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We have recently developed bioinformatic tools to accurately assign
metagenomic sequence reads to microbial taxa: SPARSE for probabilistic,
taxonomic classification of sequence reads; EToKi for assembling and polish-
ing genomes from short-read sequences; and GrapeTree, a graphic visualizer
of genetic distances between large numbers of genomes. Together, these
methods support comparative analyses of genomes from ancient skeletons
and modern humans. Here, we illustrate these capabilities with 784 samples
from historical dental calculus, modern saliva and modern dental plaque.
The analyses revealed 1591 microbial species within the oral microbiome.
We anticipated that the oral complexes of Socransky et al., which were
defined in 1998, would predominate among taxa whose frequencies differed
by source. However, although some species discriminated between sources,
we could not confirm the existence of the complexes. The results also
illustrate further functionality of our pipelines with two species that are
associated with dental caries, Streptococcus mutans and Streptococcus sobrinus.
They were rare in historical dental calculus but common in modern plaque,
and even more common in saliva. Reconstructed draft genomes of these two
species from metagenomic samples in which they were abundant were com-
bined with modern public genomes to provide a detailed overview of their
core genomic diversity.

This article is part of the theme issue ‘Insights into health and disease
from ancient biomolecules’.
1. Introduction
Multiple research areas have undergone revolutionary changes in the last 10 years
due to broad accessibility to high-throughput DNA sequencing at reduced costs.
These include the evolutionary biology of microbial pathogens based on metage-
nomic sequencing. Studies on Mycobacterium tuberculosis [1,2], Mycobacterium
leprae [3,4], Yersinia pestis [5–10] and Salmonella enterica [11–13] have yielded
important insights into the history of infectious diseases by combining modern
and historical genomes. In principle, the same approach might also help to eluci-
date the evolutionary history of both commensal and pathogenic taxa within the
human oral microbiome. Periodontitis and dental caries have likely afflicted
humans since their origins [14–17]. They may now be amenable to population
genetic analyses because a landmark publication by Adler et al. in 2013 [18]
demonstrated that dental calculus (calcified dental plaque) from the teeth of skel-
etons that were up to 7500 years old could contain relatively well preserved
ancient bacterial DNA. That publication was based on 16S rRNA sequences,
which are not informative about intra-species genetic diversity. However, sub-
sequent shotgun sequencing from modern and ancient dental calculus [19–21]
has demonstrated that it should be possible to reconstruct genomic sequences

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2019.0573&domain=pdf&date_stamp=2020-10-05
http://dx.doi.org/10.1098/rstb/375/1812
http://dx.doi.org/10.1098/rstb/375/1812
mailto:m.achtman@warwick.ac.uk
https://doi.org/10.6084/m9.figshare.c.5095997
https://doi.org/10.6084/m9.figshare.c.5095997
http://orcid.org/
http://orcid.org/0000-0001-6815-0070
http://orcid.org/0000-0001-9783-0366
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190573

2
that span millennia of human history frommultiple individual
species within the oral microbiome.

Reconstructing evolutionary history from the oral
microbiome faces numerous technical challenges. Our under-
standing of the historical evolutionary biology of bacterial
pathogens benefitted greatly from existing frameworks for
the modern population genomic structure of those bacteria
[22–24]. However, extensive bacterial population genetic ana-
lyses are largely lacking for the modern oral microbiome. The
existing literature largely focuses on taxonomic binning into
a traditional subset of 40 cultivatable species fromperiodontitis
[25], whose sub-species population structure has not yet been
adequately addressed at the genomic level. Instead, most ana-
lyses have focused on the ‘oral complexes’, which consist of
groups of multiple species whose co-occurrence is statistically
associated with periodontitis [26].

A second barrier to reconstructing evolutionary history is
the limits of the currently existing bioinformatic tools. The gen-
etic diversity of metagenomic sequences is usually classified
by binning the microbial sequence reads into taxonomic units.
Taxonomic assignments can beperformedby the de novo assem-
bly ofmetagenomic reads intoMAGs (metagenomic assembled
genomes) [27,28], or by assigning individual sequence reads to
existing reference genomes. However, most current metage-
nomic classifiers rely on the public genomes in the NCBI
database, whose composition is subject to extreme sample
bias and which represents a preponderance of genomes from
pathogenic bacteria [29]. Furthermore, shotgun metagenomes
often include DNA from environmental sources, which include
multiple microorganisms that have never been cultivated and
may belong to unknown or poorly classified microbial taxa
whose abundance is not reflected by existing databases.
Recent evaluations have also demonstrated that current
taxonomic classifiers either lack sufficient sensitivity for
species-level assignments or suffer from false positives, and
that theyoverestimate the numberof species in themetagenome
[29–31]. Both tendencies are especially problematic for the
identification of microbial species which are only present
at low-abundance, e.g. detecting pathogens in ancient
metagenomic samples.

Over the last few years, we have developed a series of tools
which can facilitate comparative metagenomics of modern
and ancient samples. SPARSE, a novel taxonomic classifier
for short-read sequences in the metagenome, was designed
to provide accurate taxonomic assignments of metagenomic
reads [32]. SPARSE accounts for the existing bias in reference
databases [29,33] by sorting all complete genomes of Bacteria,
Archaea, Viruses and Protozoa in RefSeq into sequence simi-
larity-based hierarchical clusters with a cutoff of 99% average
nucleotide identity (ANI99%). It subsequently extracts a repre-
sentative subset from those clusters, consisting of one genome
per ANI95% cluster because ANI95% is a common cutoff for
individual bacterial species [34,35]. SPARSE then assignsmeta-
genomic sequence reads to these clusters usingMinimap2 [36].
However, such alignments are likely to be inaccurate when
they are widely dispersed across multiple ANI95% clusters
because such wide dispersion reflects either ultra-conserved
elements of uncertain specificity or a high probability of homo-
plasies due to horizontal gene transfer. SPARSE therefore
reduces such unreliable alignments by a negative weighting
of widely dispersed sequences reads. The remaining metage-
nomic reads are then assigned to unique species-level
clusters on the basis of a probabilistic model and labelled
according to the taxonomic labels and pathogenic potential
of the genomeswithin those clusters. Ourmethodological com-
parisons demonstrated that SPARSE has greater precision and
sensitivity with simulated metagenomic data than 10 other
taxonomic classifiers and yielded more correct identifications
of pathogen reads within metagenomes of ancient DNA than
five other methods [32]. SPARSE is also suitable for classifying
reads from metagenomes from modern samples and can
extract reads from any ANI95% taxon of interest.

SPARSE assigns sequence reads to taxa, but does not create
genomic assemblies from the selected metagenomic reads.
That task is performed by EToKi, a stand-alone package of
useful pipelines that are used by EnteroBase [5] for manipula-
tions of 100 000s of microbial genomes. EToKi is used to merge
overlapping paired-end reads, remove low-quality bases and
trim adapter sequences. It then excludes sequence reads with
greater sequence similarities to genomes from a related but
distinct out-group than to an in-group of genomes from the
target taxon of interest. EToKi then masks all nucleotides in
an appropriate reference genome and creates a pseudo-
MAG by unmasking nucleotides with sufficient coverage
among the reads that have passed the in-group/out-group
comparisons. Finally, EToKi can create a SNP matrix from
pseudo-MAGs plus additional draft genomes and generate a
maximum-likelihood phylogeny (RAxML 8.2 [37]), which
can be visualized together with its metadata in GrapeTree [38].

Here, we demonstrate the power of this combination of
pipelines by examination of the metagenomic diversity of the
human oral microbiome from a large number of historical
and modern samples from diverse geographic sources. We
address the question of which microbial taxa are uniformly
present in human saliva, dental plaque and dental calculus,
and which are specific to individual niches. We test the associ-
ations of oral taxa within the traditional oral complexes and
conclude that their very existence needs re-examination. Finally,
we examine the population genomic structures of Streptococcus
mutans and Streptococcus sobrinus, which are associated with
dental caries in some human populations [39–41].
2. Results
(a) SPARSE analysis of oral metagenomes
We identified 17 public archives containing 1016 sets of
metagenomic sequences (table 1) from 791 oral samples from
a variety of global sources which had been obtained from
modern human saliva, modern human dental plaque or his-
torical dental calculus (electronic supplementary material,
table S1). Individual sequence reads from those metagenomes
were assigned to taxa with SPARSE. The assignments were
made according to an upgraded database of 20 054 genomes
of bacteria, archaea or viruses, one genome perANI95% cluster
among 101 680 genomes in the NCBI RefSeq databases in May
2018. Seven metagenomes (ancient dental calculus: 5; modern
saliva: 2) lacked bacterial reads from the oral microbiome (elec-
tronic supplementary material, table S2). These seven
metagenomes were ignored for further analyses, leaving
assignments to 1591 microbial taxa from 1009 metagenomes
(784 samples) (table 2). Electronic supplementary material,
table S3, reports the percentage assignment of the reads in
each sample to each of the 1591 taxa, except for assignments
with a sequence read frequency of less than 0.0001%, which
are reported as 0%. Electronic supplementary material, table



Table 1. Sources of metagenomic reads. Note: ancient calculus refers to ancient dental calculus from historical samples. Plaque and saliva refer to modern
dental plaque and saliva. Sets of short reads were downloaded from GenBank except for Archive 17, which was downloaded from the Online Ancient Genome
Repository. Seven metagenomes (electronic supplementary material, table S2; Archive 11:2; Archive 17:5) were excluded from further analyses because they
contained too few reads from common microbial taxa in the oral microbiome.

archive accession
sets of
short reads

no.
samples source institute citation

1 PRJNA445215 62 48 ancient calculus Max Planck Institute for the

Science of Human History

[42]

2 PRJEB30331,

PRJNA454196

45 44 ancient calculus University of Oxford [21]

3 PRJNA216965 9 2 ancient calculus University of Oklahoma [19]

4 PRJNA383868 87 87 plaque J. Craig Venter Institute [43]

5 PRJNA255922 48 48 plaque University of California, Los Angeles [44]

6 PRJNA78025 7 4 plaque University of Maryland [45]

7 PRJNA289925 1 1 plaque University of Washington [46]

8 PRJEB6997 298 298 plaque & saliva BGI [47]

9 PRJNA230363 12 12 plaque & saliva Chinese Academy of Sciences [48]

10 PRJEB24090 61 61 saliva University of California San Diego [49]

11 PRJNA380727 56 55 saliva Peking University School of

Stomatology

12 PRJNA396840 30 30 saliva University of Copenhagen [50]

13 PRJEB14383 28 28 saliva University College London [51]

14 PRJDB4115 26 26 saliva University of Tokyo [52]

15 PRJNA217052 217 18 saliva Broad Institute [53]

16 PRJNA188481 8 8 saliva Broad Institute [54]

17 http://dx.doi.org/10.4225/

55/584775546a409

21 21 ancient calculus OAGR, University of Adelaide [55]
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S3, includes a column identifying assignments to the oral
microbial complexes defined by Socransky et al. [26]. SPARSE
also identified 152 samples containing Archaea from four
species, 214 samples containing at least one of four human
viruses and 146 samples containing at least one of 12 bacterio-
phages (table 3). This dataset may represent the currently
broadest sample of the oral microbiome from global sources
and over time.

(b) Comparisons of microbiomes from saliva, plaque
and historical dental calculus

We tested whether individual oral taxa were particularly
enriched or depleted according to source with multiple
quantitative approaches, including UMAP (Uniform Mani-
fold Approximation and Projection), principal component
analysis (PCA) and hierarchical clustering.

UMAP is a recently described, high-performance algorithm
for dimensional reduction of diversity within large amounts of
data by nonlinear multidimensional clustering [56]. A UMAP
plot of the taxon abundances in each sample showed three
clusters (figure 1a). The three clusters are totally discrete
(electronic supplementary material, figure S1A) according to
a machine learning approach, optimal k-mean clustering of
the first three components from the UMAP analysis. With
minor exceptions, the three UMAP clusters were also
predominantly associated with the source, with one cluster
for taxa from modern saliva, a second one for taxa from
modern dental calculus and the third for taxa from ancient
dental calculus (figure 1a). Similar results were obtained with
a classical PCA, except that the clusters were not as clearly dis-
tinguished as with UMAP, and the proportion of exceptions
was greater (electronic supplementary material, figure S1B).
The assignments of source affiliations to cluster were also lar-
gely consistent between UMAP and PCA, with occasional
exceptions (electronic supplementary material, figure S1C).

For the third approach, we calculated the Euclidean p-dis-
tances between each pair of samples and subjected them to
hierarchical clustering by the neighbour-joining algorithm
with the results shown in figure 1b. Hierarchical clustering
also largely separated the samples by source with only a few
exceptions. Samples frommodern saliva formed one large clus-
ter. Samples from modern dental plaque formed two related
but discrete sub-clusters, one of which included a sub-sub clus-
ter of samples from historical dental calculus. These clusters
also largely corresponded to the clusters found by k-mean
clustering of UMAP data.

Thus, three primary and distinct clusters were consistently
identified by three independent methods from the quantitative
numbers of reads in individual microbial taxa. The three
clusters were largely source specific for modern saliva,
modern plaque and historical dental calculus. This finding

http://dx.doi.org/10.4225/55/584775546a409
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http://dx.doi.org/10.4225/55/584775546a409


Table 2. Sources of genomes from cultivated bacteria and metagenomic
samples. Additional details can be found in electronic supplementary
material, table S1.

category sub-category number

bacterial genomes 262

S. mutans 195

S. sobrinus 50

others 17

metagenome source 784

ancient dental

calculus

110

modern plaque 287

modern saliva 387

metagenome size

(nucleotides) 0–2GB 343

2–4GB 129

4–6GB 162

6–8GB 93

8–10GB 45

>10GB 12

country

Asia 442

China 375

Japan 32

Philippines 28

others 7

North America 159

USA 157

Guadeloupe 2

Europe 166

UK 75

Ireland 36

Denmark 31

others 24

Oceania 111

Australia 92

Fiji 18

Papua New

Guinea

1

Africa 9

South Africa 6

Sudan 2

Sierra Leone 1
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predicts that the microbiomes from these three sources contain
source-specific taxa.

(c) Source-specific taxa
We attempted to identify the most important bacterial taxa
for the observed clustering by sample source with a second,
powerful machine learning approach. A supervised support
vector machine (SVM) [58] classification was used to identify
the most optimal of 300 SVM model variants, and the 40
most discriminating ANI95% taxa according to that model
are shown in figure 2, together with mini-histograms that
summarize the relative abundance of sequences by source.
As predicted from the discrete clustering described above,
multiple taxa were dramatically more prominent in samples
from one source than from either of the two other sources.
The results also show that the most prominent sample
source varied with the taxon (figure 2).

Eleven of the 40 most discriminatory taxa belonged to the
oral complexes that are associated with periodontitis accord-
ing to Socransky et al. [26]. Seven species from oral complexes
(Veillonella parvula, Fusobacterium nucleatum, Capnocytophaga
gingivalis, Streptococcus gordonii, Actinomyces naeslundii, Acti-
nomyces viscosus and Capnocytophaga sputigena) were most
abundant in modern plaque and two other species (Strepto-
coccus sanguinis, Tannerella forsythia) were most abundant in
historical dental calculus. The yellow complex includes
Streptococcus mitis, which encompasses over 50 distinct
ANI95% clusters [59]. Two of these ANI95% clusters, desig-
nated S. mitis s8897 (ANI95% cluster in electronic
supplementary material, table S3; MG_43 in [59]) and
S. mitis s126097 (MG_56) were included among the 40 most
discriminatory taxa, and each of them was more frequent in
saliva than in dental plaque or dental calculus.

Seventeen other taxa that were assigned to an oral complex
by Socransky et al. [26] are not included in figure 2 because they
were not among the 40 most discriminatory taxa. We therefore
examined the relative abundances of all 28 taxa from oral com-
plexes in greater detail (figure 3). Three of the four taxa in the
blue and purple complexes are very abundant in oral metagen-
omes, and all four are preferentially found in modern plaque.
However, the other oral complexes are heterogeneous in their
patterns of relative abundances. For example, within the red
complex, both T. forsythia and Treponema denticola were most
frequently found in historical dental calculus but Porphyromo-
nas gingivalis is most frequent in modern plaque and is
generally much less abundant. Similar intra-complex discre-
pancies were found for the orange, yellow and green
complexes. These inconsistent frequencies by source raise ques-
tions about the consistency of the compositions of those
complexes in individual samples.
(d) Existence of ‘oral complexes’?
Socransky et al. [26] initially treated oral complexes as a
hypothesis. However, they have now attained the status of
accepted wisdom and even play a prominent role in routine
laboratory investigations and treatment of periodontitis.
The oral complexes included 28 cultivated bacterial species,
whose presence or absence was determined by DNA hybridiz-
ation against a small number of probes. This technology is now
outdated; the number of known oral taxa has increased
dramatically and the data presented here are for relative
abundance rather than presence or absence. However even
after weighting for genome size, we do not find a close corre-
spondence between the frequencies of cells in sub-gingival
dental plaque measured by Socransky et al. [25] and the results
presented here (electronic supplementary material, text). We
therefore re-examined the strengths of association with the
oral complexes from the data presented here according to



Table 3. Detailed summary of archaea and Viruses in all 784 samples. No. refers to the numbers of samples after combining metagenomes from a common
sample. Percentage of reads refers to the percentage of all reads attributed to a taxon in all the metagenomes from that sample.

taxonomy
no. ancient
samples (110)

per cent of
reads

no. plaque
(287)

per cent of
reads

no. saliva
(387)

per cent of
reads

host (human) 110 0.32 243 9.12 335 7.05

archaea (4) 81 1.78 26 2 × 10−4 45 1 × 10−4

Methanobrevibacter oralis 79 1.76 26 2 × 10−4 43 1 × 10−4

Methanobrevibacter smithii 1 3 × 10−5 2 2 × 10−6

Candidatus Nitrosoarchaeum koreensis 1 1 × 10−5 0

Thermoplasmatales archaeon BRNA1 1 7 × 10−6 0

human viruses (4) 0 25 3 × 10−4 189 4 × 10−3

Human betaherpesvirus 7 0 8 9 × 10−6 150 6 × 10−4

Human gammaherpesvirus 4 0 16 3 × 10−4 86 3 × 10−3

Human alphaherpesvirus 1 0 1 5 × 10−6 9 8 × 10−5

Human betaherpesvirus 6B 0 0 7 2 × 10−5

bacteriophages (12) 3 1 × 10−5 26 3 × 10−5 117 2 × 10−4

Streptococcus EJ-1 0 14 1 × 10−5 56 8 × 10−5

Streptococcus SM1 2 5 × 10−6 11 1 × 10−5 41 3 × 10−5

Streptococcus SpSL1 0 0 9 2 × 10−5

Streptococcus Dp-1 0 0 7 2 × 10−5

Streptococcus DT1 0 0 7 2 × 10−5

Streptococcus PH10 1 6 × 10−6 2 3 × 10−6 7 6 × 10−6

Klebsiella KP15 0 0 6 6 × 10−6

Lactococcus r1t 0 0 6 4 × 10−6

Streptococcus YMC-2011 0 0 4 1 × 10−5

Propionibacterium PHL060L00 0 0 2 2 × 10−6

Propionibacterium PHL179 0 0 1 2 × 10−6

Propionibacterium PAD20 0 0 1 2 × 10−6

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190573

5

similar criteria and similar methods as those used in the
Socransky et al. 1998 publication [26].

The original assignments to the oral complexes depended
strongly on results from hierarchical clustering of the pair-
wise concordance between species for presence or absence
in individual samples. The tree in figure 4 shows neigh-
bour-joining clustering of the common microbial taxa in our
dataset by the similarities of their abundances over all
samples in our dataset according to SPARSE. This tree contra-
dicts the original composition of the oral complexes: the four
areas of the tree where oral complex taxa are clustered each
contain representatives from multiple complexes, and
none of those four clusters corresponds to the original
compositions proposed by Socransky et al. [26].

It seemed possible that the discrepancies between figure 4
and the original compositions of the oral complexes might
reflect the fact that this study identified many additional
taxa, some of which were as common as those used to define
the oral complexes (electronic supplementary material, text).
We therefore performed cluster analyses of our current data
for the original set of 31 cultivatable bacterial species examined
by Socransky et al. [26]. We compared the neighbour-joining
algorithm used here with the less powerful, agglomerative
clustering method (UPGMA, unweighted pair group method
with arithmetic mean) that had been used by Socransky et al.
We also compared the abundances across all samples with
abundances in plaque, which was the primary source for
bacteria tested by Socransky et al. The results (electronic
supplementarymaterial, figure S3) show dramatic inconsisten-
cies between independent trees in regard to the clustering
of the oral complex bacteria. For example, T. forsythia,
T. denticola and P. gingivalis of the red complex cluster together
(and also with C. rectus) in electronic supplementary material,
figure S3A,C,F,G. However, T. denticola and T. forsythia are sep-
arated from P. gingivalis in the four other graphs in electronic
supplementary material, figure S3. And none of the three clus-
ter together with each other in electronic supplementary
material, figure S3E. Similar, or even greater, discrepancies
are visible for the other oral complexes in electronic sup-
plementary material, figure S3. Inconsistencies in clustering
patterns across minor differences in sampling and clustering
algorithms raise severe doubts about the very existence of the
oral complexes as defined by Socransky et al. [26].
(e) Numbers of taxa per source
The rarefaction curves in figure 5a provide a breakdown of
taxa by sample source as additional samples are tested.
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Figure 2. Average percentage abundance (left axis) of bacterial species by source for the 40 most discriminating species according to Support Vector Machine
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SPARSE detected 1591 microbial taxa over all 784 metage-
nomic samples: 1389 from modern saliva, 842 from modern
plaque and 696 from historical calculus. These estimates
will increase as additional samples are added, but at increas-
ingly slower rates because the rarefaction curves seem to be
reaching a plateau, except for historical dental calculus
where the fewest samples have been evaluated until now.

The median numbers of taxa per sample range from 177
(historical dental calculus) to 288 (modern saliva) and were
much smaller than the total numbers. These median values
reflect a bimodal distribution for numbers of taxa per sample
(figure 5b), wherein a few samples had jackpots of large
numbers of taxa but all other samples had only a few.

The analyses described above focused on differences in
taxon composition by source. However, the Venn diagram in
figure 5c shows that 447 taxawere common to all three sources,
even if their relative abundances varied. Modern plaque
yielded only 34 taxa which were not found in either historical
dental calculus or modern saliva. More source-specific taxa
were found in historical dental calculus, which may possibly
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reflect some contamination with environmental material.
Alternatively, some taxa may be absent in modern dental
plaque because historical lineages have become extinct [11].
Saliva yielded 504 unique taxa, some of which might be
transient and do not persist long enough to be incorporated
into plaque.

( f ) Population genomics of organisms associated with
dental caries

The microbiome associated with early stages of dental caries is
an unresolved topic that remains under active investigation
[40,60–62]. However, it is generally accepted that S. mutans
and S. sobrinus are routinely associated with caries [63]. Our
data confirm that reads belonging to these two taxa are abun-
dant inmodern dental plaque and also show that they are even
more abundant in modern saliva (figure 6a,c). However, there
was no significant correlation between the relative frequencies
of these species across multiple metagenomes (electronic sup-
plementary material, figure S9). Prior analyses based on 16S
RNA operational taxonomic units (OTUs) indicated that S.
mutans was extremely rare in historical dental calculus and
argued that this increase was caused by the introduction of
high levels of sugar to human diets in industrialized societies
in the last 200 years [18]. Our data show that S. sobrinus was
undetectable in historical samples (frequency of less than
0.0001% of reads or less than 10 reads per metagenome;
figure 6c). S. mutans was also undetectable in most of these
samples, but up to 0.04% of all reads in 10 historical samples
spanning the last 1500 years were assigned to S. mutans
(figure 6a), in accordance with archaeological findings that
dental caries has been common in multiple eras over the last
10 000 years [14]. The few reads from historical samples that
were assigned to S. mutans showed increased deamination at
their 50-endswhen tested byMapDamage2 [64] (electronic sup-
plementary material, figure S4), confirming that they were
truly from ancient DNA.

We exploited the high frequency of sequence reads from
these two Streptococcus species in modern dental plaque and
saliva to illustrate how SPARSE and EToKi can be used to
extract pseudo-MAGs from metagenomic sequence reads and
combine them with genomes sequenced from cultivated
bacteria (see Methods). These procedures resulted in a total
of 31 pseudo-MAGs for S. mutans and 15 pseudo-MAGs for
S. sobrinus in which over 70% of the reference genome
had been unmasked (figure 6e,f; electronic supplementary
material, table S6). Most of these pseudo-MAGs were from
Chinese samples [47]. The pseudo-MAGs were combined
with genomes from cultivated bacteria of the same species
from Brazil, the US and the UK as well as other countries
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(table 2) and maximum-likelihood (ML) phylogenies of non-
repetitive SNPs (figure 7) were created with EToKi (see
Methods).

The ML phylogenies of the two species showed interesting
differences. All 13 Chinese pseudo-MAGs clustered together
within the S. sobrinus ML tree (figure 7b), whereas almost all
the other 44 bacterial genomes from Brazil and elsewhere clus-
tered distantly. By contrast, in the S. mutans tree (figure 7a), 20
Chinese pseudo-MAGs did not show any obvious phylogeo-
graphic specificities and were inter-dispersed among 196
bacterial genomes from multiple geographic locations. Similar
conclusions about a lack of phylogeographic specificity were
previously reached by Cornejo et al. [65] on a subset of 57 of
these S. mutans genomes.

3. Discussion
Several years ago, we accidentally became interested in com-
paring historical and modern genomes reconstructed from
metagenomic short-read sequences with draft genomes
assembled from high-throughput sequencing of cultivated
bacteria. Our initial efforts involved the deployment of indi-
vidual bioinformatic tools, comparisons of multiple publicly
available algorithms and compilation of draft genomes
from publicly available sequence read archives of short-read
sequences [2]. In parallel, we were also involved in develop-
ing EnteroBase, a compendium of 100 000s of draft genome
assemblies from multiple genera that can cause enteric dis-
eases in humans, including Salmonella [5,24]. These two
projects were synergistic for elucidating the evolutionary his-
tory of Salmonella enterica based on metagenomic sequences
from 800-year-old bones, teeth and dental calculus [11].
In that case, sequence reads from S. enterica were found in
teeth and bone, but not in dental calculus. Our attempts to
examine further samples of dental calculus quickly demon-
strated that optimized pipelines were needed because
manual analyses were too time intensive. However, none of
the existing tools were both reliable and sufficiently sensitive
for assigning sequence reads from historical metagenomes to
the tree of microbial life. We therefore took a step back
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and developed SPARSE [32] to satisfy our requirements.
SPARSE replaces the current reference databases, which are
strongly biased to multiple, closely related genomes from
bacterial pathogens, by a representative subset consisting of
one genome per ANI95% hierarchical cluster within RefSeq,
and assigns sequence reads to these clusters using a proba-
bilistic model. That model penalizes non-specific mappings
of reads and hence reduces false-positive assignments.
SPARSE was more reliable than multiple other taxonomic
classifiers, and both more sensitive and more reliable for
identifying low numbers of reads from ancient metagenomes
than multiple other pipelines [32]. In parallel, we expanded
the capacities of EToKi [5], an efficient backend pipeline for
genomic manipulations, such that it can accurately identify
individual sequence reads sieved through SPARSE that are
more similar to an in-group of reference genomes from the
target species than to an out-group of genomes from a closely
related, but distinct taxon. Those reads are then used to
unmask nucleotides in a reference genome and generate a
pseudo-MAG for SNP-based maximum-likelihood phyloge-
nies. Finally, we developed GrapeTree [38], which facilitates
the graphic visualization and manipulation of phylogenetic
trees based on large numbers of genomes. Here, we demon-
strate how to combine all three tools in order to obtain an
overview of the microbial flora in samples from human
oral saliva, modern dental plaque and historical dental
calculus. We also reconstructed genomes of two taxa present
at moderate concentrations within the oral microbiome
and compare them with conventional draft genomes. The
experimental procedures for processing 1016 metagenomes
consisted of running SPARSE in the background for 2
months (approx. 100 000 CPU h). The pipelines described
here permitted all other procedures and evaluations
described here to be completed in less than two weeks.

Our traditional understanding of oral ecology is largely
based on taxonomic assignments of cultivatable bacteria,
often performed by checkboard DNA–DNA hybridization
[25]. Currently, 756 species have been cultivated from the
human oral cavity and respiratory tract [66]. A subset of 40
are used for checkboard DNA–DNA hybridization [25], of
which 28 were used to define the oral complexes that were
thought to be of importance for periodontitis [26]. Our
comparisons of those data with the results from the metage-
nomic analyses presented here show that the frequencies of
individual taxa determined by the checkerboard assay were
inconsistent with the frequencies determined by our metage-
nomic analyses (electronic supplementary material, figures S5
and S6). The checkerboard assays also lacked 17 common
taxa from dental plaque and dental calculus that were
found by metagenomic analyses. These results are not unex-
pected because our metagenomic analyses included saliva
samples as well as ancient dental calculus and identified
1591 taxa, many of which have not been cultivated. Further-
more, it is now well established that the frequencies of
certain supposed members of the oral complexes differ very
dramatically with geographical source [67]. However, we had
anticipated that we might be able to expand the compositions
of the oral complexes to include previously uncultivated organ-
isms. Instead, we were unable to reliably identify their very
existence (figure 4) because clustering of taxa was affected by
minor changes in choice of samples and the choice of clustering
algorithm (electronic supplementary material, figure S3). We
therefore conclude that the existence and composition of the
oral complexes needs independent verification by modern
techniques and new samples.

The data presented here provide an unprecedented
comparative overview of the relative proportions of the
predominant taxa in public available metagenomes from
the modern and historical oral microbiome. Figure 2 ident-
ifies 15 taxa, which are particularly common in historical
calculus, 14 others that are preferentially found in modern
dental plaque and 11 that seem to be specific for saliva.
These associations with a particular source in the oral
cavity might be used to identify currently undefined ecologi-
cal complexes of oral taxa that share a common niche.
However, species-level OTUs are likely to be conglomerates
of multiple microbial populations, each of which may inhabit
a somewhat different ecology. For some organisms such as
Salmonella or Escherichia, efforts are currently underway to
develop hierarchical clustering of such populations in order
to categorize their ecological and pathogenic differentiation
[5]. A step in this direction for the oral microbiome is the
recognition of ANI95% clusters s8897 and s126097, both of
which were preferentially found in saliva. A large study of
all streptococci [59] identified multiple other ANI95% clus-
ters within S. mitis but their preferential location in the oral
cavity has not yet been addressed. Indeed, little is yet
known about the sub-species population structure of almost
all of the taxa identified here.

Ourmore detailed investigation of S.mutans and S. sobrinus
may represent a forerunner of future studies on sub-species
ecological differences within the oral microbiome. S. mutans
and S. sobrinus are commonly associated with dental caries
and may play a causal role in that disease [63]. However,
once again these taxa were more common in saliva than in
dental plaque (figure 6). We chose S. mutans and S. sobrinus
for more detailed analysis because sufficient reads were
found in multiple metagenomes from modern samples to
allow the partial reconstruction of multiple genome sequences
(pseudo-MAGs). In addition, multiple draft genomes from
cultivated bacteria existed in the public domain, which were
available for genomic comparisons. We were also intrigued
by the claim that S. mutans was rare in historical plaque [18].
Our data support that claim, andwe found only a few historical
samples of dental calculus that contained any reads of
S. mutans, and none with S. sobrinus. Our data also support
prior conclusions of a lack of phylogeographic differentiation
within S. mutans [65]. However, although the data are still
somewhat limited, S. sobrinus from China tend to cluster
distinctly from genomes from Brazil (figure 7). Distinct cluster-
ing might reflect phylogeographical signals but other causes of
clustering cannot currently be excluded because the Chinese
genomes were pseudo-MAGs reconstructed from metagen-
omes from dental plaque and saliva while the Brazil genomes
were from bacteria cultivated from dental plaque. Additional
genomes of S. sobrinus from other geographical areas would
be needed to determine whether the apparent phylogeographi-
cal trends are robust. Such analyses could also be facilitated by
creating an EnteroBase for Streptococcus, which could be done
relatively easily [59] if there were interested curators and
sufficient interest in the Streptococcus community.

In summary, we illustrate the use of a variety of reliable,
high-throughput tools for determining microbial diversity
within metagenomic data, and for extracting microbial gen-
omes from metagenomes. We illustrate these tools with
metagenomes from both modern and historical samples,
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4. Methods
(a) SPARSE database update
In its original incarnation inAugust 2017 [32], SPARSEusedMASH
[68] to assign 101 680 genomes from the NCBI RefSeq database to
28 732ANI99%clusters of genomes. ByMay2018, 21 540 additional
genomes had been added to NCBI RefSeq. Thesewere merged into
the existing database in the samemanner as previously, bymerging
that each genome into an existing ANI99% cluster or by creating a
new cluster containing one genome if theANI to all existing clusters
was less than 99%. An ANI99% representative microbial database
was generated which contained one representative genome for
each of the 32 378 ANI99% clusters containing bacteria, archaea or
viruses plus a human reference genome (Genome Reference Con-
sortium Human Build 38) such that reads from human DNA
could also be called. All the representative genomes were assigned
to a superset of 20 054 ANI95% clusters, and this was used for
species assignments and genomic extractions as described [32].

(b) SPARSE analyses
‘EToKi prepare’was used to collapse paired-end reads and trim all
sequence reads. Subsequent SPARSE analyses were performed on
all the metagenomes in table 1 and additional metagenomes in
electronic supplementary material, figure S7, as described in the
SPARSE manual (https://sparse.readthedocs.io/en/latest/). The
first step was ‘SPARSE predict’, which identifies ANI95% groups
containing greater than or equal to 10 specific reads. Subsequently,
‘SPARSE report –low 0.0001’was used to assign taxon designations
to the ANI95% groups and produce a table of all metagenome
results (electronic supplementarymaterial, table S3) which lists dis-
tinct taxa for each metagenome that accounted for ≥0.0001% of all
its reads. Electronic supplementary material, table S3, also includes
the designations of oral complexes and other known pathogens
according to a manually curated dictionary. Sequence reads were
extracted from the metagenomes for assembling pseudo-MAGs
with ‘SPARSE extract’.

For electronic supplementary material, figures S5–S8, the
taxonomic assignments were inversely weighted by genome
size in order to render them comparable to DNA–DNAChecker-
board data and output from Metaphlan2, which calculate cell
counts. To this end, the number of metagenomic reads assigned
to each species within a metagenome was divided by the genome
size of the SPARSE reference genome for that species. These data
were then expressed as a proportion of the summed data for all
microbial species within that metagenome.

(c) Metagenomes lacking reads from the oral
microbiome

We tested all metagenomes to identify any that might be grossly
contaminated by collating the 50 most abundant microbial species
over all metagenomes (electronic supplementary material, table
S4A). The percentage of reads in these 50 taxa was summed for
each metagenome and expressed as a percentage of all microbial
reads. Seven metagenomes (ancient dental calculus: 5; modern
saliva: 2; electronic supplementary material, table S2) were
excluded because the percentages of those top oral microbes con-
stituted less than 15% of their total microbial reads.

(d) Dimensional reduction of frequencies of reads
Two forms of dimensional reduction of diversity were used to
detect source-specific clustering within the SPARSE results.
UMAP analysis was performed with its Python implementation
[56], using the parameters min_neighbours = 5 and min_dist =
0.0. PCA was performed using the decomposition.PCA module
of the scikit-learn Python library [69]. Optimal k-mean clusters
of the first three components from the UMAP analysis were
calculated with the sklearn.cluster module of the scikit-learn
Python library.
(e) Ranking of microbial species by their associations
with source

Microbial species were ranked by their weighting according to
an SVM classification [58]. A supervised SVM classification of
samples was performed using the SVMmodule of the scikit-learn
Python library on the raw SPARSE results (electronic
supplementarymaterial, table S3). The SVMclassificationwas per-
formed 300 times on a randomly chosen training set consisting of
60% of all samples with varying penalty hyper-parameter C and
scored using fivefold cross-validation. The model was then tested
with the optimal hyper-parameter from all runs on the remaining
40% of samples and correctly inferred the oral source for greater
than 96% of the test samples. The optimal SVM coefficients for
each individual species were estimated by training that model
once again on all the oral samples. The order of the species in
figure 2 consists of the SVM weights (squares of the coefficients;
[70]) in descending order. The Python scripts described inMethods
(d,e), as well as their outputs are freely accessible online as Dataset
S3 in https://github.com/zheminzhou/OralMicrobiome.
( f ) Genome reconstructions for Streptococcus mutans
and Streptococcus sobrinus

SPARSE identified samples in which the metagenomic sequence
reads covered at least 2 MB of the reference genome for S.
mutans (ANI95% cluster s5; 66 samples) or S. sobrinus (s3465; 28
samples) (figure 4b,d). The cleaned, species-specific reads gener-
ated from these samples as in Methods (b) were processed with
the stand-alone version of EToKi as described in electronic sup-
plementary material, fig. S6 of Zhou et al. 2020 [5] and in greater
detail in the online manual (https://github.com/zheminzhou/
EToKi). EToKi assemblewas then used to identify genome-specific
reads after specifying a reference genome, an in-group of related
genomes, and a related but distinct out-group of other genomes.
For S. mutans, the reference genome was UA159 (accession code
GCF_000007465), the in-group was 194 other S. mutans genomes
in RefSeq (electronic supplementary material, table S5), and the
out-group was 62 genomes from other species in the Mutans
Streptococcus group according to Zhou et al. 2020 [59]. For
S. sobrinus, the reference genome was NCTC12279 (accession
code GCF_900475395), the in-group was 45 other S. sobrinus gen-
omes and the out-group was 211 genomes from other Mutans
streptococci (electronic supplementary material, table S5). The
assemble module replaces nucleotides in the reference genome
by their calculated SNVs after checking that they are supported
by at least 70% of at least three metagenomic reads, and that the
supporting read frequencies are at least one-third of the average
read depth. The resulting pseudo-MAGs are listed in electronic
supplementary material, table S6 and are freely accessible online
as Datasets S1 and S2 in https://github.com/zheminzhou/
OralMicrobiome.

‘EToKi align’was used to create an alignment of non-repetitive
SNPs from 31 S. mutans pseudo-MAGs plus all 195 S. mutans
genomes plus the sole S. troglodytae genome in RefSeq (electronic
supplementary material, table S5). The alignments spanned
1.73 MB that were shared by at least 95% of the genomes and cov-
ered 181 321 core SNPs. Similarly, an alignment of 15 S. sobrinus
MAGs, 46 draft or complete S. sobrinus genomes plus 6 genomes
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of Streptococcus downei from RefSeq spanned 1.16 MB and con-
tained 160 863 core SNPs. These alignments were subjected to
maximum-likelihood phylogeny reconstruction by EToKi phylo.
Both ML trees were then visualized with GrapeTree [38].

(g) DNA damage patterns for ancient Streptococcus
mutans reads

SPARSE assigned low numbers of sequence reads to S. mutans in
10 metagenomes from ancient dental calculus (figure 6; electronic
supplementary material, table S3). In order to assess their authen-
ticity, these reads were assessed with MapDamage2 [64] for
patterns of cytosine deamination that are characteristic of authentic
ancient DNA. To this end, all S. mutans-specific reads were
extracted with SPARSE. They were aligned to the S. mutans refer-
ence genome UA159 with Minimap2 [36] and reads which were
at least 95% identical with the reference genome were used to
create BAM alignments. SouthAfr2 contained 11 specific reads
according to SPARSE, but only eight survived this filtering step.
SouthAfr2 was therefore excluded from further analyses because
these were too few reads to provide reliable analyses. The BAM
alignments from the remaining nine metagenomes consist of
both fully aligned reads (46–72%) and others which were ‘soft-
clipped’, i.e. terminal bases were not aligned to the reference
genome. In order to ensure that these soft-clipped reads were
also specific, we compared the alignment scores for all reads
against UA159 with the alignment scores against the 62 out-
group genomes in Mutans streptococci (electronic supplementary
material, table S5) and found that the scores with UA159 were
highest. We also tested the alignment scores against two other
S. mutans genomes (SA38, [GCF_000339615]; 4VF1 [GCF_
000339215]; electronic supplementary material, table S5), but
neither yielded higher alignment scores than UA159. The outputs
from MapDamage2 show the soft-clipping ends by a yellow line
(electronic supplementary material, figure S4A–D).
Data accessibility. The pseudo-MAGs reconstructed from metagenomes
for S. mutans and S. sobrinus are freely accessible in tar.gz files contain-
ing Datasets_S1 and Dataset_S2 at https://github.com/zheminzhou/
OralMicrobiome, respectively. Python scripts that were used to prepare
data for figures 1–5 and S1–S3 are available as Dataset_S3 in the same
repository. The taxonomic profiling by SPARSE of all 784 meta-
genomes is available in electronic supplementary material, table S3.
Interactive versions of figure 7 are available at http://enterobase.war-
wick.ac.uk/a/42277 (figure 7a) and http://enterobase.warwick.ac.
uk/a/42279 (figure 7b).
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