

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 3-(4-Chlorobenzoyl)-6-(4-chlorophenyl)-2,4-dimethylbenzonitrile

### Xin Wang,<sup>a,b</sup> Yi-Min Zhang<sup>a</sup>\* and Xue-Fei Jia<sup>a</sup>

<sup>a</sup>School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China, and <sup>b</sup>Xinyang Agricultural College, Xinyang, Henan 464000, People's Republic of China Correspondence e-mail: hxxzhym@sina.com

Received 19 August 2012; accepted 21 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.121; data-to-parameter ratio = 14.5.

In the title compound,  $C_{22}H_{15}Cl_2NO$ , the terminal chlorobenzene rings are oriented at 44.51 (15) and 86.06 (17)° with respect to the central polysubstituted benzene ring, and make a dihedral angle of 49.48 (17)° with each other. In the crystal, molecules are linked by weak  $C-H\cdots O$  and  $C-H\cdots N$ interactions.

#### **Related literature**

For background to the title compound, see: Ma (2003, 2005, 2007); Hoffmann-Röder *et al.* (2004). For related structures, see: Zhang *et al.* (2011); Fun *et al.* (2012); Jagadeesan *et al.* (2011).



#### **Experimental**

Crystal data  $C_{22}H_{15}Cl_2NO$   $M_r = 380.25$ Monoclinic,  $P2_1/c$  a = 7.8102 (12) Å b = 30.032 (5) Å

c = 8.2054 (13) Å $\beta = 103.739 (2)^{\circ}$  $V = 1869.6 (5) \text{ Å}^{3}$ Z = 4Mo K $\alpha$  radiation

# organic compounds

 $0.39 \times 0.33 \times 0.23 \text{ mm}$ 

 $\mu = 0.36 \text{ mm}^{-1}$ T = 296 K

#### Data collection

| Bruker SMART CCD area-detector       | 11684 measured reflections             |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 3442 independent reflections           |
| Absorption correction: multi-scan    | 2013 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2007)               | $R_{\rm int} = 0.034$                  |
| $T_{\min} = 0.873, T_{\max} = 0.922$ |                                        |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 237 parameters $wR(F^2) = 0.121$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.21$  e Å<sup>-3</sup>3442 reflections $\Delta \rho_{min} = -0.24$  e Å<sup>-3</sup>

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $C3-H3\cdots N1^{i}$        | 0.93 | 2.61                    | 3.305 (5)    | 132                                  |
| C5−H5···O1 <sup>ii</sup>    | 0.93 | 2.53                    | 3.390 (5)    | 155                                  |

Symmetry codes: (i) x - 1, y, z; (ii)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ .

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 21172057).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5613).

#### References

- Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 01877–01878.
- Hoffmann-Röder, A. & Krause, N. (2004). Angew. Chem. Int. Ed. 43, 1196–1216.
- Jagadeesan, G., Sethusankar, K., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2177.
- Ma, S. (2003). Acc. Chem. Res. 36, 701-712.
- Ma, S. (2005). Chem. Rev. 105, 2829-2871.
- Ma, S. (2007). Aldrichim. Acta, 40, 91-102.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, X., Jia, X., Fang, L., Liu, N., Wang, J. & Fan, X. (2011). Org. Lett. 13, 5024–5027.

# supplementary materials

Acta Cryst. (2012). E68, o2787 [doi:10.1107/S1600536812036409]

# 3-(4-Chlorobenzoyl)-6-(4-chlorophenyl)-2,4-dimethylbenzonitrile

## Xin Wang, Yi-Min Zhang and Xue-Fei Jia

#### Comment

It has been well documented that benzenoid compounds are ubiquitous structural units in a wide variety of naturally occurring compounds and a plethora of pharmaceuticals. On the other hand, allene derivatives are powerful synthetic intermediates toward a plethora of important organic compounds and frequent building blocks of natural products (Ma, 2003, 2005, 2007; Hoffmann-Röder *et al.*, 2004). In this regard, Zhang *et al.* have developed a novel and efficient method for the preparation of polysubstituted benzenes by one-pot double Michael addition/*intramolecular* aldol reaction/ decarboxylation of 1,2-allenic ketones with cyanoacetate (Zhang *et al.*, 2011). Herein, we would like to report the structure of one of the products obtained by this method.

In the title compound (Fig. 1), all the bond lengths and bond angles are within normal ranges. The central polysubstituted benzene ring (C7—C12) forms dihedral angles of 44.51 (15)° and 86.06 (17)° with the other two chloro-substituted phenyl rings (C1—C6) and (C17—C22), respectively. And the dihedral angle between the two chloro-substituted phenyl rings, (C1—C7) and (C7—C12), is 49.48 (17)°. The mean plane of the ketone group is almost co-planar with the neighboring chloro-substituted phenyl ring (C17-C22).

In the crystal structure, the molecules are connected via C-H···O and C-H···N interactions.

#### Experimental

A mixture of 1-(4-chlorophenyl)buta-2,3-dien-1-one (1 mmol), cyanoacetate (0.5 mmol) and  $K_2CO_3$  (0.5 mmol) in acetone (5 ml) was refluxed for 15 min. Upon completion, the reaction mixture was cooled to room temperature, added with water (10 ml) and extracted with ethyl acetate. The combined organic phases were washed with brine, dried, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluting with ethyl acetate/hexane (1:20  $\nu/\nu$ ) to give the title compound as Colorless solids with a yield of 80%. Single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of solvent from a petroleum ether-dichloromethane (2:1  $\nu/\nu$ ) solution.

#### Refinement

The H atoms were included at calculated positions and were refined as riding atoms: C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, with  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.2 for aromatic H, and x = 1.5 for methyl H atoms.

#### **Computing details**

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).



## Figure 1

Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.



## Figure 2

Crystal structure of the title compound, viewed along the *a* axis. Intermolecular C—H···O and C—H···N hydrogen bonds are shown as dashed lines, only H atoms involved in hydrogen bonds are shown.

## 3-(4-Chlorobenzoyl)-6-(4-chlorophenyl)-2,4-dimethylbenzonitrile

| Crystal data                    |                                                       |
|---------------------------------|-------------------------------------------------------|
| $C_{22}H_{15}Cl_2NO$            | $V = 1869.6 (5) Å^3$                                  |
| $M_r = 380.25$                  | Z = 4                                                 |
| Monoclinic, $P2_1/c$            | F(000) = 784                                          |
| Hall symbol: -P 2ybc            | $D_{\rm x} = 1.351 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 7.8102 (12)  Å              | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 30.032 (5) Å                | Cell parameters from 3123 reflections                 |
| c = 8.2054 (13) Å               | $\theta = 2.6-22.9^{\circ}$                           |
| $\beta = 103.739 \ (2)^{\circ}$ | $\mu = 0.36 \text{ mm}^{-1}$                          |

T = 296 KBlock, colourless

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007)  $T_{\min} = 0.873, T_{\max} = 0.922$ 

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier     |
|-------------------------------------------------|------------------------------------------------------|
| Least-squares matrix: full                      | map                                                  |
| $R[F^2 > 2\sigma(F^2)] = 0.047$                 | Hydrogen site location: inferred from                |
| $wR(F^2) = 0.121$                               | neighbouring sites                                   |
| S = 1.08                                        | H-atom parameters constrained                        |
| 3442 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0235P)^2 + 1.9216P]$    |
| 237 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                       |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                  |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.21 \  m e \  m \AA^{-3}$    |
| direct methods                                  | $\Delta  ho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                      |

 $0.39 \times 0.33 \times 0.23 \text{ mm}$ 

 $R_{\rm int} = 0.034$ 

 $h = -9 \rightarrow 9$ 

 $k = -36 \rightarrow 36$  $l = -9 \rightarrow 9$ 

11684 measured reflections

 $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$ 

3442 independent reflections

2013 reflections with  $I > 2\sigma(I)$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x          | У            | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|------------|--------------|------------|-----------------------------|--|
| C1 | 0.7995 (4) | 0.21705 (10) | 0.1502 (4) | 0.0402 (7)                  |  |
| C2 | 0.6497 (4) | 0.20687 (10) | 0.2063 (4) | 0.0452 (8)                  |  |
| H2 | 0.5945     | 0.2292       | 0.2535     | 0.054*                      |  |
| C3 | 0.5808 (4) | 0.16426 (11) | 0.1934 (4) | 0.0525 (9)                  |  |
| H3 | 0.4806     | 0.1580       | 0.2318     | 0.063*                      |  |
| C4 | 0.6621 (5) | 0.13136 (10) | 0.1233 (4) | 0.0518 (9)                  |  |
| C5 | 0.8084 (5) | 0.14040 (11) | 0.0632 (4) | 0.0529 (9)                  |  |
| H5 | 0.8606     | 0.1181       | 0.0131     | 0.063*                      |  |
| C6 | 0.8767 (4) | 0.18288 (10) | 0.0779 (4) | 0.0483 (8)                  |  |
| H6 | 0.9767     | 0.1889       | 0.0386     | 0.058*                      |  |
| C7 | 0.8714 (4) | 0.26288 (10) | 0.1663 (4) | 0.0398 (7)                  |  |
| C8 | 1.0517 (4) | 0.27148 (10) | 0.2239 (4) | 0.0442 (8)                  |  |
| С9 | 1.1199 (4) | 0.31495 (11) | 0.2343 (4) | 0.0483 (8)                  |  |

| C10  | 1.0020 (4)   | 0.35035 (10) | 0.1930 (4)    | 0.0460 (8)  |
|------|--------------|--------------|---------------|-------------|
| C11  | 0.8210 (4)   | 0.34288 (10) | 0.1389 (4)    | 0.0467 (8)  |
| C12  | 0.7596 (4)   | 0.29920 (10) | 0.1238 (4)    | 0.0451 (8)  |
| H12  | 0.6394       | 0.2942       | 0.0838        | 0.054*      |
| C13  | 1.1720 (5)   | 0.23601 (12) | 0.2910 (5)    | 0.0558 (9)  |
| C14  | 1.3152 (5)   | 0.32286 (14) | 0.2910 (5)    | 0.0772 (12) |
| H14A | 1.3698       | 0.3164       | 0.2005        | 0.116*      |
| H14B | 1.3639       | 0.3038       | 0.3845        | 0.116*      |
| H14C | 1.3365       | 0.3534       | 0.3241        | 0.116*      |
| C15  | 0.6925 (5)   | 0.38100 (11) | 0.0981 (5)    | 0.0646 (10) |
| H15A | 0.5752       | 0.3695       | 0.0592        | 0.097*      |
| H15B | 0.7215       | 0.3991       | 0.0122        | 0.097*      |
| H15C | 0.6988       | 0.3986       | 0.1969        | 0.097*      |
| C16  | 1.0722 (5)   | 0.39731 (11) | 0.2256 (5)    | 0.0547 (9)  |
| C17  | 1.1277 (4)   | 0.42252 (11) | 0.0920 (4)    | 0.0495 (8)  |
| C18  | 1.2013 (5)   | 0.46432 (11) | 0.1290 (5)    | 0.0634 (10) |
| H18  | 1.2167       | 0.4758       | 0.2367        | 0.076*      |
| C19  | 1.2517 (5)   | 0.48886 (12) | 0.0070 (5)    | 0.0693 (11) |
| H19  | 1.3029       | 0.5167       | 0.0326        | 0.083*      |
| C20  | 1.2263 (5)   | 0.47210 (11) | -0.1532 (5)   | 0.0589 (10) |
| C21  | 1.1562 (5)   | 0.43075 (11) | -0.1909 (5)   | 0.0658 (11) |
| H21  | 1.1412       | 0.4194       | -0.2988       | 0.079*      |
| C22  | 1.1076 (5)   | 0.40580 (11) | -0.0673 (5)   | 0.0619 (10) |
| H22  | 1.0608       | 0.3774       | -0.0924       | 0.074*      |
| C11  | 0.57545 (16) | 0.07788 (3)  | 0.10760 (15)  | 0.0838 (4)  |
| C12  | 1.28408 (16) | 0.50406 (3)  | -0.30697 (14) | 0.0848 (4)  |
| N1   | 1.2698 (4)   | 0.20909 (12) | 0.3525 (5)    | 0.0805 (11) |
| O1   | 1.0819 (4)   | 0.41318 (9)  | 0.3638 (3)    | 0.0857 (9)  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C1  | 0.0442 (18) | 0.0436 (17) | 0.0329 (18) | 0.0008 (14)  | 0.0092 (14) | 0.0012 (14)  |
| C2  | 0.049 (2)   | 0.0429 (18) | 0.045 (2)   | 0.0041 (15)  | 0.0140 (16) | -0.0021 (15) |
| C3  | 0.055 (2)   | 0.051 (2)   | 0.054 (2)   | -0.0044 (17) | 0.0172 (17) | 0.0015 (17)  |
| C4  | 0.067 (2)   | 0.0420 (18) | 0.045 (2)   | -0.0002 (17) | 0.0117 (18) | 0.0021 (16)  |
| C5  | 0.069 (2)   | 0.050(2)    | 0.041 (2)   | 0.0109 (18)  | 0.0164 (18) | -0.0040 (16) |
| C6  | 0.057 (2)   | 0.0477 (19) | 0.044 (2)   | 0.0038 (17)  | 0.0204 (17) | 0.0003 (16)  |
| C7  | 0.0453 (19) | 0.0439 (18) | 0.0323 (18) | -0.0010 (15) | 0.0130 (15) | -0.0001 (14) |
| C8  | 0.045 (2)   | 0.0508 (19) | 0.040(2)    | 0.0009 (16)  | 0.0165 (15) | -0.0008 (15) |
| C9  | 0.046 (2)   | 0.061 (2)   | 0.039 (2)   | -0.0086 (17) | 0.0138 (16) | -0.0054 (16) |
| C10 | 0.057 (2)   | 0.0502 (19) | 0.0314 (19) | -0.0099 (17) | 0.0125 (16) | -0.0035 (14) |
| C11 | 0.058 (2)   | 0.0470 (19) | 0.0354 (19) | -0.0021 (16) | 0.0117 (16) | 0.0022 (15)  |
| C12 | 0.0446 (19) | 0.0485 (19) | 0.042 (2)   | -0.0017 (16) | 0.0095 (15) | 0.0012 (15)  |
| C13 | 0.050(2)    | 0.062 (2)   | 0.059 (2)   | 0.0008 (19)  | 0.0207 (19) | 0.0016 (19)  |
| C14 | 0.054 (2)   | 0.085 (3)   | 0.090 (3)   | -0.016 (2)   | 0.013 (2)   | -0.010 (2)   |
| C15 | 0.070 (3)   | 0.044 (2)   | 0.076 (3)   | 0.0014 (18)  | 0.011 (2)   | 0.0032 (18)  |
| C16 | 0.063 (2)   | 0.055 (2)   | 0.048 (2)   | -0.0154 (18) | 0.0178 (18) | -0.0095 (18) |
| C17 | 0.059 (2)   | 0.0467 (18) | 0.044 (2)   | -0.0116 (17) | 0.0144 (17) | -0.0070 (16) |
| C18 | 0.083 (3)   | 0.053 (2)   | 0.057 (2)   | -0.023 (2)   | 0.021 (2)   | -0.0158 (18) |
|     |             |             |             |              |             |              |

# supplementary materials

| C19 | 0.092 (3)   | 0.043 (2)   | 0.077 (3)   | -0.022 (2)   | 0.030 (2)   | -0.010 (2)   |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C20 | 0.070 (3)   | 0.045 (2)   | 0.066 (3)   | -0.0041 (18) | 0.026 (2)   | 0.0057 (18)  |
| C21 | 0.094 (3)   | 0.053 (2)   | 0.056 (2)   | -0.020 (2)   | 0.028 (2)   | -0.0097 (18) |
| C22 | 0.082 (3)   | 0.049 (2)   | 0.058 (3)   | -0.0240 (19) | 0.022 (2)   | -0.0079 (18) |
| C11 | 0.1082 (9)  | 0.0465 (5)  | 0.1010 (9)  | -0.0146 (5)  | 0.0337 (7)  | -0.0085 (5)  |
| Cl2 | 0.1219 (10) | 0.0556 (6)  | 0.0896 (8)  | -0.0063 (6)  | 0.0505 (7)  | 0.0130 (5)   |
| N1  | 0.065 (2)   | 0.083 (2)   | 0.095 (3)   | 0.018 (2)    | 0.023 (2)   | 0.014 (2)    |
| 01  | 0.127 (3)   | 0.0814 (19) | 0.0601 (19) | -0.0443 (17) | 0.0442 (18) | -0.0276 (15) |

Geometric parameters (Å, °)

| C1—C2     | 1.389 (4) | C12—H12       | 0.9300    |
|-----------|-----------|---------------|-----------|
| C1—C6     | 1.393 (4) | C13—N1        | 1.144 (4) |
| C1—C7     | 1.481 (4) | C14—H14A      | 0.9600    |
| C2—C3     | 1.382 (4) | C14—H14B      | 0.9600    |
| C2—H2     | 0.9300    | C14—H14C      | 0.9600    |
| C3—C4     | 1.373 (4) | С15—Н15А      | 0.9600    |
| С3—Н3     | 0.9300    | C15—H15B      | 0.9600    |
| C4—C5     | 1.374 (5) | C15—H15C      | 0.9600    |
| C4—C11    | 1.736 (3) | C16—O1        | 1.216 (4) |
| C5—C6     | 1.377 (4) | C16—C17       | 1.479 (4) |
| С5—Н5     | 0.9300    | C17—C22       | 1.374 (4) |
| С6—Н6     | 0.9300    | C17—C18       | 1.384 (4) |
| C7—C12    | 1.389 (4) | C18—C19       | 1.373 (5) |
| C7—C8     | 1.398 (4) | C18—H18       | 0.9300    |
| C8—C9     | 1.405 (4) | C19—C20       | 1.377 (5) |
| C8—C13    | 1.440 (5) | С19—Н19       | 0.9300    |
| C9—C10    | 1.395 (4) | C20—C21       | 1.363 (5) |
| C9—C14    | 1.504 (5) | C20—Cl2       | 1.729 (3) |
| C10—C11   | 1.396 (4) | C21—C22       | 1.384 (5) |
| C10—C16   | 1.514 (4) | C21—H21       | 0.9300    |
| C11—C12   | 1.392 (4) | С22—Н22       | 0.9300    |
| C11—C15   | 1.507 (4) |               |           |
|           |           |               |           |
| C2—C1—C6  | 117.6 (3) | C11—C12—H12   | 118.8     |
| C2—C1—C7  | 120.4 (3) | N1—C13—C8     | 176.2 (4) |
| C6—C1—C7  | 122.0 (3) | C9—C14—H14A   | 109.5     |
| C3—C2—C1  | 121.4 (3) | C9—C14—H14B   | 109.5     |
| C3—C2—H2  | 119.3     | H14A—C14—H14B | 109.5     |
| C1—C2—H2  | 119.3     | C9—C14—H14C   | 109.5     |
| C4—C3—C2  | 119.2 (3) | H14A—C14—H14C | 109.5     |
| С4—С3—Н3  | 120.4     | H14B—C14—H14C | 109.5     |
| С2—С3—Н3  | 120.4     | C11—C15—H15A  | 109.5     |
| C3—C4—C5  | 121.0 (3) | C11—C15—H15B  | 109.5     |
| C3—C4—C11 | 119.1 (3) | H15A—C15—H15B | 109.5     |
| C5—C4—Cl1 | 119.9 (3) | C11—C15—H15C  | 109.5     |
| C4—C5—C6  | 119.3 (3) | H15A—C15—H15C | 109.5     |
| C4—C5—H5  | 120.3     | H15B—C15—H15C | 109.5     |
| С6—С5—Н5  | 120.3     | O1—C16—C17    | 121.8 (3) |
| C5—C6—C1  | 121.5 (3) | O1—C16—C10    | 118.0 (3) |

| С5—С6—Н6       | 119.3      | C17—C16—C10     | 120.2 (3)  |
|----------------|------------|-----------------|------------|
| C1—C6—H6       | 119.3      | C22—C17—C18     | 119.2 (3)  |
| C12—C7—C8      | 117.5 (3)  | C22—C17—C16     | 122.0 (3)  |
| C12—C7—C1      | 120.3 (3)  | C18—C17—C16     | 118.8 (3)  |
| C8—C7—C1       | 122.2 (3)  | C19—C18—C17     | 120.2 (3)  |
| C7—C8—C9       | 121.9 (3)  | C19—C18—H18     | 119.9      |
| C7—C8—C13      | 120.4 (3)  | C17—C18—H18     | 119.9      |
| C9—C8—C13      | 117.4 (3)  | C18—C19—C20     | 119.9 (3)  |
| C10—C9—C8      | 118.4 (3)  | C18—C19—H19     | 120.1      |
| C10—C9—C14     | 121.1 (3)  | С20—С19—Н19     | 120.1      |
| C8—C9—C14      | 120.5 (3)  | C21—C20—C19     | 120.6 (3)  |
| C9—C10—C11     | 121.0 (3)  | C21—C20—Cl2     | 120.0 (3)  |
| C9—C10—C16     | 118.5 (3)  | C19—C20—Cl2     | 119.4 (3)  |
| C11—C10—C16    | 120.2 (3)  | C20—C21—C22     | 119.5 (3)  |
| C12—C11—C10    | 118.8 (3)  | C20—C21—H21     | 120.3      |
| C12—C11—C15    | 119.9 (3)  | C22—C21—H21     | 120.3      |
| C10—C11—C15    | 121.3 (3)  | C17—C22—C21     | 120.6 (3)  |
| C7—C12—C11     | 122.3 (3)  | C17—C22—H22     | 119.7      |
| C7—C12—H12     | 118.8      | C21—C22—H22     | 119.7      |
|                |            |                 |            |
| C6—C1—C2—C3    | 1.0 (5)    | C16—C10—C11—C12 | -174.6 (3) |
| C7—C1—C2—C3    | -179.6 (3) | C9—C10—C11—C15  | 178.5 (3)  |
| C1—C2—C3—C4    | -0.2 (5)   | C16—C10—C11—C15 | 5.1 (5)    |
| C2—C3—C4—C5    | -1.2 (5)   | C8—C7—C12—C11   | -0.9 (4)   |
| C2—C3—C4—Cl1   | 179.9 (3)  | C1—C7—C12—C11   | 179.2 (3)  |
| C3—C4—C5—C6    | 1.8 (5)    | C10-C11-C12-C7  | 2.4 (5)    |
| Cl1—C4—C5—C6   | -179.4 (3) | C15—C11—C12—C7  | -177.3 (3) |
| C4—C5—C6—C1    | -0.9 (5)   | C7—C8—C13—N1    | -119 (6)   |
| C2—C1—C6—C5    | -0.4 (5)   | C9—C8—C13—N1    | 55 (6)     |
| C7—C1—C6—C5    | -179.9 (3) | C9-C10-C16-O1   | -86.8 (4)  |
| C2-C1-C7-C12   | -44.8 (4)  | C11—C10—C16—O1  | 86.8 (4)   |
| C6-C1-C7-C12   | 134.6 (3)  | C9-C10-C16-C17  | 92.8 (4)   |
| C2—C1—C7—C8    | 135.3 (3)  | C11—C10—C16—C17 | -93.6 (4)  |
| C6—C1—C7—C8    | -45.3 (4)  | O1—C16—C17—C22  | -176.1 (4) |
| C12—C7—C8—C9   | -1.9 (4)   | C10-C16-C17-C22 | 4.3 (5)    |
| C1—C7—C8—C9    | 178.1 (3)  | O1—C16—C17—C18  | 3.5 (6)    |
| C12—C7—C8—C13  | 171.8 (3)  | C10-C16-C17-C18 | -176.1 (3) |
| C1—C7—C8—C13   | -8.3 (4)   | C22-C17-C18-C19 | 0.7 (6)    |
| C7—C8—C9—C10   | 3.0 (5)    | C16—C17—C18—C19 | -179.0 (4) |
| C13—C8—C9—C10  | -170.8 (3) | C17—C18—C19—C20 | 1.0 (6)    |
| C7—C8—C9—C14   | -177.8 (3) | C18—C19—C20—C21 | -1.9 (6)   |
| C13—C8—C9—C14  | 8.4 (5)    | C18—C19—C20—Cl2 | 178.0 (3)  |
| C8—C9—C10—C11  | -1.4 (4)   | C19—C20—C21—C22 | 1.1 (6)    |
| C14—C9—C10—C11 | 179.4 (3)  | Cl2—C20—C21—C22 | -178.9 (3) |
| C8—C9—C10—C16  | 172.1 (3)  | C18—C17—C22—C21 | -1.5 (6)   |
| C14—C9—C10—C16 | -7.1 (5)   | C16—C17—C22—C21 | 178.1 (4)  |
| C9—C10—C11—C12 | -1.2 (5)   | C20—C21—C22—C17 | 0.6 (6)    |

# Hydrogen-bond geometry (Å, °)

| D—H···A                | D—H  | Н…А  | D····A    | <i>D</i> —H··· <i>A</i> |
|------------------------|------|------|-----------|-------------------------|
| C3—H3…N1 <sup>i</sup>  | 0.93 | 2.61 | 3.305 (5) | 132                     |
| C5—H5…O1 <sup>ii</sup> | 0.93 | 2.53 | 3.390 (5) | 155                     |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, -*y*+1/2, *z*-1/2.