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Abstract The acute toxicity of cyanide is determined by
its peak levels reached in the body. Compared to the inges-
tion of free cyanide, lower peak levels may be expected
after consumption of foods containing cyanogenic glyco-
sides with the same equivalent dose of cyanide. This is due
to possible delayed and/or incomplete release of cyanide
from the cyanogenic glycosides depending on many fac-
tors. Data on bioavailability of cyanide after consumption
of foods containing high levels of cyanogenic glycosides
as presented herein were necessary to allow a meaningful
risk assessment for these foods. A crossover study was car-
ried out in 12 healthy adults who consumed persipan paste
(equivalent total cyanide: 68 mg/kg), linseed (220 mg/kg),
bitter apricot kernels (about 3250 mg/kg), and fresh
cassava roots (76—150 mg/kg), with each “meal” contain-
ing equivalents of 6.8 mg cyanide. Cyanide levels were
determined in whole blood using a GC-MS method with
K'®C>N as internal standard. Mean levels of cyanide at
the different time points were highest after consumption
of cassava (15.4 uM, after 37.5 min) and bitter apricot ker-
nels (14.3 pM, after 20 min), followed by linseed (5.7 uM,
after 40 min) and 100 g persipan (1.3 uM, after 105 min).
The double dose of 13.6 mg cyanide eaten with 200 g per-
sipan paste resulted in a mean peak level of 2.9 uM (after
150 min). An acute reference dose of 0.075 mg/kg body
weight was derived being valid for a single application/
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meal of cyanides or hydrocyanic acid as well as of unpro-
cessed foods with cyanogenic glycosides also containing
the accompanying intact B-glucosidase. For some of these
foods, this approach may be overly conservative due to
delayed release of cyanide, as demonstrated for linseed.
In case of missing or inactivated p-glucosidase, the hazard
potential is much lower.
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Abbreviations

ARfD Acute reference dose

C..x Maximum concentration in blood

?nax Time of occurrence of maximum concentration in
blood

TST Thiosulfate sulfurtransferase (rhodanese)

Introduction

Cyanogenic glycosides are secondary plant metabolites
which are present in more than 2600 species, including up
to 26 economically important crops. Their ability to liber-
ate toxic levels of hydrocyanic acid (HCN, hydrogen cya-
nide) principally offers an immediate chemical defence
response to herbivores and pathogens causing damage to
the plant tissue—if their content is high enough. Cyano-
genic glycosides have gained additional functionalities
as transporters of nitrogen, and operation of an endog-
enous turnover pathway may enable plants to withdraw
the nitrogen and glucose deposited in cyanogenic glyco-
sides for use in primary metabolism (Mgller 2010; JECFA
2012). The general structure of cyanogenic glycosides
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consists of a reactive a-hydroxynitrile component, stabi-
lized through conjugation with either p-glucose or gentio-
biose. Cyanogenic glycosides are stored in cell vacuoles
of the plant tissue, separating them from their hydrolys-
ing enzymes, specific p-1,6-glycosidases, and hydroxyni-
trile lyases. In case of destruction of the plant tissue—
for example, by herbivores—the p-glucosidases come
in contact with cyanogenic glycosides, resulting in the
enzymatic cleavage of the carbohydrate moiety. The free
a-hydroxynitrile can then either be enzymatically cleaved
or spontaneously dissociate to a ketone or aldehyde and
HCN (JECFA 2012).

The aldehyde or ketone release depends on the specific
cyanogenic glycoside. Regarding the glycosides relevant
to the foods used in the study presented herein (Fig. 1),
benzaldehyde is released in case of amygdalin, the cyano-
genic glycoside of bitter almonds and apricot kernels as
well as foods produced from these kernels (for example,
persipan). Benzaldehyde is responsible for the bitter taste
of these foods and therefore provides a warning signal to
the consumer. This is missing in case of the cyanogenic
diglycosides in linseed, linustatin and neolinustatin, releas-
ing acetone and butanone, respectively. The correspond-
ing monoglycosides linamarin and lotaustralin are present
in immature seed, but diminish to trace levels in mature
seed (Barthet and Bacala 2010). However, linamarin (about
97 %) and lotaustralin (about 3 %) are the cyanogenic
glycosides in cassava roots (Jgrgensen et al. 2011). Fol-
lowing complete metabolism/hydrolysis, 1 g of linamarin
and amygdalin could theoretically release 109 and 59 mg
HCN, respectively. The term “total cyanide” is often used
to describe the cyanide content of a food as a sum of bound

Fig. 1 Chemical structures of
the main cyanogenic glycosides
in the foods investigated
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(cyanogenic glycosides, cyanohydrins) and “free” cyanide.
It is measured as the maximum content of cyanide releas-
able by hydrolysis (see “Materials and methods” section).

The (per)acute oral toxicity of cyanide ions and HCN
in mammals is well known. The small molecule is readily
absorbed and distributed via systemic circulation. Above a
certain tissue level, cyanide inhibits the cytochrome c oxi-
dase (complex IV)—the terminal enzyme of the mitochon-
drial electron transport chain—by competitively binding to
the oxygen-reducing cofactor of the protein. This crucial
effect causes decreased utilization of oxygen and increased
anaerobic metabolism, leading to excess of lactic acid
and metabolic acidosis, and finally to cell death through
energy deprivation. Due to its high dependence on oxida-
tive metabolism, the central nervous system is particularly
vulnerable to cyanide intoxication. With high oral doses,
symptoms occur within a few minutes and may include
nausea, vomiting, giddiness, headache, palpitations, hyper-
pnoea then dyspnoea, bradycardia, unconsciousness, and
violent convulsions, followed by death (JECFA 2012;
WHO 2004). In terms of the minimal lethal dose of cyanide
in humans, the number of about 0.5 mg/kg body weight is
commonly cited. It dates back to a paper by Gettler and
Baine (1938) who applied a formula for back-calculation of
the dose—derived from experimental data in dogs—to tis-
sue levels found in humans after lethal intoxications. Often,
a range of 0.5-3.5 mg/kg body weight is cited in the litera-
ture for the acute lethal dose of cyanide in humans which
first was published by Halstrgm and Mgller (1945). How-
ever, in some cases, much higher doses have been survived
(e.g. 2.5 g potassium cyanide equivalent to 1000 mg cya-
nide: Tassan et al. 1990).
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Regarding possible chronic effects of cyanide, it is
indeterminate whether the toxicity of cyanide is solely
determined by the acute mechanisms described above, or
whether a high chronic exposure to doses not causing acute
toxicity may nevertheless result in health effects. In this
context, the consumption of cassava roots as staple food
in tropical regions with poor soil, especially in Africa, was
found to be associated with chronic neurological disorders.
This issue is under scientific debate since many decades,
and different mechanisms are discussed besides a chronic
effect of cyanide (JECFA 2012; Adamolekun 2011). The
study presented herein solely focuses on acute exposure
from a single meal.

Concerning cyanide detoxification in the body, approxi-
mately 80 % of absorbed cyanide is metabolized by the
mitochondrial liver enzyme thiosulfate sulfurtransferase
(TST, rhodanese) and by other sulphur transferases. The
enzymes catalyse the transfer of sulphur from a donor to
cyanide to form less toxic thiocyanate, which is read-
ily excreted in urine. Sulphur-containing donor molecules
are the rate-limiting factor in the detoxification of cya-
nide revealing zero-order kinetics at higher doses (JECFA
2012; WHO 2004). Moreover, the K, value for the human
rhodanese protein has been determined to be in a range
of approximately 3 mM, indicating slow turnover of cya-
nide even in the presence of sufficient amounts of sulphur-
donating molecules (Billaut-Laden et al. 2006). Several
polymorphisms in the rhodanese-encoding TST gene have
been identified in human populations, but only a minimal
influence on cyanide detoxification was detected, some of
them resulting either in diminished rhodanese activity or in
a decreased level of TST gene expression (Billaut-Laden
et al. 2006). Pharmacological data of sodium nitroprusside,
introduced in the 1970s as intravenous drug to treat hyper-
tensive crises, revealed the rate of spontaneous detoxifica-
tion of cyanide in humans to be about 1 pg/kg body weight
per min only (about 3.6 mg cyanide per h in a person with
a body weight of 60 kg), more than tenfold less than esti-
mated before (Schulz et al. 1982). Oral absorption rates
of cyanide above this metabolism rate will lead to accu-
mulation with increasing cyanide blood and tissue levels.
Beginning above a certain level, this will cause increasing
symptoms of acute toxicity. Therefore, the rate of absorp-
tion plays an important role in cyanide toxicity, and even an
acute lethal dose is tolerated without symptoms if it is split
into even parts ingested, for example, hourly over the day.

With respect to risk assessment of foods containing
cyanogenic glycosides, the question arises whether it is
justified to treat the glycosidic bound cyanide as it would
be bioavailable in the body like free cyanide (hydrogen
cyanide or cyanide ion). For the same equivalent dose of
cyanide, absorption rates and resulting peak levels of cya-
nide in body tissues may be lower in case cyanogenic

glycosides due to delayed and/or incomplete release of
cyanide which requires mechanical destruction of the
plant’s tissue structure and enzymatic degradation by the
specific B-glucosidase which, however, may be inactivated
or destructed by the acidic pH of the stomach. Mamma-
lian tissues themselves do not contain significant amounts
of specific B-1,6-glucosidase, but the bacterial flora of the
gastrointestinal tract partially does (Carter et al. 1980;
Newton et al. 1981). Due to the limited metabolic capac-
ity of the rhodanese, any delay in absorption would allow
time to detoxify the cyanide which would therefore also
contribute to lower peak levels. These mechanisms influ-
encing the peak levels of cyanide in body tissues can be
expected to be different for different foods, depending on
the degree of plant tissue destruction, the type of the cya-
nogenic glycoside, the effectiveness of the accompanying
plant B-glucosidase, the pH value of the stomach, the bacte-
rial flora of the gut, and/or possible influences related to the
plant matrix.

With regard to the complex issue described, it is not sur-
prising that scientific bodies have derived differing acute
reference doses (ARfD) for cyanide from consumption of
foods with cyanogenic glycosides, depending on the type of
data (animal or human, cyanide or cyanogenic glycosides)
and the safety factors used for the assessment. In 2006, the
British COT derived an ARfD of 0.005 mg/kg body weight
for cyanide from bitter apricot kernels, whereas the JECFA
derived an ARfD of 0.090 mg/kg body weight for cyanide
from foods containing cyanogenic glycosides as the main
source of cyanide in 2012. Accordingly, the maximum
(glycosidic bound) cyanide intake from a single meal in
a person with a body weight of 60 kg would be 0.3 and
5.4 mg, respectively. For example, for marzipan with a
content of 50 mg/kg this would correspond to an amount
of 6 and 108 g, respectively, and for linseed with a content
of 200 mg/kg to an amount of 1.5 and 27 g, respectively.
These differences are unsatisfactory.

The aim of the study in humans presented herein was to
generate meaningful data for the derivation of an ARfD for
cyanide from ingested foods containing high levels of cya-
nogenic glycosides, which does not require high safety fac-
tors. Single meals of foods with high content of cyanogenic
glycosides were consumed, and serial measurements of
cyanide in whole blood were taken in order to identify the
(absolute) peak levels serving as a surrogate marker for the
peak level of cyanide in tissues triggering the acute effect
of cyanide; they can be compared to clinically relevant lev-
els known from intoxications. The investigation was per-
formed as five-way crossover study with 12 healthy non-
smoking participants, also allowing a comparison of the
different foods ingested regarding their hazard potential.

Regarding the selection of study foods, they had to be
relevant for risk assessment. The initial investigations were

@ Springer



562

Arch Toxicol (2016) 90:559-574

done with persipan paste, a sweet similar to marzipan
which is common in German-speaking countries. It is in part
produced from bitter apricot kernels and has a maximum
cyanide level of 50 mg/kg in the European Union (EU 2008),
which may be too high if the glycosidic bound cyanide is
bioavailable like isolated cyanide. Bitter apricot kernels
have—similar to bitter almonds—high contents of amyg-
dalin (equivalent total cyanide content up to 4000 mg/kg:
Zollner and Giebelmann 2007). They have become popu-
lar in a small group of persons believing that amygda-
lin is mainly metabolized to toxic cyanide in cancer cells
and therefore has a therapeutic and prophylactic effect on
cancer (Culliton and Waterfall 1979; Milazzo et al. 2011).
Linseed may contain cyanide equivalents of more than
200 mg/kg (CVUA Sigmaringen 2009). It is popular not
only as a traditional herbal medication to treat or prevent
constipation (single dose 10-15 g: EMA 2006), but also
as a nutrient with high levels of a-linolenic acid (Cunnane
et al. 1995). Furthermore, fresh cassava roots were of inter-
est as an important staple food, especially in tropical parts
of the world. They vary widely in their content of bound
cyanide, although most varieties contain 15-400 mg/kg
(WHO 2004). Consumption of large amounts may cause
acute intoxication if the processing to reduce the content of
cyanide is insufficient (Mlingi et al. 1992). In Europe, it is
no common food, but offered, for example, in some Asia
retail markets, and therefore may be bought by consum-
ers not informed about the necessity of detoxification prior
to consumption. This has caused concern in the European
Union (Kolind-Hansen and Brimer 2010). In our study,
unprocessed cassava was investigated.

Materials and methods
Study design

Oral bioavailability refers to the extent and the rate at which
the active moiety of a compound enters systemic circulation.
The acute toxicity of cyanide is triggered by its peak levels
reached in tissues, determined by both parameters of absorp-
tion. After consumption of foods containing cyanogenic gly-
cosides, monitoring of cyanide levels in blood can be used
to identify the peak level serving as a surrogate marker for
the peak level of cyanide in tissues. With this concept, differ-
ent foods can be compared regarding the peak levels reached
after consumption of foods containing the same equivalent
dose of cyanide (crossover design to investigate relative bio-
availability of cyanide). Being even more relevant, the peak
level reached in blood is an absolute measure for the bio-
availability of cyanide in terms of its toxicity, as it can be
assessed in comparison with the range of clinically relevant
levels known from intoxications in humans. According to
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Hail and Rumack (1986), first symptoms like tachycardia
or flushing can be expected in the range of 0.5-1.0 mg/L
(whole blood, ca. 2040 uM); higher levels above 1.0 mg/L
(ca. 40 uM) were classified as toxic (e.g. depressed con-
sciousness), and levels higher than 2.5-3.0 mg/L (ca. 100-
120 uM) were reported to be associated with life-threatening
symptoms or death. According to the evaluation of Schulz
et al. (1982), biochemically detectable disturbances occur
at levels above 40 uM, clinically recognizable symptoms at
levels above 200 uM, and possible fatalities at levels above
400 pM. These numbers were based on measurements of
cyanide in erythrocytes and therefore roughly correspond to
the numbers of Hail and Rumack (1986). Most of the cya-
nide present in blood is found in erythrocytes, with a ratio
of at least 10:1 of erythrocytes to plasma (Hail and Rumack
1986). During dose-finding investigations in the medical
head of the study (K.A.), a cyanide level of up to 20 uM in
whole blood was considered to be safe.

The aim of the study was not only to investigate the bio-
availability of cyanide after consumption of foods contain-
ing high amounts of cyanogenic glycosides, but especially
to answer the question—with the background of risk assess-
ment—whether high consumption of such foods can lead to
critical levels of cyanide in blood (higher than 20 uM). For
this purpose, worse case conditions with respect to result-
ing higher cyanide levels in blood had to be used, which
are (1) highest level of cyanide equivalent (total cyanide)
in a certain food available at retail, (2) maximal mechanical
destruction of the tissue structure of the food immediately
before ingestion or by thorough chewing, (3) fast consump-
tion after overnight fasting (empty stomach), and (4) no
other foods eaten during the first hours after consumption
of the study meal. Furthermore, the amount of a certain food
to be eaten had to be high in order to cover (possible) high
consumption in the population, but not too high in case of
those foods known to possibly cause intoxications (bitter
apricot kernels, cassava). Investigations were started with
100 g persipan paste with an equivalent cyanide level of
68 mg/kg. Preliminary investigations of the medical head of
the study revealed the same dose of 6.8 mg cyanide to be
also suitable (not too high) for the investigations of the other
foods (bitter apricot kernels, linseed, and cassava), allowing
a direct comparison of these four applications. Additional
investigations were made for persipan paste with the double
amount of 200 g (cyanide dose 13.6 mg). A five-way cross-
over design involving 12 volunteers was chosen, in principle
following the ‘guideline on the investigation of bioequiva-
lence’ in case of medicinal products (EMA 2010).

Volunteers

In order to assure high compliance, volunteers were
recruited from the scientific staff of the Federal Institute
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for Risk Assessment. They had to be healthy non-smokers
of European origin with normal body mass index. Along
with the experimental blood samples taken on the first
study day, extra samples were collected for measurement
of liver enzymes, creatinine, and cellular blood parameters
(blood count); all results obtained were within the normal
ranges. The study group finally consisted of 12 partici-
pants (five non-pregnant females and seven males) with a
mean age of 46 years (median 50, range 30-56), a mean
height of 1.79 m (median 1.79, range 1.66-1.96), a mean
body mass of 74.2 kg (median 71.5, range 60-99), and a
mean body mass index of 23.0 kg/m® (median 22.9, range
20.0-26.3). Mean body weight was 64.6 and 81.0 kg in the
female and male participants, respectively. All participants
gave informed consent in writing. The study protocol was
approved by the ethics committee of the Charité—Univer-
sitdtsmedizin Berlin (No. EA4/060/11 for persipan paste
and No. EA4/060/12 for the other foods).

Foods containing high levels of cyanogenic glycosides

Quantitative determination of total cyanide (sum of bound
and free cyanide) in the foods examined in this study was
conducted at the “Institut fiir Produktqualitit™ (ifp, Berlin,
Germany) according to the official method of the Associa-
tion of German Agricultural Analytic and Research Insti-
tutes for cyanide determination in feed and food (VDL-
UFA 1976). Briefly, 3-15 g of the respective food was
homogenized using a mixer and suspended in 200 mL in
70 mM Na/K phosphate buffer with pH 5.9. After addi-
tion of 1 g freshly homogenized sweet almonds, the flask
was immediately closed with a ground-in stopper, and the
suspension was incubated overnight at room temperature.
Subsequently, about 60 mL of the solution was distilled
into 40 mL of a 1 M NaOH solution by taking advantage
of water steam distillation equipment. Then, six drops of
a phenol red solution, 1 mL of an aqueous 10 % potas-
sium iodide solution, and 1 mL of an aqueous 10 % ammo-
nia solution was added to the distillate. The solution was
titrated with 10 mM silver nitrate against a black back-
ground until a first weak clouding was observed. Consump-
tion of 1 mL of this solution was equal to the presence of
0.54 mg HCN in the distillate. Each determination was
done in duplicate.

Persipan paste (batch of 12.5 kg, # 1174-07) containing
47 % bitter apricot kernels, 36 % sugar, and 17 % water
(according to the product specification of the manufacturer)
was a kind gift of MOLL Marzipan (Berlin, Germany), a
big European producer of persipan and marzipan. Investi-
gation of total cyanide content revealed a mean of 68 mg/
kg (ten samples analysed, range 59-78 mg/kg, median
70 mg/kg, coefficient of variation 10.8 %). The content
of cyanide was above the maximum level of 50 mg/kg

according to European regulation (EC) No. 1334/2008 (EU
2008) for “nougat, marzipan or its substitutes, or similar
products”; to conform to this regulation, a further treatment
of the lot would therefore be necessary in case of selling by
the manufacturer. However, the batch was accepted for the
study, as one aim of the study was to investigate the safety
of the maximum level mentioned. The weight of 100 g per-
sipan paste was used for the first investigation, determining
the dose of cyanide of 6.8 mg which was also used for the
investigation of the other foods. In order to investigate also
the safety of the double amount of persipan paste with high
content of cyanide, a second investigation was performed
with consumption of 200 g.

Linseed (flaxseed, Linum usitatissimum) from dennree
GmbH (Topen, Germany; “Leinsaat”, 500 g package, #
L5202202, from Romania) was purchased at retail in Ber-
lin. The product was found to contain the highest level of
total cyanide (220 mg/kg) in a set of 15 different linseed
products purchased from the German market in May 2012
(total cyanide: mean 145 mg/kg, median 131 mg/kg, mini-
mum 98 mg/kg). The distribution of the cyanide levels
found in these products was comparable to that found in an
investigation of the German food control authority in Sig-
maringen in 2009 (mean 154 mg/g, range 80-300 mg/kg,
n = 38, CVUA Sigmaringen 2009) and to that of a recent
investigation from New Zealand (mean 127 mg/g, range
91-178 mg/kg, n = 5, Cressey et al. 2013). To assure the
mechanical destruction of the linseed grains, the study meal
of 30.9 g (corresponding to a dose of 6.8 mg cyanide) was
ground up in an analysis mill (type A10 with star-shaped
cutter A13, 20,000 rpm, IKA Labortechnik, Staufen, Ger-
many) directly before consumption; chewing the linseed
would by far not be as effective with regard to destruction.

Bitter kernels of apricots (Prunus armeniaca) were pur-
chased via internet from Wiessler (Wertheim, Germanys;
“Bio Aprikosenkerne bitter”, 500 g package, # 1967). From
one package, all kernels (n = 1334) were weighted, reveal-
ing a mean £ SD of 0.37 £ 0.10 g (median 0.36 g, range
0.12-0.84 g). Content of total cyanide was found to be
about 3250 mg/kg; for the study dose of 6.8 mg cyanide,
this corresponded to a consumption of 6 medium size ker-
nels (about 2.1 g). As a variation in the content of cyanide
from kernel-to-kernel can be assumed, each study “meal”
of six kernels was analysed individually. For this purpose,
each of 12 kernels was split into two, using a knife to open
the natural gap between the two halves of an apricot kernel.
One set of the 12 halves was analysed for the content of cya-
nide. The result had to be in a range of 3150-3350 mg/kg;
otherwise, the set was not used for the study.

Fresh cassava roots (manioc, Manihot esculenta) were
purchased from the deli department of a large store in Ber-
lin (originating country: Brasilia). They had a weight of
several hundred grams and were stored at 4 °C until use
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for the study (up to 3 weeks after delivery to Berlin, by
then showing no signs of post-harvest physiological dete-
rioration like brownish discoloration: Kojima et al. 1983).
Content of cyanide was found to roughly vary between 50
and 200 mg/kg. Slices of cassava roots are known to have
a steep radial gradient in the content of cyanide, with high-
est content in the cortex (Kojima et al. 1983), reflecting
the principle of chemical defence. Therefore, three peeled
slices (thickness about 1 cm, weight about 30 g, taken at
a longitudinal distance of a few cm) were cut from each
root for the analysis of their content of cyanide. The two
intermediate cylindrical pieces of the root were used for
the study, if the content was found to be in the range of
75-150 mg/kg, corresponding to an amount to be eaten
between 91 and 45 g, respectively (dose as for the other
foods: 6.8 mg cyanide). The content of cyanide in the
peeled piece to be eaten was roughly determined by inter-
polation of the content values obtained for the adjacent
slices. The content of cassava effectively eaten by the study
participants was between 76 and 150 mg/kg (mean 113 mg/
kg), the corresponding mass of cassava was between 90
and 45 g (mean 64 g).

Investigation and sample collection

Volunteers fasted overnight and came to their work place
between 8.00 and 9.00 a.m. For repeated blood sampling,
an intravenous catheter (Introcan Safety, B. Braun Melsun-
gen AG, Germany) closable by a mandrin was placed in a
vein of the antecubital fossa, and the first sample of hep-
arinized whole blood was drawn (4.9 mL vial, 16 IU Li-
Heparin per mL blood, Sarstedt S-Monovette 02.1065,
Niimbrecht, Germany). Thereafter, participants received
one of the five applications described above. They were
instructed as follows: persipan paste had to be eaten in a
timely manner, with chewing awhile in order to produce
enough saliva for swallowing; 100 g were eaten in a mean
time of 5 min (range 4-6 min), 200 g in a mean time of
12 min (range 9-13 min). The grinded linseed (30.9 g) was
mixed with 70 mL of tap water, and the suspension was
drunk/spooned in a mean time of 2 min (range 1-3 min).
Pre-examinations had revealed this method of consumption
as the one resulting in the highest blood levels of cyanide
(compared to chewing of the unground or ground linseed).
Bitter apricot kernels had to be chewed as thoroughly as
possible (2 of the 12 halves at a time for 30 s), avoiding
the swallowing of unchewed pieces of the kernels. Cassava
also had to be chewed as much as possible in a timely man-
ner; the mass of 45-90 g was eaten in a mean time of 7 min
(range 5-10 min). After each consumption, the participants
drunk 200 mL of tap water and a further 200 mL after
60 min; apart from this, no other foods or beverages were
consumed until the end of the investigation. During the test,
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the participants remained in a sitting position at their work-
place (low physical activity level).

The schedule for the collection of heparinized whole
blood (4.9 mL, total number: 15 samples, but 18 in case
of 200 g persipan paste) was adapted to the expected time
span with peak levels for the different foods, with shorter
intervals during this period. The shortest intervals of blood
collection were 5 min [bitter apricot kernels, from start
of the consumption (=0 min) to 30 min], 7.5 min (cas-
sava, from start to 60 min), 10 min (linseed, from start to
60 min), and 15 min (persipan paste, from 60 to 180 min).
The total period of collection was 3 h, but 4 and 5 h in case
of 100 and 200 g persipan paste, respectively. Blood sam-
ples were stored at room temperature until sample prepara-
tion. The study was performed between October 2011 and
August 2013. The interval between two tests in each volun-
teer was at least 2 weeks.

Measurement of cyanide in whole blood

All chemicals were purchased from Sigma-Aldrich
(Munich, Germany) or Merck (Darmstadt, Germany) at
the highest purity available. Isotopically labelled inter-
nal standard K'*CN was purchased from Sigma-Aldrich
(# 490539). GC-MS analysis was conducted by using an
Agilent 7890A gas chromatograph coupled to an Agilent
5975C mass spectrometer (Agilent, Boblingen, Germany).
The system was equipped with an MPS2 autosampler
controlled by the Maestro software (Gerstel, Miilheim,
Germany).

Sample preparation done in duplicate was started within
1 h after blood sampling. A volume of 0.1 mL of a 0.1 M
NaOH solution containing 100 uM K'*C'>N was pipet-
ted into a 20 mL headspace vial. Subsequently, 0.2 mL of
a 0.9 % NaCl solution containing 1 M ascorbic acid was
added to the vial followed by the immediate addition of
1 mL of a whole blood sample. The vial was closed with
a septum without crimping and was immediately put into
a —80 °C freezer for at least 15 min. Then, 0.2 mL of a
1:1 mixture of 85 % phosphoric acid and distilled water
was added to the frozen sample; the vial was finally closed,
crimped, and the sample was thawed at room temperature
and then vortexed for 10 s. Finally, it was stored at 4 °C
until GC-MS analysis carried out within 2 days. A time of
storage up to 1 week was found not to influence the results
of the measurement.

Cyanide determination was conducted according to the
GC-MS method published by Dumas et al. (2005). Each
sample was incubated for 15 min at 60 °C and 600 rpm by
taking advantage of the incubator belonging to the MPS2
autosampler. Using a 2.5-mL headspace syringe at a con-
stant temperature of 80 °C, 1.5 mL of the gas phase was
injected at 50 pL/s into the injector set to 130 °C. The
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splitless mode was used, and the septum flow was closed
during sample injection. The sample was separated on a
30-m GS-GasPro column (# 113-4332; Agilent). Helium
was used as the mobile phase at a constant flow rate of
2.1 mL/min. The oven program was 40 °C for 2 min fol-
lowed by a gradient of 25 °C/min up to 240 °C, and a final
bake-out for 5 min at 240 °C. The duration of each run was
15 min, and HCN had a retention time of about 7 min under
the given conditions. The temperature of the transfer line
and of the MS ion source was 230 °C, and the quadrupole
was set to 150 °C. To increase sensitivity of the instrument
for low masses, a manual tuning was conducted after the
standard auto-tune procedure. For this purpose, the inter-
nal calibrant PFTBA was turned off, and the emission cur-
rent, the repeller and the lens parameters were optimized
for the masses m/z 18 (water), m/z 32 (oxygen), and m/z 40
(argon).

In order to avoid carry-over between two injections as
reported by Dumas et al. (2005), the needle of the syringe
was flushed with nitrogen for 10 min after each injec-
tion. Moreover, a control measurement was taken always
between the injections of two samples by injecting 1 mL
of air into the system. This control sample was run using
the same GC—MS program in order to demonstrate the lack
of a cyanide signal in the gas chromatogram obtained from
this control injection of air.

The internal standard was found to contain approxi-
mately 1 % of unlabelled cyanide. Therefore, 1 % of the
peak intensity of m/z 29 (H'3C'N) was subtracted from
the peak intensity of m/z 27 (HCN) and added to the peak
intensity of m/z 29. Then, the concentration of unlabelled
HCN was calculated from the mass ratio 27/29, thereby
taking into account that each sample contained 10 uM of
the internal standard. Finally, the values were corrected
by the response factor (R;), which were found to be in a
range between 0.87 and 0.93 depending on the GC column
in use. The method was calibrated by measuring spiked
whole blood samples containing different concentrations of
unlabelled potassium cyanide in the range between O and
20 uM. The method was linear within this range (and up to
50 uM), and the limit of detection (LOD) was 0.3 pM, the
limit of quantitation (LOQ) was 1.2 pM, and the inter-run
coefficient of variation (V) was 2.5 %.

Additional investigations in the medical head of the study

Further investigations were made by the medical head of
the study (K.A., body weight about 80 kg, height 184 cm;
referred to as test person No. 5 in the following). In order
to investigate the dose dependency of the cyanide peak
levels in blood, 7.5, 15, 30.9, 60, and 100 g linseed were
eaten. The last two applications took a longer duration of 6
and 13 min, respectively, to completely eat these “meals”.

Likewise, with the aim to investigate the safety in case of
a very high consumption, 400 g persipan paste was eaten,
which took little more than 1 h. Furthermore, 100 g per-
sipan paste was eaten together with “sweet” almonds (10
and 30 g, respectively) from California containing specific
B-glucosidase, but no cyanogenic glycosides. Sampling
period usually was 3-5 h, but 8 h in case of consumption of
400 g persipan paste.

To compare the results obtained for foods with high con-
tent of cyanogenic glycosides, bioavailability of cyanide
was also investigated after application of the free com-
pound (6 or 17.0 mg potassium cyanide, corresponding to
2.4 or 6.8 mg cyanide, respectively, dissolved in 40 mL tap
water). Furthermore, the isolated cyanogenic glycosides
amygdalin and linamarin were administered in a capsule
not resistant to gastric acid. Amygdalin (CAS No. 29883-
15-6) was purchased from the Flora Apotheke (Hannover,
Germany) in capsules containing 500 mg (pharmaceuti-
cal quality, # 05120). Linamarin (CAS No. 554-35-8) was
purchased from Carbosyth (Compton, UK; purity >98 %, #
ML045511101). Equivalent doses of 6.8 and 22.0 mg cya-
nide were administered as amygdalin (120 and 387 mg,
respectively) and linamarin (64.7 and 209 mg, respectively).
Additionally, 120 mg amygdalin was applied together with
10 g sweet almonds. Sampling period was 3-5 h.

Genotyping of the TST gene

Genotyping of the TST gene of the 12 volunteers was
conducted by Eurofins Genomics (Ebersberg, Germany).
Genomic DNA was isolated from whole blood sam-
ples using the NucleoSpin 96 Food kit (Macherey-Nagel,
Diiren, Germany) according to the manufacturers’ instruc-
tions. The coding region of the TST gene as well as approx-
imately 1 kb of the upstream region was amplified using
the primers and the PCR conditions listed in Supplemen-
tary Tables 1 and 2. Sequencing of the PCR products was
carried out by internal protocols of Eurofins Genomics.

Evaluation and statistics

Standard statistical evaluation procedures were performed
using Microsoft® Office Excel 2003 and SPSS version
12.0. Details of the operations used are described under
“Results” section.

Results

Concentration—time curves of cyanide in blood

The individual concentration—time curves observed after
ingestion of the four foods (persipan paste, bitter apricot
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Fig. 2 a Concentration—time curves of cyanide in whole blood after
consumption of 100 g persipan paste, 30.9 g linseed, about 2.1 g bit-
ter apricot kernels, and 76-150 g unprocessed cassava (equivalent
dose of cyanide: 6.8 mg each). Individual curves of the 12 partici-
pants are displayed in grey; the curve of the means is displayed in

kernels, linseed, and cassava) are displayed in Fig. 2a (graph
of the means in bold). Mean levels of cyanide at the differ-
ent time points were highest after consumption of cassava
(Cpax 154 pM, after 37.5 min) and bitter apricot kernels
(14.3 pM, after 20 min), followed by linseed (5.7 uM, after
40 min) and 100 g persipan (1.3 uM, after 105 min). All
these “meals” contained the same equivalent dose of 6.8 mg
cyanide. The double dose eaten with 200 g persipan resulted
in a peak level of 2.9 uM (mean after 150 min). Concentra-
tion—time curves are shown in Fig. 2b.
Statistical evaluation of individual C,,, values is shown
in Table 1 (left part). Possibly, critical cyanide levels above
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black (bold). b Concentration—time curves of cyanide in whole blood
after consumption 200 g persipan paste (equivalent dose of cyanide:
13.6 mg). Individual curves of the 12 participants are displayed in
grey; the curve of the means is displayed in black (bold)

20 uM were reached in four individuals after consumption
of bitter apricot kernels (maximum: 22.5 uM) and in two
of these individuals after consumption of cassava (21.5 and
31.9 uM, respectively). No clinical symptoms of cyanide
intoxication were observed.

Comparison of the different applications
Comparison of C,,, and ¢, values for two applications
at a time (paired ¢ test) revealed significant differences in

case of 100 and 200 g persipan paste and in case of the four
different foods with an equivalent dose of 6.8 mg cyanide
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Table 1 Statistical evaluation of individual C,,,,
sex: f = females (n = 5), m = males (n = 7)

values for the different applications, as well as mean values (£SD) differentiated according to

Mean =+ SD (uM)  Min. (uM)  Max. (uM)  Median (UM)" Sex  Mean £ SD (uM)  Significance® p value

Persipan 100 g 1.44 + 0.60 0.61 2.72 1.48 F 1.49 + 0.80 n.s.
M 1.41 +0.49

Persipan 200 g 3.40 + 2.38 0.78 9.12 2.65 F 344 +£2.20 n.s.
M 3.37+£2.68

Linseed 6.40 £ 3.34 1.69 13.85 5.97 F 9.15 £ 3.04 <0.05
M 444 +£1.85

Bitter apricot kernels ~ 15.46 +5.12 7.48 22.59 14.75 F 20.06 £+ 3.35 <0.01
M 12.17 £3.19

Cassava 16.95 £ 5.96 10.31 31.87 16.72 F 21.30 £ 6.28 <0.05
M 13.84 £3.44

n.s. not significant

# t test for independent samples, assuming unequal variances

(p < 0.01), but not for the comparison of bitter apricot
kernels and cassava. Correlation analysis of C,,, values
(Pearson) revealed high correlation between 100 and 200 g
persipan paste (R = 0.81, p < 0.01), which also indicates
a high total reproducibility of the results obtained in indi-
viduals. Regarding the four different foods with the same
equivalent dose of 6.8 mg cyanide, highest correlations of
C..x values were observed in case of linseed and cassava
(R = 0.81, p < 0.01) and in case of bitter apricot kernels
and cassava (R = 0.76, p < 0.01), followed a slightly lower
correlation in case of linseed and bitter apricot kernels
(R = 0.69, p < 0.05). No significant correlations of C,,,,
values were observed in case of 100 g persipan and each
of the other three foods; however, correlations were higher
for persipan and linseed (R = 0.51) and for persipan and
cassava (R = 0.56), compared to persipan and bitter apricot
kernels (R = 0.10). The corresponding correlation analy-
sis of 7., values revealed no significant results. Likewise,
no significant correlations were observed between ¢, and

corresponding C,,,. values of the same application.

max

Factors possibly influencing individual C,,, values

max

Correlation analysis of C,,, values (Pearson) revealed
negative correlation with body weight in case of bitter apri-
cot kernels (R = —0.75, p < 0.01), cassava (R = —0.58,
p < 0.05), and linseed (R = —0.57, n.s.), whereas no rele-
vant correlation was observed in case of 100 and 200 g per-
sipan paste (R = —0.13 and 0.14, respectively). Significant
correlation may also be due to an influence of the sex of
the participants, as mean body weight in females (64.6 kg,
range 60-71, n = 5) was lower than in males (81.0 kg,
range 60-99, n = 7). Multivariate regression analysis (lin-

ear regression with SPSS) with C,,. as independent and

with body weight and sex as dependent parameters revealed
a stronger influence of sex compared to body weight in all
three cases with relevant correlation. In Table 1 (right part),
statistical evaluation of C,,, (mean + SD) for the differ-
ent applications is given separately for females and males,
showing large differences in case of linseed, bitter apricot
kernels, and cassava. These differences were tested to be
significant (two-sided ¢ test). The age of the participants
was not found to significantly correlate with C,,, for any
of the different applications.

Additional investigations of the medical head of the study

In order to investigate the dose dependency of the cyanide
peak levels in blood, 7.5, 15, 30.9, 60, and 100 g linseed
were eaten by test person No. 5, corresponding to equiva-
lent doses of 1.7, 3.3, 6.8, 13.2, and 22 mg cyanide. The
values for C,,, measured in blood were 1.2, 2.2, 6.5, 19.8,
and 42.3 pM, respectively, with corresponding ¢, values
of 30, 30, 60, 80, and 160 min, respectively (Table 2). No
clinical symptoms of cyanide intoxication were observed.
The concentration—time curves of the different doses are
shown in Fig. 3 (left), and the dose dependency of the
C,.x values in Fig. 3 (right), revealing an overproportional
increase.

Following consumption of 400 g persipan paste, a maxi-
mum cyanide level in blood of 17.1 pM was observed after
270 min; the late peak is partly due to the fact that con-
sumption took more than 1 h time. After 480 min, the level
was reduced to 2.6 uM. C,,,, values observed for the study
doses of 100 and 200 g persipan paste were 2.3 uM (#,.«
75 min) and 9.1 uM (¢,,,,, 150 min), respectively. Concen-
tration—time curves are displayed in Fig. 4. The simultane-
ous consumption of 10 or 30 g sweet almonds together with
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Table 2 Results for the peaks of cyanide in whole blood (C,

genic glycosides in test person No. 5

max? tmax

) after application of different foods, potassium cyanide, and isolated cyano-

Food Amount ingested (g) + sweet almonds (g) Equiv. dose of cyanide (mg) Chax (UM) fmax (Min)
Cassava 62.0*¢ 6.8 19.5 30
Bitter apricot kernels 2.1%¢ 6.8 15.4 15
Linseed 7.5 1.7 1.2 30
15.0 33 22 30
30.9% 6.8 6.5 60
60.0 13.2 19.8 80
100.0 22.0 423 160
Persipan paste 100.0*¢ 6.8 23 75
100.0° 10.0 6.8 4.5 30
100.0 30.0 6.8 3.4 50
200.0*¢ 13.6 9.1 150
400.0° 27.2 17.1 270
KCN 0.006 24 6.0 5
0.017¢ 6.8 20.1 10
Amygdalin 0.120° 6.8 34 60
0.120¢ 10.0 6.8 10.0 30
0.387 22.0 29.2 70
Linamarin 0.065° 6.8 0.4 b
0.209 22.0 0.9 b
# Results obtained during the investigations within the study protocol for comparison
b No definite peak identifiable
¢ For concentration—time curves see Fig. 4 or 5
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Fig. 3 Dose dependency of the concentration—time curves of cyanide in whole blood after ingestion of different amounts of linseed (7.5-100 g
with a cyanide content of 220 mg/kg) by test person No. 5 (left side). On the right side, the peak levels are displayed versus the dose of linseed
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Fig. 4 Dose dependency of the concentration—time curves of cyanide
in whole blood after ingestion of different amounts of persipan paste
(100, 200, and 400 g with a cyanide content of 68 mg/kg) by test per-
son No. 5

100 g persipan paste resulted in higher peak levels of 4.5
UM (t,.x 30 min) and 3.4 uM (¢,,,, 50 min), respectively.
After ingestion of 120 mg amygdalin (6.8 mg cyanide), a
peak level of cyanide of 3.4 uM was reached, which could
be increased to 10.0 uM in case of the simultaneous inges-
tion of 10 g sweet almonds. In contrast, after ingestion of
65 and 209 mg linamarin (6.8 and 22 mg cyanide, respec-
tively), no definite increase in cyanide levels in blood was
observed. The application of a solution of 17 mg potas-
sium cyanide (6.8 mg cyanide) resulted in a peak level of
20.1 uM after 10 min. These and further results are com-
plied in Table 2, and in part displayed in Fig. 5.

For the overall interpretation of these and other results,
it should be noted that test person No. 5—in comparison
with the other participants of the study—was found to have
relatively high peak values following the applications of
persipan paste (highest value for 200 g), but not in case of
the three other study foods (“ranging” place four or five).

Alterations in the TST gene sequence of the twelve
volunteers

TST genotyping did not give any indication for a mutation
in the TST gene region of any of the volunteers that had
to be considered in the evaluation of the study results (for
details, see Supplementary Material).

569
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—O— 6 bitter apricot kernels
—a—KCN
20 A —<o—100 g persipan paste

---9-- 100 g p.p. + 10 g almonds
—a&—amygdalin

---m-- amygdalin + 10 g almonds

linamarin

Blood cyanide (uM)

min

Fig. 5 Concentration—time curves of cyanide in whole blood after
ingestion of different foods, amygdalin, and linamarin by test person
No. 5 (equivalent dose of cyanide: 6.8 mg each, n = 1 each)

Discussion
Concept and methods

The aim of the study was to generate meaningful data for
risk assessment of foods containing high levels of cyano-
genic glycosides. The (per)acute toxicity of cyanide is
triggered by its tissue levels, and serial measurements of
cyanide in blood in order to identify the peak reached after
consumption of such foods are a useful concept, as these
(absolute) peak levels can be compared to clinically rele-
vant levels observed in intoxications of humans. In this spe-
cial type of toxicity, the total amount of cyanide absorbed is
not relevant in terms of toxicity, and therefore, quantitative
measurements of urinary thiocyanate excretion as marker
of exposure were not included. The study concept further
allowed the comparison of the different foods ingested with
the same equivalent dose of cyanide, allowing an evalua-
tion of relative bioavailability.

Comparable studies are missing besides those of Olu-
wole et al. (2002) and Schulz et al. (1983). The latter
authors investigated a group of 10 participants who con-
sumed a meal of 30 g linseed; furthermore, a single per-
son even ingested 100 g linseed, 10 or 50 bitter almonds,
or solutions of 3, 6, or 12 mg potassium cyanide. While
the dose-dependent levels of cyanide in erythrocytes
were plausible for potassium cyanide with peak levels
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after 10-20 min, corresponding to those in whole blood
observed in test person No. 5 (Table 2; Fig. 5), no relevant
increase in blood cyanide was observed after consumption
of linseed or 10 bitter almonds. The latter obviously misled
the single person to eat 50 bitter almonds which resulted
in a peak level of about 160 uM, a potentially lethal con-
centration (Schulz et al. 1983). Possibly, the authors have
faced analytical problems. Oluwole et al. (2002) investi-
gated a group of 12 subjects after consumption of a single
meal of 150 g processed cassava (gari), but observed only
a doubling of cyanide baseline levels in plasma 8 h later,
starting from a mean baseline level of cyanide in plasma of
about 6 puM. This would correspond to even higher levels
in whole blood, as most of the cyanide present in blood is
found in erythrocytes, with a ratio of at least 10:1 of eryth-
rocytes to plasma (Hail and Rumack 1986; Lundquist et al.
1985). In our group of 12 non-smokers, baseline levels of
cyanide in whole blood were 0.22 + 0.13 uM (mean + SD,
range 0.03-0.57 pM, n = 60 measurements), comparable
to those of others (e.g. 0.13 £ 0.08 uM, using a different
analytical method: Lundquist et al. 1985). The GC-MS
method using K'*C!°N as internal standard applied in our
study (Dumas et al. 2005) was found to be very reliable,
providing reproducible results.

Bitter apricot kernels and cassava roots

Highest peak levels of cyanide were observed after inges-
tion of bitter apricot kernels and fresh cassava. Obviously,
the reaction between the cyanogenic glycoside and the
accompanying B-glucosidase of the plant is very fast and
effective after destruction of the tissue structure by chew-
ing and is not significantly impaired by the lower pH of
the stomach. In case of bitter apricot kernels, the reaction
is so fast that cyanide evaporating from the mouth can be
smelled by a person standing next to the test person, lead-
ing to partial loss of cyanide released. The on-average later
occurrence of the peak level in case of cassava is in part
due to the longer duration of chewing (mean difference
4 min). Nevertheless, C,,, and t,,, respectively, were not
found to be significantly different for the two applications.
Furthermore, individual peak levels for bitter apricot ker-
nels and for cassava revealed a high correlation, indicating
comparable mechanisms determining the peak levels.

The intake of a potassium cyanide solution by test per-
son No. 5, using the same dose of 6.8 mg cyanide, resulted
in a peak level of 20.1 uM (after 10 min), which is only lit-
tle higher than his peak levels after ingestion of bitter apri-
cot kernels (15.4 uM after 15 min) and cassava (19.5 uM
after 30 min, see also Fig. 5). This confirms a fast and more
or less complete enzymatic release of cyanide from the
cyanogenic glycosides in bitter apricot kernels and cassava,
started by thorough chewing of these foods. Moreover,
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significant negative correlations were found between indi-
vidual peak levels of cyanide and body weight in case of
bitter apricot kernels and cassava, respectively. This also
indicates a fast absorption of the same individual dose, with
individual peak levels in blood defined by the volume of
distribution, primarily determined by the individual body
weight. Obviously, metabolism and excretion are of minor
importance for peak levels of cyanide occurring shortly
after ingestion.

A fast and more or less complete release of cyanide by
the accompanying linamarase after ingestion of unpro-
cessed cassava seems to disagree with the observation
in human studies showing a significant proportion of the
ingested linamarin detectable unmetabolized in urine (up
to 28 %, as compiled in JECFA (2012)). However, these
studies were performed using processed cassava, expected
to contain much less linamarase compared to the fresh and
unprocessed cassava used in our study.

Persipan paste

Lowest peak levels of cyanide in blood were observed after
consumption of 100 g persipan paste, more than 10 times
lower compared to bitter apricot kernels and cassava with
the same dose of cyanide. This is primarily due to miss-
ing P-glucosidase: at the end of the production process,
the paste is heated to temperatures slightly above 100 °C
(information by MOLL Marzipan), leading to inactivation
of the B-glucosidase occurring above 75 °C (Hanssen and
Sturm 1967). Therefore, specific B-glucosidase activity for
cleavage of cyanide can only be provided by the bacterial
flora of the gastrointestinal tract (Carter et al. 1980; New-
ton et al. 1981). Due to the high caloric content (460 kcal
per 100 g according to the product specification), persipan
paste takes time to get there due to slow emptying of the
stomach. Indeed, increasing the dose from 100 to 200 g
resulted in a distinctly higher #.,,, (105 vs. 150 min, respec-
tively; see Fig. 2a, b). After the consumption of 400 g by
a single person, the peak level of cyanide was observed
even after 270 min (Table 2). According to general mech-
anisms in pharmacology, any delay in absorption leads to
lower peak values and allows the body time to detoxify the
cyanide in this case of limited metabolic capacity of the
rhodanese, also contributing to lower peak levels. These
peak levels were not found to negatively correlate with
body weight (as observed for the other foods), and the rela-
tionship of individual capacity of B-glucosidase (bacterial
flora) and of rhodanese is expected to be the main factor
determining individual peak levels of cyanide. Taking all
together, it is not possible to reach critical peak levels of
cyanide in case of marzipan or persipan with missing activ-
ity of specific B-glucosidase and an equivalent cyanide con-
tent of up to 50 mg/kg (maximum regulatory level of the
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European Union, EU 2008), even in case of “as much you
can eat” conditions.

The importance of a functional specific p-glucosidase
is underlined by the results of test person No. 5 obtained
after consumption of 100 g persipan paste together with
sweet almonds, containing the enzyme but no cyanogenic
glycosides. The highest peak level of cyanide in blood
(4.5 uM after 30 min, with 10 g almonds) was about dou-
ble as high compared to that after consumption of per-
sipan paste only (2.3 uM after 75 min). With the higher
amount of 30 g almonds, the peak level did not increase
further (3.4 uM after 50 min), probably due to a less opti-
mal molar relation of glycoside and enzyme and due to the
higher total mass ingested leading to a delayed transport in
the gastrointestinal tract. Thus, simultaneous consumption
of B-glucosidase-containing foods increases the release of
free cyanide from persipan paste; however, the peak levels
of cyanide in blood were much lower than those obtained
after consumption of the same dose eaten as bitter apricot
kernels.

Isolated cyanogenic glycosides

Regarding cyanide kinetics, the consumption of the isolated
cyanogenic glycoside, amygdalin, could be expected to be
similar to that of persipan paste, except the missing caloric
load allowing a faster gastrointestinal transport. Indeed,
amygdalin in a capsule with the same dose of bound cya-
nide caused a peak level (3.4 uM) only little higher than
that of persipan paste (2.3 pM, data of test person No. 5).
Simultaneous consumption of 10 g sweet almonds resulted
in a much higher peak level of 10.0 uM. These results cor-
respond to those obtained in two cancer patients orally
treated with a dose of 500 mg amygdalin (bound cyanide:
28.5 mg) three times a day. After addition of 30 g almonds
to the breakfast consumed 1 h after the morning dose, much
higher cyanide peak levels were observed in blood, in one
case accompanied by symptoms of cyanide intoxication at
a cyanide level of 2.01 mg/L (74.4 uM) 2 h after amygdalin
administration (Moertel et al. 1981).

Surprisingly, no corresponding increase in cyanide blood
levels was observed after administration of the isolated cya-
nogenic glycoside of cassava, linamarin, even at an equiva-
lent dose of 22 mg cyanide. In contrast, the same dose of
bound cyanide given as amygdalin caused a peak level of
29.2 uM (data of test person No. 5). These results are dif-
fering from those obtained in hamsters not showing such a
high difference of blood cyanide levels after oral adminis-
tration of amygdalin or linamarin (Frakes et al. 1986). Fur-
thermore, high doses of isolated linamarin were able to kill
hamsters (Frakes et al. 1986) as well as rats (Barrett et al.
1977). No reports on the fate of isolated linamarin after
oral administration in humans are available. Therefore, it

remains unresolved whether the observation in test person
No. 5 can be generalized or not. Individual differences in
the composition of the gut flora may contribute to differ-
ences in the release of cyanide from amygdalin or linama-
rin depending on the activity of bacterial p-glucosidases.

Linseed

With respect to peak levels of cyanide in blood, the results
obtained after ingestion of linseed were in between those
obtained for bitter apricot kernels and cassava on the one
hand and those obtained for persipan paste and isolated
amygdalin on the other hand. Obviously, the effectiveness
of the B-glucosidase of linseed is much lower compared
to that of bitter apricot kernels and cassava. This is sup-
ported by in vitro results showing a maximum of cyanide
level released by autohydrolysis 2-3 h after homogeniza-
tion of different cultivars of linseed (Chadha et al. 1995).
Similar in vitro experiments were performed with the
foods of this study, confirming the much faster release of
cyanide after destruction of the plant tissue in case of bit-
ter apricot kernels and cassava compared to linseed (Sch-
neider et al. 2014; details will be published separately).
The release of cyanide by the p-glucosidase may also be
negatively influenced by the low pH of the stomach; this
possible influence, however, was not quantifiable in the
study.

The relatively slow release of cyanide after ingestion of
freshly grinded linseed results in a lower hazard potential.
Indeed, no reports on cyanide poisoning after consumption
of linseed were found in the literature. The ingestion of dif-
ferent doses of the study linseed (7.5-100 g) by test person
No. 5 resulted in peak levels of cyanide overproportion-
ally increasing with increasing doses (Fig. 3), caused by
the constant metabolism rate (at higher doses) and occur-
ring despite increasing ., values allowing more time for
detoxification. With the highest dose, the cyanide peak
level of 42.3 uM reached may potentially be associated
with first clinical signs of toxicity. However, this is a very
high amount of linseed hard to ingest quickly (caloric con-
tent 370-380 kcal per 100 g), and in order to meet worst-
case conditions, it has to be eaten on an empty stomach
directly after grinding by a machine (chewing of the hard
seeds is not effective enough and very time-consuming),
without consumption of other foods. In Sweden, the high-
est daily dose was reported to be 80 g ground linseed, given
as “fibre shock” in a private health spa (Rosling 1993).
Usually, high doses are up to 15 g three times a day in case
of traditional herbal medication to treat or prevent consti-
pation (EMA 2006), and this dose is safe with respect to
possible acute toxicity of cyanide. Only concentrations of
bound cyanide much higher than those of our study linseed
(220 mg/kg) would change this assessment.
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Risk assessment (ARfD for cyanide)

As described above, the range of cyanide levels in whole
blood of 2040 uM was estimated to be (possibly) asso-
ciated with first clinical symptoms of intoxication. In our
study, even the highest cyanide levels in blood (42.3 pM
in test person No. 5 after 100 g linseed and 31.9 uM in
test person No. 9 after cassava) were not accompanied be
clinical symptoms. This may be due to higher variabil-
ity especially with respect to dynamics, and/or a general
tendency to monitor relatively low blood levels in case of
cyanide intoxications, as the peak level occurring shortly
after ingestion most often will be missed due to late start
of monitoring. Nevertheless, the internal cyanide level of
20 uM in whole blood (and not a higher value) was used as
a threshold which should not be exceeded; accordingly, this
approach contains a conservative element.

In our study, the highest peak level was 31.9 uM (after
consumption of cassava) in test person No. 9 who had
the lowest body weight of the study group of 60 kg. The
equivalent dose of 6.8 mg cyanide therefore corresponded
to the highest individual dose of 0.113 mg/kg body weight.
Roughly, 2/3 of this dose (0.075 mg/kg body weight) would
have resulted in a cyanide peak level of 20 uM in this test
person. The application of any further safety factors was
not judged to be necessary, as peak levels were found to be
mainly determined by the body weight defining the volume
of distribution, whereas mechanisms of elimination (e.g.
activity of rhodanese, with possible higher variability) are
unimportant for peak levels in case of a bolus application
of a relatively high dose of cyanide. Therefore, the ARfD
derived is 0.075 mg/kg body weight, corresponding to an
absolute dose of 4.5 mg cyanide in a person with a body
weight of 60 kg. The value is also supported by the fol-
lowing theoretical calculations: using the approximation of
Schulz et al. (1982) that cyanide is distributed in the body
to the extent of about 40 % in the blood and 60 % in the
tissues, the ARfD would correspond to a dose of 0.030 mg/
kg body weight in blood, which has a volume of about
0.090 L/kg body weight. This results in a maximum cya-
nide level of 0.33 mg/L whole blood lower than the value
of 0.5 mg/L whole blood (ca. 20 uM) used as a threshold
for the internal dose.

The ARTD of 0.075 mg/kg body weight is near to that
of JECFA (2012) of 0.090 mg/kg body weight derived
recently, using a developmental study with a single oral
dose of isolated linamarin in pregnant hamsters on day
8 of gestation (endpoint: increased proportion of skel-
etal defects in the foetuses: Frakes et al. 1985), as well as
benchmark modelling and a total safety factor of 100. This
approach, however, is not convincing for us, as the effect
is not the typical (per)acute one of cyanide. More impor-
tantly, the effect after oral application of isolated linamarin
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is expected to be much lower compared to an applica-
tion together with B-glucosidase (as in fresh cassava, see
study results). On the other hand, the very low ARfD of
0.005 mg/kg body weight derived by COT (2006) using
human data is overly conservative in our view, as the sec-
ond safety factor of 10 (for intraspecies variability) seems
unnecessary, because the minimal lethal dose already con-
siders the most sensitive persons in a population.

The ARfD of 0.075 mg/kg body weight is valid for sin-
gle oral ingestion of cyanides or HCN as well as for unpro-
cessed foods with cyanogenic glycosides also containing
the accompanying intact p-glucosidase. In case of these
foods, the ARfD is relevant for a meal eaten within a short
period of time, and a second meal with the same equivalent
dose of cyanide may be possible on the same day after an
interval of at least several hours, not leading to accumula-
tion of cyanide in the body. For some foods, higher ARfD
values may be possible, as demonstrated in this study for
linseed. If such data are not available, a high content of
cyanogenic glycosides in foods has to be treated like an
equivalent content of free cyanide. In case of destroyed
or missing specific B-glucosidase (persipan paste, isolated
cyanogenic glycosides), the hazard potential is much lower.

In case of bitter apricot kernels, the highest possible lev-
els of bound cyanide (4000 mg/kg in the literature: Zollner
and Giebelmann 2007; 3830 mg/kg was maximally meas-
ured in 12 halved kernels of our study) have to be con-
sidered for risk assessment, and the ARfD roughly corre-
sponds to a maximum amount of 1.1 g kernels with 4.5 mg
bound cyanide (three middle-sized or two big kernels). For
fresh cassava roots, a maximum level bound cyanide of
10 mg/kg would be necessary in order to be also protective
in case of large principal meal with 450 g. Such a value
(10 mg/kg) is established for edible cassava flour (Codex
Standard 176-1989, FAO/WHO 1995), but should also be
protective for a single meal of unprocessed cassava consti-
tuting a higher hazard potential. In contrast, the often used
cut-off of 50 mg/kg separating “sweet” and “bitter” cas-
sava does not seem meaningful in terms of possible health
risks, and even “sweet” cassava may require processing in
case of consumption of a large meal. For persipan paste
and linseed, considerations regarding risk assessment were
already made above.

Summary and conclusions

1. In terms of bioavailability of cyanide, its peak level in
blood reflecting the rate of absorption is the most rel-
evant parameter closely related to the (per)acute toxic-
ity. In case of fast absorption of a bolus, the parameter
is not significantly influenced by the rate of metabo-
lism, which is relatively low and constant at relevant
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doses of cyanide (zero-order kinetics). Therefore, peak
levels are defined by the volume of distribution pri-
marily determined by the body weight. Any delay in
absorption leads to lower peak levels and allows the
body time for detoxification, which further contributes
to lower peak levels.

2. The bioavailability of cyanide from foods with cya-
nogenic glycosides can maximally be equal to that of
free cyanide. This requires a fast and complete destruc-
tion of the plant’s tissue structure by chewing (or other
methods directly used before ingestion) and a high
effectiveness of the plant’s specific f-glucosidase. Bit-
ter apricot kernels and fresh cassava roots fulfil the last
condition (the bound cyanide is as bioavailable as free
cyanide), and life-threatening conditions and death are
possible in case of consumption of the foods contain-
ing high doses of cyanide equivalents (Mlingi et al.
1992; Lasch and El Shawa 1981).

3. In case of inactivated or missing specific B-glucosidase
(persipan paste, isolated cyanogenic glycosides), an
ingestion of the same dose leads to much lower peak
levels occurring relatively late after ingestion, as the
enzymatic cleavage of cyanide can be achieved by bac-
terial flora of the gastrointestinal tract only leading to
comparatively low rates of absorption. This applies
to amygdalin, but has not been proved in humans for
other types of cyanogenic glycosides. In case of lin-
amarin, no significant bacterial cleavage was observed
in a single person at all.

4. The hazard potential of other foods containing cyano-
genic glycosides can be expected to lie in between the
extremes described. This was demonstrated for linseed.
Besides the content of bound cyanide, the effective-
ness of the plant’s B-glucosidase as a specific property
determines the hazard potential as a second important
factor which may vary in individual cultivars (Chadha
et al. 1995) or may change during post-harvest stor-
age (Owiti et al. 2011). In the past, this factor was not
considered in risk assessment of foods with cyanogenic
glycosides.

5. Peak levels overproportionally increase with increasing
doses, reflecting the decreasing proportion of detoxifi-
cation per unit of time due to the constant metabolism
rate (at higher doses). These nonlinear conditions con-
tribute to the potential risk of consumption of foods
with high content of cyanogenic glycosides, as a rela-
tively little further increase in the dose may result in
sudden occurrence of clinical symptoms. An evaluation
of the area under the blood concentration—time curve
(AUC) is not meaningful and no measure for the rela-
tive amount absorbed.

6. An ARfD of 0.075 mg/kg body weight was derived
being valid for a single application/meal of alkalicya-

nides or HCN as well as of unprocessed foods with
cyanogenic glycosides also containing the accompa-
nying intact B-glucosidase. For some of these foods,
this approach may be overly conservative due to slow
release of cyanide. However, experimental data like
that generated by this human study are required to
assess the real hazard potential of such foods and to
allow a meaningful risk assessment not requiring the
use of high safety factors.
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