaflets are rapidly
closing (∼ t/T = 0.30) against forward flow. This creates large
pressure fluctuations in the valve vicinity, and consequently,
the stronger response. In the stenotic cases, the stiffer leaflets
close during mid-deceleration ∼ (t/T ∈ [0.26− 0.30]), leaving
the Healthy leaflets open to admit the remaining forward flow.
As a result, the healthy leaflets stay open longer, past the systolic
ejection period. The halfway closure instants for the Healthy
leaflets in the RLM1 and RLM2 cases are at ∼ t/T = 0.36 and
∼ t/T = 0.38, respectively, which are both after the end of
forward flow, meaning the leaflets are closing in the absence of
opposing forward flow. This delay in closure, beyond the systolic
ejection period results in a diminished/absent acoustic response
following systolic murmur.

It is evident from Figures 7, 8 that healthy and stenotic aortic
valves have distinct hemoacoustic features which are intimately
tied to valve function. It should therefore be possible to leverage
supervised learning techniques to “understand” these differences
and accurately predict valve status (Healthy/Stenotic) for new
instances by analyzing its associated acoustic response. We

accomplish this using linear discriminant analysis (Kutz, 2013)
for which a detailed description of the process is described in
Supplementary Appendix B.

Detecting Anomalous Valve Function
Once surface acceleration signals are computed at the monitor
location for all simulations, they are processed to train a
classification algorithm. The first step in this processing in
dataset balancing to avoid biasing the classifier in favor of
the majority (in this case, “Stenotic”) class. The imbalance
in the dataset arises from the fact that there is only one
“Healthy” configuration, in which all leaflets exhibit full range-
of-motion. In contrast, any deviation from this configuration
would be an example of stenosis. Thus, many more combinations
of leaflet mobility can be simulated to populate the stenotic
class, resulting in a naturally unbalanced dataset. To overcome
this issue, we synthesize 15 additional healthy class signals
as combinations of the 7 healthy signals available in the
dataset, using Synthetic Minority Oversampling TEchnique
(SMOTE). The technique and its application to our dataset are
described in detail in Supplementary Appendix C. The resulting
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balanced dataset of surface acceleration signals are shown in
Figure 9A.

The surface acceleration ai for simulation ‘i,’ recorded at
thoracic location

⇀
x m, has ‘N’ time samples. Using a sampling

frequency of 10 kHz over a period of 0.5 s results in N = 5000.
Each signal is normalized to unit magnitude then centered about
the ensemble average a of the normalized dataset as follows:
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In the above equations, M indicates the dataset size (M = 44).
The resulting normalized and centered signals a

′

i

(
⇀
x m, t

)
are

illustrated in Figure 9B. Next, we reduce the dimensionality
of the dataset using principal component analysis (PCA). This
serves two purposes: first, by reducing the dimensionality of the
dataset, we can instead work with a significantly compressed
representation of the dataset which reduces computational costs
associated with classification. The second advantage, specific
to PCA, is that dimensionality reduction is done based on
explained variance. This means that one can choose a reduced-
rank representation of the dataset which accounts for a desired
fraction of the total variance in the dataset. The individual

acceleration signals are arranged in a data matrix A, then its
reduced-rank representation is obtained via its singular value
decomposition (SVD), as shown in equation (16):
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]
AP = U6PVT

(16)
In the above equation, U and V are orthonormal matrices

of dimensions (M × M) and (N × N), respectively. The
column vectors of U and V are referred to as left and right
singular vectors, respectively. 6 is an (M × N) diagonal matrix
containing min (M,N) singular values in descending order, such
that

∑
11 >

∑
22 >

∑
33 . . . Individual singular values

are proportional to the amount of variance in A (assuming
A is centered) explained along the mode represented by the
corresponding columns of U and V. A low-rank reconstruction of
A can be calculated by blanking all but the first P diagonal entries
in 6 such that AP = U6PVT is the P-mode reconstruction of
A, and which accounts for the total variance explained by the
first P singular modes. Next, we project individual acceleration
measurements on the first P right singular vectors to get a feature
vector of size P, as shown in equation (17), which is later used for
classification:

�i =
⇀
a
′

i · VP =
[

ω1 ω2 · · · ωP

]
(17)

In this manner we reduce the dimensionality of the dataset
from (M × N) to (M × P) with P� N. Once a classifier

FIGURE 9 | (A) Simulated surface acceleration recorded on the thorax and the (B) corresponding centered and normalized acceleration for the 29 simulations and
15 synthesized healthy signals.
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is chosen and the SVD of A is computed, a choice of P must
be made to compute the feature matrix �, and to tune the
classifier for optimal performance. One way to choose P would
be by deciding a minimum desired fraction of the total variance
to be explained by the reduced dataset, then using the fewest
P modes, which cumulatively account for at least the desired
fraction. The downside of this approach is that the minimum
desired variance is likely arbitrary, which if too small would not
contain enough information from the development set, and if too
large would risk overfitting to the development set. In either case,
the classifier’s predictive accuracy would deteriorate. We instead
determine P via cross-validation, in which a large fraction of the
development set is used for training the classification algorithm,
and the remaining, smaller subset is reserved for validating the
algorithm. The optimal value of P was determined to be 19,
as elaborated in Supplementary Appendix D. The validation
set is then incorporated into the development set and the LDA
classifier is trained with the complete dataset. To account for the
additional variance introduced by the validation set, the number
of PCA modes used for training is increased to 20.

Next, we wish to assess whether the developed classifier can
prospectively detect the presence of abnormal valve function in
new instances. To do this, we generated a test set of 5 mildly
stenotic valves and additionally synthesized 5 healthy signals
from the development set. Care was taken to ensure that the
simulation (or interpolation) parameters for these signals did
not coincide with any signals from the development set and a
detailed description of this dataset is provided in Supplementary
Appendix A. Classification results from both datasets are
illustrated in Figure 10. The discrimination boundary, denoted
by the dashed black line, is computed as the mean value of the
largest LDA projection from the healthy class and the smallest
projection from the stenotic class, excluding any overlapping
projections. It is observed this simple criterion of determining
a discrimination threshold is capable of retrospective as well as
prospective detection of valve failure: all valves in the training set

were accurately classified, while one false negative was incurred
in the test set. There is some uncertainty in predictions where
the LDA projections take values ∈ [0.50−0.55]. It is observed
the one false negative was observed for case 1 from the test
set, which represents ∼20% area stenosis (AOA = 2.97 cm2)
and corresponds to less than 5 mmHg peak systolic gradient.
It should be noted that such stenosis is considered subclinical
and, assuming normal ventricular function, the patient would
likely not experience heart failure symptoms. To summarize, we
were able to achieve 100% accuracy for retrospective detection
(training) and 90% accuracy for prospective prediction (testing)
of abnormal valve function using PCA-based dimensionality
reduction and LDA.

In section 4, we discuss the role of important PCA modes
and relevant temporal features of the recorded signals in the
classification process.

DISCUSSION

In a previous section, we mentioned that PCA facilitates variance-
based dimensionality reduction. An effective reduced-order
model for the dataset assumes that the underlying dynamics
have prominent low-rank features. In PCA, a reduced-order
model is reconstructed as a linear combination of orthonormal
modes, which are arranged in decreasing order of explained
variance. Thus, the first mode is expected to contain information
about the dominant, largest-scale features, while higher modes
progressively account for sparser, smaller scale features. This
is evident from the cumulative explained variance ratio of
singular value spectrum illustrated in Figure 11A. Recall that
the development set has 44 (=M) PCA modes of which the
first 20 (shaded), accounting for more than 95% information,
were used for training the LDA classifier. While these modes
are arranged in descending order of explained variance, the
relative importance of each PCA mode may follow a different

FIGURE 10 | Histogram plots showing classification results, computed as LDA projection values of individual simulations from the training (cyan, red) and test (blue,
orange) sets, relative to the threshold value (dashed black line).
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FIGURE 11 | (A) Scree plot indicating the cumulative explained variance ratio for the singular value spectrum. The five most important modes for LDA projection are
colored using red circles. (B) Two-dimensional illustration of LDA projection for a sample dataset using the optimal projection vector −→w . (C) LDA projection weights
for the first 20 PCA modes and the five most important LDA modes colored in red.

order for classification. This order is given by the absolute value
of the coefficients associated with the corresponding bases for
the LDA projection vector −→w , hereafter referred to as “LDA
projection weights.” For example, consider the sample dataset in
two-dimensional feature space, shown in Figure 11B: the blue
and red circles represent mappings from the “0” and “1” class,
respectively, the LDA projection vector (dashed line) is written
as −→w = w1ω̂1 + w2ω̂2. The projections of the dataset on this
vector are also shown using translucent dashed-dot lines. It is
evident that ||w1|| > ||w2|| and projections of the dataset on
the ω̂1 basis would yield better class separation than along ω̂2.
Thus, for the 20-dimensional optimal projection vector for the
training set, the mode-wise LDA projection weights are plotted
in Figure 11C. It is evident from the non-monotonic plot that the
relative importance of the PCA modes does not follow the same
order as the singular values. The five most important PCA modes
are marked using red circles.

The mode shape for a specific PCA mode is given by the
corresponding column vector of the right singular matrix V ,
shown using gray lines in Figure 12. Likewise, the contribution of
mode ‘j’ to a given measurement ‘i’ is given by −→a

′

i,j = 6jjUij
−→v j,

which is a scalar multiple of the jth right singular vector. This is
evidenced by the corresponding single-mode reconstructions of
individual case signals. For accurate classification using any given
mode ‘j,’ the coefficients6jj

−→uj must show class wise differences in
(a) sign or (b) magnitude. For example, in mode 3, healthy (blue)
and stenotic (red) signals appear to be separated by sign, while
in modes 13, 17, and 20, the classes appear divided by intensity.
To quantify this, we compute an energy ratio (ERj) for mode ‘j,’
defined as the ratio of the mean squared vector-norm of the j-
mode reconstruction of the stenotic class to that of the healthy

class, as shown in equation (18):

ERj =

[∑
i∈NS

∣∣∣∣∣∣−→a ′i,j∣∣∣∣∣∣2] /Ns[∑
i∈NS

∣∣∣∣∣∣−→a ′i,j∣∣∣∣∣∣2] /NH

(18)

where NS and NH represent number of valves in the healthy and
stenotic classes, respectively. This metric describes the relative
importance of a specific mode, on average, to each class of valves
for classification. It is observed ER < 1 for modes 3 (0.466) and
8 (0.890) and ER > 1 for modes 13 (1.587), 17 (2.528), and
20 (8.792). It is unsurprising the lower-rank (3 and 8) modes
are on average more energetic in healthy valves, and the higher
modes (13, 17, and 20) are more energetic in stenotic valves,
but an understanding of the important temporal features of
each mode can help gain insight into the role each mode plays
in classification.

Modes 3 and 8 show highest peaks late in deceleration
(t/T ∈ [0.30− 0.35]), around the time when valve leaflets close.
This is aligned with our expectation that lower-rank modes
would describe dynamics associated with large-scale fluctuations
in the system dynamics. Moreover, it was observed that healthy
valves show a strong acoustic response in this interval due to
simultaneous closure of all leaflets and that this response is
diminished in stenotic valves. This is reflected in the low values
of ER for these modes. Mode 3 also shows a large spike around
mid-acceleration (t/T ∈ [0.04− 0.06]), which corresponds to
the interval of ejection clicks in stenotic valves. Recall that
we are analyzing mode shapes of the centered dataset and the
ensemble average contains an imprint of this ejection click,
which is why it is also seen in the mode 3 reconstruction
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FIGURE 12 | Five most important PCA modes for LDA-based classification, shown with each mode shape (gray) and its corresponding contribution to the
development dataset. Blue and red plots represent healthy and stenotic valves, respectively. Vertical dashed black lines at t/T = 0.12 and 0.35 indicate the ends of
acceleration and deceleration phases of systolic ejection, respectively. For each mode, energy ratio is listed in the bottom-right corner of the corresponding panel.

of healthy signals. On the other hand, modes 13, 17, and
20 show prominent peaks all through deceleration and are
more energetic for stenotic valves. This interval coincides
with the generation of systolic murmurs, which are typically

absent in healthy valves as evidenced by high ER values,
exceeding factors of 8.

To summarize, the LDA-based classifier can discriminate
healthy from stenotic valves based on differences in the following
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temporal features of the associated acoustic signals, recorded by
a sensor on the patient’s thoracic surface:

(a) Low-rank (or large-scale) features corresponding to valve
closure sound, occurring toward the end of systolic ejection.

(b) Presence of systolic ejection clicks occurring early in systole
(mid-acceleration).

(c) Sparser, high-rank (or high frequency) features
corresponding to stenotic valve murmurs.

Differences in these features are clinically observed, as
described in section “Acoustic response recorded on the thorax”,
and are well-replicated by our CHA solver. This demonstrates
that a data-driven methodology can be potentially used to
lay the groundwork for an inexpensive and non-invasive
valve monitoring technology, capable of early and accurate
detection of the onset of valve failure. Moreover, we also show
how computational modeling can play a crucial role in the
development of such technology.

CONCLUDING REMARKS

This study lays the groundwork for a practical and accessible
auscultation-based longitudinal monitoring modality to screen
for aortic valve systolic murmurs, and ultimately, mild or
subclinical stenosis secondary to early leaflet thrombosis. This
is achieved through data-driven analysis of computational
modeling of the hemoacoustic phenomena in and surrounding
the human ascending aorta. The complex blood flow and
aortic valve interactions are simulated using a finite-difference
based flow solver, a simple reduced order valve model and
a sharp interface immersed boundary method. The surface
pressure on the aorta lumen boundary is treated as a source
for the generation and propagation of elastic waves through a
homogenous medium which serves as the surrounding tissue.
Wave propagation is simulated in the frequency domain using
the free space Green’s function. We demonstrated that with
healthy valves, the prominent acoustic sound occurs near the
end of systolic ejection due to the simultaneous closure of
the three valve leaflets (called “S2”). On the other hand,
asymmetric reduced leaflet motion in stenotic valves results
in aortic jet tilting and impingement on the lumen boundary,
increased retrograde flow and turbulent vortex structures.
These conditions result in the generation of systolic murmur
which follow “crescendo-decrescendo” patterns and a diminished
closure sound. When pathologically stiff leaflets first change
direction of travel, early in systole, “ejection clicks” can
be heard from stenotic valves. All these clinically observed
features are well replicated from our models. Additionally,
our simulations also show a splitting of “S2” sound due
to asynchronous closure of stenotic valve leaflets, leading to
multiple closure clicks.

We used acoustic data from 29 such direct numerical
simulations of healthy and mildly stenotic valves and
15 additional synthesized healthy signals to train a linear
discriminant analysis-based classification model. Dimensionality
reduction using principal component analysis was performed

prior to training, such that the actual development set is
substantially smaller than the collection of raw signals
while preserving most of the contained information. The
trained classifier was tested on a new dataset with 5 stenotic
valves and 5 synthesized healthy signals and was shown to
have 100% retrospective and 90% prospective accuracy in
prediction. Finally, we showed that the 5 most important
principal component modes for classification identified healthy
valves as having a prominent closure sound signature and
an absence of systolic murmur. Whereas, for stenotic valves
the PCA modes primarily contained information regarding
systolic murmur. Thus, simple dimensionality reduction
techniques retain clinically important features of healthy and
stenotic aortic valve sounds, which can be analyzed to detect
mild, and even subclinical aortic stenosis, secondary to early
leaflet thrombosis.

This investigation, however, is preliminary and has some
limitations which must be addressed before clinical translation.
For instance, the parameter space over which the classification
algorithm is trained is relatively small, and includes variations
in leaflet mobility, flow profiles and stroke volume (see
Supplementary Table 1). However, the generation of turbulent
pressure fluctuations on the lumen boundary and consequently,
heart murmurs, depends on several other factors, such as
secondary flow features like flow helicity due to ascending aorta
curvature, LVOT ellipticity and heart rate. To account for these
variables, we are adapting this analysis to flow simulations in
realistic, patient-specific aorta anatomies, obtained from cardiac
CT and subject to a variety of physiological flow conditions
and ventricular functions. Our model would also benefit from
accounting for systolic dilation of the aorta due to vascular
compliance and the consequent acoustic response. Moreover, the
acoustic response recorded on the thorax also depends on the
patient’s body habitus, variations in which can be considered by
changing the monitoring point location. Clinical PCG signals
are often corrupted with noise and breathing sounds due to
inspiration/expiration and these characteristics can interfere with
the algorithm’s performance. We plan on including realistic levels
of signal corruption and appropriate denoising strategies in our
future work to address this issue.

Nevertheless, the methods discussed herein can lead to a
new paradigm of patient-friendly, inexpensive, non-invasive, and
non-toxic modality for bioprosthetic valve monitoring upon
further development. The safety and ease of an auscultation-
based method, together with improved pattern recognition
accuracy using machine learning makes at home monitoring
possible without the need for trained personnel or physicians.
While the motivation for this work is rooted in issues faced by
transcatheter valves, the applicability of the developed methods
extends to surgical and even native valves.
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