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P E R S P E C T I V E

Model-­informed target identification and validation 
through combining quantitative systems pharmacology 
with network-­based analysis

One of the main areas where quantitative systems 
pharmacology (QSP) can impact drug discovery and 
development is target identification and validation. 
However, due to the multiscale nature and complex-
ity of typical QSP models, the target space that can be 
explored is still significantly constrained. Therefore, 
we propose to combine QSP with network-­based 
analysis (NBA) to increase the efficiency and effec-
tiveness of in silico (model-­informed) target identi-
fication and validation.

The majority of drug development projects fail in 
phase II and phase III  clinical trials, mainly due to the 
lack of efficacy and unacceptable safety profiles.1 One of 
the notable contributing factors contributing to this fail-
ure is an inadequate understanding of the underlying 
disease biology and target-disease linkage. This results 
in poor target choice, suboptimal target modulation, un-
anticipated structure-based or mechanism-based toxicity, 
inappropriate patient-population selection, and the ab-
sence of decision-making biomarkers.2 Therefore, finding 
novel, drugable targets associated with high confidence 
in rationale for therapeutic efficacy and safety remains a 
major challenge. Adoption of a discovery pipeline based 
on in-depth understanding of disease biology and mecha-
nisms is an absolute need for identifying potential targets 
for clinical success. Indeed, AstraZeneca reported that 
the implementation of their revised research and devel-
opment (R&D) strategy based on the so-called 5R frame-
work (which includes “the right target”) increased the 
trial success rate from 4% to 19%,3 whereas Pfizer recently 
disclosed their phase II survival is now above 50% while 
maintaining phase III success.1

Clinical trials initiated based on preclinical studies in 
models with unknown translational value has more often 
than not led to disappointing results in patients. For exam-
ple, in a recent study, Lin et al. investigated a set of cancer 
drugs and their targets that are in various stages of clinical 

or late-stage preclinical development using clustered reg-
ularly interspaced short palindromic repeats-associated 
protein 9 (CRISPR/Cas9)-mediated mutagenesis and 
found that most of these drugs work through off-target 
interaction to kill cancer cells.4 The loss of these putative 
targets did not affect the efficacy of these drugs, proving 
that these targets are nonessential for cancer cell prolif-
eration. Hence, misidentification of targets would lead to 
misconception of a drug's mechanism of action, which 
could, for example, hamper identifying effective biomark-
ers that are used for predicting therapeutic response.

With target identification and validation being such a 
formidable challenge, companies continue to invest signif-
icant time and resources in identifying novel approaches, 
such as in silico technologies. For example, it has been 
proposed that target identification and validation is one 
of the main areas where QSP can impact drug discovery 
and development.5 The strength of QSP models lies in the 
incorporation of the underlying disease biology at the mo-
lecular level and its propagation to a higher level organi-
zation. Hence, developing QSP models is a significant task 
requiring a considerable amount of background informa-
tion on target mechanisms at multiple biological scales to 
be implemented at the required level of details. Currently, 
the mechanistic details to be included in the QSP models 
are largely driven by expert opinion and traditional liter-
ature survey. This process is extremely laborious and con-
strained with limited capability to explore multiple targets 
and associated mechanisms in a cell-specific or tissue-
specific manner.

Therefore, in silico screening of an entire molecu-
lar network in the context of the whole genome may be 
more effective in identifying potential targets that simul-
taneously modulate multiple disease genes. However, 
given their time-consuming nature, this approach is cur-
rently not practically feasible with the current QSP meth-
ods discussed previously. In contrast, high-throughput, 
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data-driven in silico screening methods of multi-omics 
data (typically referred to as network-based analysis 
[NBA]) have been developed and applied for many years 
in the field of systems biology and bio-informatics but to 
date have not been linked to QSP.6 In recent years, NBA 
has gained significant interest in drug discovery and devel-
opment for analyzing and making meaningful hypothesis 
out of the rapidly growing high-throughput multi-omics 
data. Although the generation of high-throughput clini-
cal multi-omics data has provided a great opportunity to 
understand the complex relationship between molecu-
lar layers, integration and translation of these multilay-
ered networks to extract mechanistic insights remains 
a challenge. Recently, several publications used various 
multi-omics data integration strategies and extracted key 
functional insights connecting it to clinical outcomes at a 
cellular level for individual patients (see Material S1). For 
example, our group recently developed an NBA pipeline 
that generates a patient-specific disease network by inte-
grating multifaceted data sets, including patient-specific 
transcriptomic data, and identified key molecules and 
pathways that were then used to prioritize drug candidates 
(see references 21–22 in the Material S1). Not surpris-
ingly, the most recent approaches focus on the applica-
tion of machine-learning (ML) and deep-learning (DL) 
principles. For example, Dugourd et al. developed Causal 
Orientated Search of Multi-Omics Space (COSMOS), a 
network-based method using ML principles that extracts 
mechanistic hypothesis by integrating prior-knowledge 
network and multi-omics data.7

NBA predicts the mechanistic relationship between 
drugs, their targets, disease-causing genes, and differen-
tially expressed genes and proteins from multi-omics data 
sets by taking into account the entire target interactome 
extracted from large-scale, protein–protein interaction 
databases. Hence, it facilitates exploring “multiple drugs, 
multiple targets, multiple pathways operating in multiple 
tissues” aiming at identifying optimal nodes for interven-
tion to have maximum therapeutic effect. Moreover, ac-
counting for genetic variants and differentially expressed 
genes in individual patients or a subset of patients, NBA 
may provide pharmacogenomics insights in the influence 
of these genetic markers on drug response. Therefore, 
NBA can help with deciding whether a particular drug 
would work for an individual or a subset of patients based 
on their genetic makeup. Hence, depending on the data 
that are fed into an NBA framework, it can be used to con-
nect tissue, cell, pathway, and target data at the level of 
an individual patient to drug response, as illustrated in 
Figure 1 (see Material S1 for more details).

Although NBA methodologies that integrate diverse 
multifaceted biological data have brought a unique op-
portunity to understand disease processes, discover novel 

targets and drug mechanisms, and design therapeutic 
strategies tailored to individual patients, they have lim-
ited capability to quantitatively investigate the degree of 
efficacy of drug action at the system level, design dosing 
regimens, and predict longitudinal outcomes. Therefore, 
we propose to combine QSP with NBA to increase the ef-
ficiency and effectiveness of in silico (model-informed) 
target identification and validation. In this “QSP 2.0” para-
digm, the initial target identification step is driven by NBA 
and the subsequent target validation by QSP (Figure  1), 
arguably in the spirit of the original National Institutes 
of Health White Paper where QSP was defined as quanti-
tative and systems pharmacology (see reference 23 in the 
Material S1).

Historically, a broad spectrum of computational and 
modeling methods that aim to understand how drugs af-
fect the physiological system under consideration have 
been referred to as “Systems Pharmacology.” Thus, sys-
tems pharmacology is an umbrella term that spans the en-
tire spectrum from qualitative to quantitative modeling 
approaches, that is, from biological NBA to QSP models 
typically used in pharmaceutical R&D. Although static 
NBA methods exploit the entire target interactome and 
provide insights on key pathways and targets, current 
QSP approaches are based on multiscale, physiology-
based pharmacodynamic models to predict the effects 
of therapeutic interventions over time.8 In our proposed 
new paradigm, the systems-level propagation of the tar-
get mechanism in the cell-specific and tissue-specific 
manner first identified by NBA (“target identification”) 
can subsequently be investigated through QSP models 
to understand if modulating the target would provide a 
potential therapeutic benefit (“target validation”). Cell-
specific molecular mechanisms identified from multi-
omic data sets can be converted into simpler ordinary 
differential equation models via logic-modeling ap-
proaches, as demonstrated recently by Nanavati et al.9 to 
achieve a well-structured, fit-for-purpose QSP model. To 
facilitate implementation of such an approach at scale, 
standardized and semiautomated methods and protocols 
need to be developed and implemented. In the current 
Perspective, we have outlined a roadmap for using the 
high-throughput clinical data sets to inform a QSP mod-
eling framework through NBA. The NBA approaches 
and tools listed in the supplementary materials are de-
veloped for various purposes and hence are of different 
granularity. A more collective thinking and development 
of standard pipelines depending on data availability and 
purpose is an immediate need to answer several biologi-
cal and drug discovery questions.

In summary, we propose that the impact and effi-
ciency of QSP in target identification and validation 
can be significantly improved through integration with 
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NBA. Although we have already demonstrated how 
omics data can be used to parametrize QSP models in 
a manual and ad hoc manner,10 a standardized, auto-
mated, and scalable approach would be a more effec-
tive way of using the full potential of both NBA and 
QSP together in model-informed drug discovery and 
development.
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