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This Letter presents a stable polyp-scene classification method with low false positive (FP) detection. Precise automated polyp detection during
colonoscopies is essential for preventing colon-cancer deaths. There is, therefore, a demand for a computer-assisted diagnosis (CAD) system
for colonoscopies to assist colonoscopists. A high-performance CAD system with spatiotemporal feature extraction via a three-dimensional
convolutional neural network (3D CNN) with a limited dataset achieved about 80% detection accuracy in actual colonoscopic videos.
Consequently, further improvement of a 3D CNN with larger training data is feasible. However, the ratio between polyp and non-polyp
scenes is quite imbalanced in a large colonoscopic video dataset. This imbalance leads to unstable polyp detection. To circumvent this, the
authors propose an efficient and balanced learning technique for deep residual learning. The authors’ method randomly selects a subset of
non-polyp scenes whose number is the same number of still images of polyp scenes at the beginning of each epoch of learning.
Furthermore, they introduce post-processing for stable polyp-scene classification. This post-processing reduces the FPs that occur in the
practical application of polyp-scene classification. They evaluate several residual networks with a large polyp-detection dataset consisting
of 1027 colonoscopic videos. In the scene-level evaluation, their proposed method achieves stable polyp-scene classification with 0.86
sensitivity and 0.97 specificity.
1. Introduction: Early detection of polyps in colonoscopies is an
essential task for the prevention of colon-cancer deaths. Accurate
polyp detection is essential for colonoscopy performance since
every 1% increase in the polyp-detection rate can decrease the
interval of colorectal cancer incidence by 3% [1]. However, the
adenoma-detection rate obtained by colonoscopists varies from 7 to
53%, even though the adenoma-prevalence rate is estimated to be
higher than 50% in the screening-age population [2]. The previous
meta-analysis also showed that approximately 26% of neoplastic
diminutive polyps was missed in a single colonoscopy [3].
Therefore, there is a demand for an image-based computer-assisted
diagnosis (CAD) system for colonoscopies to achieve improved
colonoscopy performance.
To build a high-performance CAD system, we need an accurate

classifier that correctly discriminates polyp-appearing scenes from
non-polyp scenes in a sequence of images captured by the colono-
scopy. Such stable polyp-scene detection has been a challenge for
many years [4–9]. Previous methods are based on two-dimensional
(2D) image processing of each still image in a colonoscopic video.
MICCAI 2018’s endoscopic vision challenge (Endovis18) [6]
adopted image-sequence-based evaluation as a detection algorithm
by using short colonoscopic videos. In this evaluation, many
state-of-the-art methods produced imbalanced results with biased
sensitivity and specificity, demonstrating the difficulty of stable
polyp detection. Furthermore, in EndoVis18’s test dataset, the
ratio between polyp and non-polyp scenes was about 2:1. Their
evaluation scheme was biased towards sensitivity. Therefore, if
we applied the methods submitted to EndoVis18, we may obtain
many false positives (FPs). Moreover, state-of-the-art methods
[5–9] are variants of object detection methods [10–13] and segmen-
tation methods [14, 15]. Making a large dataset is a notably difficult
task for these methods since the training step requires annotation
labels for the target object regions in each image.
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For stable polyp detection, temporal coherence in colono-
scopy views is a key structural factor, as shown in Fig. 1.
Spatiotemporal feature extraction via a three-dimensional convolu-
tional neural network (3D CNN) [16, 17] utilises temporal
coherence in successive colonoscopic images. In previous studies
[18, 19], a 3D CNN method achieved about 0.80 sensitivity and
specificity in an image-sequence evaluation. These results were
attained by a model trained with short videos of only 102 polyps
and early stopping.

For further improvement in the detection accuracy of a 3D CNN,
we need a larger training dataset. Unlike well-known object-
detection [10–13] and segmentation methods [14, 15], assembling
a large training dataset is possible for a 3D CNN since it
requires only weak annotation, which represents the existence of
a polyp in each frame without annotation of the polyp location.
However, learning for a 3D CNN with large colonoscopic
videos involves an imbalance. The ratio between the polyp and
non-polyp scenes is quite imbalanced in colonoscopic videos
since most scenes do not include a polyp. This property also
leads to imbalanced classification results. Furthermore, a 3D
CNN is prone to overfitting since it has larger parameters than
the usual 2D CNNs.

This paper tackles the imbalance problem of large-scale datasets
in deep learning for automated polyp-scene classification in colono-
scopic videos. We propose a new residual learning procedure
from an imbalanced large dataset. We then introduce post-
processing to train models as a way to achieve stable polyp-scene
classification.

2. Methods: There are roughly two approaches to managing
imbalanced datasets in machine learning [20]: using the
weighting loss function and manipulating datasets. Where the
data size is small, new data is synthesised as data augmentation
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Fig. 1 Temporal coherence in polyp-scene classification for polyp detection. As indicated by the blue boxes, the regions of a polyp exist over several frames in a
colonoscopic video. This temporal coherence contributes to learning discriminative features for accurate polyp-scene classification
before the model is trained [21, 22]. However, the synthesising
approach is costly when pre-processing a large video dataset.
Moreover, generative adversarial networks (GANs)-based data
augmentation is premature for real applications for the training of
GAN easily diverse and trained GAN outputs images of unstable
quality [23, 24]. In unstable output images, some look realistic,
and others not. For large-scale machine learning, loss-function
weighting in the learning step is a common technique [25, 26].
However, as the epoch continues, the effects of the dataset’s
imbalance appear. We introduce an online random subsampling
technique for large scale deep learning. This reduces both the
computational cost and the effect of imbalance.

2.1. Class-weight balancing in loss function: For an input query
X [ RT×H×W×3, which is a tensor containing T-frames of RGB
images, we train the model f (X ), which returns the scores
[y1, y2, . . . , yK ]

` of K predefined classes for X . We introduce a
probabilistic representation Q = {Q(l|f (X ))}Kl=1 of the trained
model as

Q(l|f (X )) = eyl∑K
k=1 e

yk
, (1)

which is a softmax function with the condition∑K
l=1 Q(l|f (X )) = 1. Using this softmax function, for the K-class

dataset, we have weighted cross-entropy between the ground truth
probabilistic distribution P = {P(l|Xnk

)}Kl=1 and the estimated
probabilistic distribution Q by

Hw(P, Q) = −
∑K
k=1

∑Nk

nk=1

wkP(l|X nk
) log (Q(l|f (Xnk

))), (2)

where N, Nk and wk = N/KNk are the total number of samples in
the train dataset, the number of samples of the train dataset of the
kth class and a balanced weight [26], respectively. In the learning
step, we minimise this weighted cross-entropy. We set K = 2 for
the two-classes problem: polyp and non-polyp scenes.
Fig. 2 Architecture 3D CNN (C3DNet [16]) for polyp-scene classification. We ad
0.5 to the fully connected layers
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2.2. Subsampling excepting hard-negative samples: The class-
weight balancing approach partly reduces the effect of
imbalanced training data with early stopping. However, as the
epoch continues, learning with class-weight balancing leads to
overfitting of the dominant category, which contains most of the
population in the training data.

For large-epoch training, we design a new subsampling
approach. In the two-category classification of positive and negative
categories as in polyp-scene classification, we assume that negative
samples are the dominant category. In this large set of negative
samples, we obtain specific samples, which include difficult
patterns for correct classification, as hard-negative samples.
We use hard-negative samples as the default set and randomly
select a subset of the residual negative samples at each epoch in
deep learning so that the ratio of positive and total negative
samples is 1:1. We assume that these hard-negative samples
distribute around the decision boundary between the two categories.
Therefore, this procedure selects an important pattern for training
and utilises all patterns in the negative samples after long learning
with a balanced ratio of the two-category population.
2.3. Architecture for polyp-scene classification: We adopt
spatiotemporal feature extraction with deep learning for our
polyp-scene classification. In our previous work, we used a 3D
CNN, C3DNet, for the spatiotemporal feature extraction [18].
C3DNet is a natural extension of 2D CNNs for 3D data
classification [16], as shown in Fig. 2. However, C3DNet is
prone to early convergence and overfitting. In our previous work
[18], we constructed a C3DNet model with early stopping and
class-weight balancing to avoid overfitting of non-polyp scenes.
Our C3DNet model achieved 0.80 sensitivity and specificity for
the test data extracted from the videos, where only typical
protruding polyps appear.

Residual learning is a state-of-the-art method to avoid overfitting
and extract fine features for classification. Therefore, we adopt a 3D
version of the residual network (3D ResNet) to avoid overfitting
[17]. In addition to introducing residual units, we introduce a
wide residual architecture (Wide ResNet) [27] by extending from
ded batch normalisation to the convolutional layers and added a dropout of
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a 2D convolution to a 3D convolution. The Wide ResNet doubles
the number of kernels of the usual ResNet at the downsampling
step. We set the weight decay to be 0.0001 for all residual units
in our architectures and selected different sizes, numbers, and
strides of kernels in the convolution to optimise the architectures
for polyp-scene classification. However, the number, size, and
stride width of the convolutional kernel and pooling are basically
inherited from the C3DNet of our previous works [18, 19].
Table 1 summarises the architecture of our 3D ResNets. Models
II and IV are wider versions of models I and III, respectively. In
these architectures, the number of parameters of the 3D CNN and
3D ResNet is about 28 million and 14 million, respectively.
To the best of our knowledge, this is the first time, 3D ResNet
has been applied to polyp-scene classification.

2.4. Post-processing: In real colonoscopic scenes, inappropriate still
images for diagnosis can be captured, such as images that are out
of focus and/or blurred due to the colonoscope moving too fast.
Moving the colonoscope too quickly also results in some still
images in which the polyps are out of sight. Other examples
include occlusion by the colon wall and bubbles that conceal
polyps in the polyp scenes. When the colonoscope moves too
quickly, these inappropriate still images can appear in the
successive images in polyp scenes. These images are a kind of
noise and lead to misclassification in 3D CNN. Therefore, we use
post-processing for the trained models. We set criteria t. If a
trained model outputs a value larger than t over N-successive
samples in an input video, the trained model outputs a
polyp-scene label. This post-processing reduces FPs and
preserves true positives (TPs).

3. Experiments and results
3.1. Dataset: We constructed a new dataset to validate our proposed
learning method. We collected a total of 1027 full-HD-resolution
30-frames-per-second (fps) videos of 951 patients captured
by the CF-HQ290ZI (Olympus, Tokyo, Japan) during a daily
colonoscopy at Showa University Northern Yokohama Hospital
with IRB (institutional review board) approval. We annotated
all of the videos’ frames via two-step procedures with the
annotation tool ELAN [28]. In the first step, two trained support
staff performed annotations for all of the frames of each video.
In the second step, two expert colonoscopists checked the
Table 1 Architect of our 3D ResNet for polyp detection

Layer name

I II

conv1 3× 3× 3, 32, stride 1× 1× 1

max pool, stride 1× 2× 2 max pool, stride 2× 2×

conv2_*
3× 3× 3, 32
3× 3× 3, 32

[ ]
3× 3× 3, 64
3× 3× 3, 64

[ ]

conv3_*
3× 3× 3, 64
3× 3× 3, 64

[ ]
3× 3× 3, 128
3× 3× 3, 128

[ ]

conv4_*
3× 3× 3, 128
3× 3× 3, 128

[ ]
3× 3× 3, 256
3× 3× 3, 256

[ ]

conv5_*
3× 3× 3, 256
3× 3× 3, 256

[ ]
3× 3× 3, 512
3× 3× 3, 512

[ ]

conv6_*
3× 3× 3, 512
3× 3× 3, 512

[ ]
—

global average poolin

Each square bracket represents a residual unit, which is comprised of convi_1, bat
in this order [17].
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annotated videos provided by the support staff. The annotation
labels were the polyp existence, gross anatomy, polyp size,
and observation conditions for all frames in the videos.
The gross anatomy consists of the types of polyps (Is, Ip, Isp
and IIa) and the observation conditions are white light,
narrow-band imaging, and staining modes. These gross
anatomical annotations suggest that both protruding and flat type
polyps exist in our dataset. Note that about 60% of polyps in our
dataset are the flat type. The annotated videos are divided into
two groups: polyp and non-polyp videos. In this evaluation,
we used the polyp existence and observation condition labels.
Note that we used only scenes captured under the white light
condition.

We divided these videos into the training, validation, and test
datasets without duplication of the patients among them. The two
expert colonoscopists selected typical polyp examples for detection
by the CAD system for the validation and test datasets. The training,
validation, and test datasets include both protruding and flat polyps.
We used the validation data to check for overfitting in training and
to select the trained model for evaluation. We used the test data
to evaluate the trained model, which was selected by checking
the validation-data results. Note that there is no duplication in the
divided data. Therefore, we evaluated our trained model with
unseen images. Furthermore, we selected hard-negative videos.
We are already aware of difficult scenes in colonoscopic videos
for polyp-scene classification via our previous works [18, 19].
In these difficult scenes, we observed specific colonoscope
actions, such as moving too close to and stopping near the colon
walls. When colonoscopists capture the shapes of polyp-like
structures, they bring the colonoscope close to the colon walls
and stop it. These actions in non-polyp scenes lead to FPs
because the 3D CNN recognises the actions in videos. In addition
to these actions, the appearance of the specula and bubbles some-
times leads to FPs. Therefore, we selected non-polyp videos that
include specula and bubbles.

We then extracted 16-frame chunks from each dataset. This
extraction allowed for an overlap of eight frames between two
successive chunks. The chunk size was 16× 112× 112× 3
(frames × height ×width × channels), which is the common size
in 3D convolution-based spatiotemporal feature extraction
[16, 17, 29]. Our previous works also used this size [18, 19].
Table 2 summarises the details of our dataset.
Architecture

III IV

3× 3× 3, 64, stride 1× 1× 1

2 max pool, stride 2× 2× 2 max pool, stride 2× 2× 2

3× 3× 3, 64
3× 3× 3, 64

[ ]
3× 3× 3, 128
3× 3× 3, 128

[ ]

3× 3× 3, 128
3× 3× 3, 128

[ ]
3× 3× 3, 256
3× 3× 3, 256

[ ]

3× 3× 3, 256
3× 3× 3, 256

[ ]
3× 3× 3, 512
3× 3× 3, 512

[ ]

3× 3× 3, 512
3× 3× 3, 512

[ ]
—

— —

g and softmax

ch normalisation, ReLu, convi_2, batch normalisation, addition, and ReLu,
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Table 2 Summary of our polyp detection dataset

Polyp videos Non-polyp videos

Train Validation Test Total Train Validation Test Total

#patient 745 24 24 793 154 12 13 158
#videos 797 31 40 868 165 15 11 159
#polyp 1945 31 41 2017 0 0 0 0
#chunks 90,096 2274 2184 94,554 284,510 21,436 20,291 326,237

# patients represents the number of patients. # videos represents the number of videos captured from the patients. # polyps and # chunks counts the number
of polyps in the videos and chunks extracted from the videos, respectively. The length of each video is from 10 to 25 min. In the set of non-polyp videos,
32 videos of 21 hard-negative samples, which were difficult non-polyp scenes for classification, provided 46,086 chunks.

Fig. 3 ROC curves of polyp-scene classification in four models. For this
plotting, we set t = 0.05, 0.10, . . . , 0.95 as the decision criteria for the
softmax output against the polyp scene. The vertical and horizontal axes
represent sensitivity and 1-specificity, respectively
3.2. Training of models: We trained a 3D CNN and 3D ResNet for
our polyp-scene classification. We used an NVIDIA Tesla V100
16 GB GPU and a Keras with a TensorFlow backend. For the
C3DNet, we trained two models with balanced weighting and our
random subsampling, respectively. For these two trainings, we
set an Adam optimisation algorithm with a default learning rate of
lr = 0.00001 for 30 epochs. For the 3D ResNet, we used our
random subsampling set at lr = 0.000001 for 70 epochs. We selected
the best-trained models for each architecture by checking the classi-
fication accuracy with the validation data. These base learning rates
were decided via preliminary experiments by checking the learning
curves and selecting base learning rates that moderately lose values
of loss functions for both the training and validation data.
3.3. Chunk-level evaluation: Using the trained models of each
architecture, we computed the sensitivity and specificity against
the test data. Sensitivity and specificity are the ratios of TPs in
Fig. 4 Example of short 60-second video clips for scene-level evaluation. The re
blurred because the colonoscope moved quickly. The blue-dashed lines indicate t
and blurry scenes. The non-polyp scenes include scenes that are too close to the
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the polyp and non-polyp scenes, respectively, of the test data.
Fig. 3 illustrates the evaluation results of the ResNets in a chunk
level. We omitted the results of two C3DNets, trained with
class-weight balancing and our subsampling, respectively, since
both models had almost zero sensitivity. Note that the C3DNet
trained with our random samples gives higher sensitivity than the
C3DNet trained with class-weight balancing for evaluation
against the training data, even though both models are overfitted
to the training data.
3.4. Scene-level evaluation: We performed a scene-level evaluation
of the trained ResNets using 21 short video clips of 50–60 seconds.
We created these 21 video clips from 40 polyp videos of 41 polyps
in the test data. Each clip includes polyp scenes of one polyp and
the length of one polyp scene is from 2 to 10 seconds. These
clips were cropped from videos of actual endoscopies. Therefore,
these polyp scenes include inappropriate still images due to quick
colonoscope movement with bubbles and specula. This allows for
practical evaluation as such inappropriate images inhibit polyp
detection. Fig. 4 shows an example of these 21 short video clips.

We fed these 21 clips to the four trained models with post-
processing, where we extracted 16-frame chunks with 4-frame
overlap between successive chunks. For post-processing, we set
decision criteria t = 0.5 for all four trained models. We chose
these criteria to compare the four models in the same setting. We
set N in post-processing to be 2 and 3 for models I and III, and II
and IV, respectively. This setting of N was decided from the
validation data classification.

In this evaluation, we conclude that correct detection is per-
formed if the trained model detects at least one chunk in a polyp
scene of a short video clip. We set the detection accuracy to be
the ratio of correctly detected polyps in the 21 short video clips.
Fig. 5 shows an example of this evaluation. In Figs. 5b, d, f and
h, a polyp is correctly detected since the trained models classified
several chunks for an approximately four-second polyp scene, as
marked by the red lines. In addition to detection accuracy, we com-
puted the average length of FP scenes among these 21 clips. FP
scenes are non-polyp scenes that are incorrectly classified as
polyp scenes. Table 3 summarises the detection accuracy and
average length of the FP scenes.
d square designates a polyp scene. In the polyp scene, several frames are
he polyp locations of each frame. Non-polyp scenes include bubble scenes
colon wall
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Fig. 5 Examples of qualitative evaluation. (a), (c), (e), and (g), and (b), (d), (f), and (h) summarise the softmax outputs and prediction labels for the short video
clips shown in Fig. 4, respectively. From top to bottom, the first to fourth rows summarise the results given by models I, II, III, and IV, respectively. Note that the
inputs for the models are sets of 16 frames (chunks) with a 4-frame overlap in successive chunks
a Model I
b Model I
c Model II
d Model II
e Model III
f Model III
g Model IV
h Model IV

Table 3 Results of the scene-level evaluation

Model Detection accuracy Average length of FP scenes, s

I 0.86 1.5
II 0.95 6.0
III 0.71 0.8
IV 1.00 4.5
4. Discussion: In the results of the chunk-level evaluation shown
in Fig. 3, our ResNets with proposed random sampling reduced
the overfitting of the non-polyp scenes, even though the C3DNet
resulted in overfitting of zero sensitivity. Furthermore, random
sample preserving of hard-negative samples achieved a high
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 237–242
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specificity of about 0.99. In the results in Fig. 3, the sensitivities
of the trained models appear insufficient. However, the polyp
scenes in the test data include many inappropriate noise images
for the polyp-scene classification since the test data is sampled
from actual colonoscopic videos. Furthermore, the inputs of the
models partly include non-polyp scenes at the beginning and the
end of the polyp scenes because the inputs in the evaluation
are sets of 16 frames with an 8-frame overlap in successive
chunks. Therefore, the test data is a very difficult set of
practical-diagnosis scenes.

In the results in Fig. 5, we observe FPs even though we obtained
high specificity in Fig. 3. In the chunk-level evaluation, we
extracted chunks of polyp and non-polyp scenes from the polyp
and non-polyp videos, respectively. However, in the scene-level
evaluation, we extracted successive chunks of polyp and non-polyp
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scenes from the polyp videos. Therefore, non-polyp scene chunks
include colon wall surface textures similar to the polyp scene
textures. These similar textures sometimes lead FPs.

The results of the scene-level evaluation demonstrate the validity
of our post-processing. In the examples shown in Fig. 5, the
post-processing reduced many FPs and retained TPs of polyp
scenes. The bubble and blurry scenes shown in Fig. 4 were rejected
through our post-processing. There are FPs after post-processing in
Figs. 5d and h. Models II and IV have higher representation ability
of pattern than models I and III because they have the wide residual
architecture of models II and IV. Therefore, models II and IV
provide more FP scenes that have textures similar to the polyp
scenes.

As summarised in Table 3, model II achieved the highest detec-
tion accuracy in the scene-level evaluation. However, the average
length of the FP scenes was 6 seconds in model II, which is
about 10% of the short video clips. This implies that model II is
unstable. Model I achieved the second highest detection accuracy
with the second shortest average length of FP scenes. This
average length accounts for only about 3% of the short video
clips. In other words, model I achieved 0.86 sensitivity and 0.97
specificity in the scene-level evaluation, indicating that model I
achieves stable polyp detection. We showed the detection
example in Fig. 5 to three expert colonoscopists, who reported
that model I appears to be the most practical model for real colon-
oscopy use.

5. Conclusions: Towards practical polyp-scene classification in
colonoscopic videos, we tackled the imbalance problem of
large-scale datasets in deep learning by establishing a new
residual learning procedure from an imbalanced large dataset. We
then introduced post-processing to the trained models as a way to
achieve stable polyp-scene classification. We validated our
proposed residual learning procedure and post-processing through
experiments with a large dataset of 1027 colonoscopic videos.
Our proposed method established stable polyp-scene classification
in the scene level of an actual colonoscopic video with a
moderate sensitivity of 0.86 and high specificity of 0.97. We
conclude that this stable polyp-scene classification is helpful in
real colonoscopies as a practical CAD system.
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