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This paper is devoted to the restoration of vegetation around mining areas on the example of two land-
reclamation zones in the Borodinsky coal mine during spring-summer of 2011–2021. Analysis of vegeta-
tion in this area has shown that indicators of spontaneous plant diversity in plots No. 1 and No. 2 were
considered moderate in both layers (H < 2.5). Underwood and seeding diversity indices at pre-mining
sites were ranked high, reaching 4.01–4.25 and 3.78–3.82, respectively. The analysis of the biological
diversity of the flora in the undergrowth of the 12-year-old plot revealed approximately 29 spontaneous
plant species belonging to 25 genera and 18 families. The most significant number of species found was
found from the family Euphorbia, Cereals, and Legumes. At the 18-year-old site, the number and diversity
of plant species (38 species) belonging to 38 genera and 27 families are slightly larger, with the most sig-
nificant number of species within Euphorbiaceae and Poaceae, Asteraceae, Rubiaceae and Leguminosae.
Saplings of various tree species from the Euphorbia and Leguminous family, such as Euphorbia cyparissias
L., E. fischeriana Steud., Desmodium triflorum L., Indigofera gerardiana (Wall.) Baker, Robinia viscosa Vent.
grew well in both plots. Many other spontaneous species of trees were also found in small populations
at the 18-year-old site, namely, Pinus sylvestris L., Salix alba L., Populus alba L., and P. tremula L. In contrast
to the younger site, some seedlings of small trees like S. alba and P. tremula and terrestrial ferns such as
common bracken (Pteridium aquilinum (L.) Kuhn) and adiantum capillus-veneris L. prevailed in the older
site.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In most countries, open pit mining, commonly used in commer-
cial coal mining, remains a rather acute issue. This resulted in irre-
versible degradation and a complete change in the ecological
system. The natural landscape has been disrupted and damaged,
including the destruction of biodiversity in ecosystems by eliminat-
ing natural soils, plants, animals, and microorganisms (Hunter,
2007). Since coal is extracted at least shortly after work stops, a
decision must be taken on how the site will be rehabilitated with
allminewaste. Remediation of the site followingmining is essential
and becomes the responsibility of all mine operations. Mine landfill
rehabilitation should be as similar as possible to earlier natural
forms. However, quarry breeds have challenging conditions for
the rooting and growth of plants because of their low organic
matter content, heavy metal content, and other adverse physico-
chemical features (Tangahu et al., 2011). Nitrogen-fixing legumes
are recognized as crucial components in natural succession. These
species are critical since the associated rhizobial symbioses are a
source of nitrogen in the ecosystem (Requena et al., 2001). All
affected woody legumes are also symbiotic with mycorrhizal fungi
(Zhang et al., 2016). Fungal mycelium, which stretches frommycor-
rhizal roots, forms a three-dimensional network that connects the
roots with the soil environment. It is an effective system for
absorbing nutrients (particularly phosphorus) and eliminating
them under low-nutrient conditions. Mycelium also promotes the
formation of water-resistant aggregations required for good tillage
(Rillig and Mummey, 2006).
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Plant succession following external disturbance associated with
open-pit mining has ecological and practical interests (Wu et al.,
2019). During plant rooting at different stages of succession, the
recolonisation of varying plant species plays an essential role in
the soil-forming process, promoting vegetation succession by
improving soil conditions. The effectiveness of ecosystem restora-
tion can be assessed in terms of the rate of natural or spontaneous
restoration of vegetation and the status of nutrients in soils. To
some extent, fertilizers meet plant nutrient needs (Bindraban
et al., 2015). However, fertilizers (mainly applied in the long term)
can cause environmental problems and damage ecosystems, such
as groundwater pollution, greenhouse gas emissions, changes in
soil physicochemical properties, and implication of soil food chains
(Savci, 2012). Concerning these issues, the introduction of legumes
into quarries is considered a sustainable land use practice. Due to
their ability to fix nitrogen, many legumes are cultivated to
improve soil fertility. In addition, they are commonly used to
enhance net primary productivity, including grain, timber, and for-
age yields, in anthropogenic ecosystems. (Gao et al., 2017). The
presence of legumes has also been reported to increase soil carbon
sequestration (Wu et al., 2016). In addition, deposition from
nitrogen-rich legume crops is more readily degraded by soil
microorganisms, and this effect can reach high trophic levels
through bottom-up control (Savci, 2012).

To restore the resiliency of a disturbed ecosystem, it is impor-
tant to address as many aspects of spontaneous vegetation as pos-
sible (Prach et al., 2001; McDonald et al., 2016). Consequently,
there is a need to periodically study and monitor the diversity of
spontaneous recolonization of plants in reclamation areas and
how they survive.

Invasive alien species are currently identified as the primary
threat to global biodiversity, ecosystem functions, economy, and
human health (Shackleton et al., 2018). This is an increasingly seri-
ous management issue in parks and reserves, and it often compli-
cates restoration and rehabilitation projects (Zhang et al., 2018). In
the past, and to some extent now, foreign plant species have been
used for land rehabilitation, land stabilization, and rapid develop-
ment of the plant community (Gann et al., 2019). However, due
to their toxicity and habitat characteristics, invasive alien species
often emerge spontaneously and invade landscapes severely dis-
rupted by mining, making it difficult to restore natural plants
(Celesti-Grapow and Ricotta, 2021). As such, awareness raising
and appropriate management of spontaneous emergence and
expansion of invasive plant communities should be encouraged.

A successful rehabilitation program aims to accelerate the spon-
taneous restoration of fertility in rehabilitated soils and increase
biodiversity. Comparative studies of spontaneous plant succession
in disturbed areas provide crucial information on vegetation
dynamics to ensure the success of a future reclamation program
(Zou et al., 2019). However, information on the process of sponta-
neous plant succession in post-coal reclamation areas remains lim-
ited. This study compared spontaneous recolonization of plants in
areas recovered after coal mining with two different ages of recol-
onization in the Borodinsky coal mine (Russian Federation). The
stages of this study consisted of: assessing and comparing the
diversity and variations in the composition of spontaneous recolo-
nization of plants in reclamation areas after coal mining with two
different ages of recolonization (12 and 18 years of age); determin-
ing the spontaneous invasion of alien plant species; analyzingmain
factors and their relationship with spontaneous plant recoloniza-
tion; evaluating progress and effectiveness of succession in the
reclamation process of both sites. The results of this study may
provide baseline and technical benchmarks for coal mine manage-
ment for a successful reclamation program for mining regions.

Considering the presence of an environmental gradient
associated with the continental climate, the preservation of the
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landscape, and the high heterogeneity of regeneration treatments,
this work aimed to study plant community restoration processes in
the Borodinsky coal mine area, which is the novelty of the work.

Achieving this objective involved the following tasks:

� selecting improved areas of the Borodino section, differing in
topographic characteristics and age, to study the succession
characteristics of the floristic cover;

� identifying indices of spontaneous plant diversity in the study
area;

� analyzing the variety of floristic species and the evolution of
plant communities in two different age zones of the Borodinsky
coal mine.

2. Methods and materials

2.1. Study region

The studies were completed during the 2011–2021 spring-
summer season. on the territory of the Borodino coal strip mine
(55�520N 94�550E) (Krasnoyarsk Territory), which was founded in
1950 and is one of the largest open-pit mines in Russian Federation
(Fig. 1). This area has a moderately continental climate, character-
ized by relatively warm summers and moderately cold winters.
The territory is predominantly forest-steppe and steppe. Moder-
ately thick chernozems primarily represent soils.

A number of mining activities have formed a typical landscape
in the region, long and deep recesses of the quarries are inter-
spersed with long and high sandy rocks, gradually becoming flat
sandy fields.
2.2. Sample selection

Since small-scale topographic differences strongly affect soil
and vegetation succession (Kim and Kupfer, 2016), sites with dif-
ferent topographic characteristics and ages were selected: 1 –
12-year site, 2 – 18-year site (Fig. 1). An inventory of the quarry
flora was made in the Borodinsky open pit area. Areas of 10 m have
been created for each ecotype. Sampling sites were selected ran-
domly to cover the most diverse range of topographic characteris-
tics. The sampling depth was 30 cm (Williamson et al., 2002). All
plant species, total projective coverage, and projective coverage
for each species are identified at each site. Vegetative cover plants,
shrubs and seedlings of trees less than 1.5 m high were considered
undergrowth, while trees and small trees greater than 1.5 m high
and less than 5 cm in diameter at breast height were considered
seedlings. Furthermore, their plants (trees, shrubs, herbaceous
plants and ferns) have been classified at each site (Kilinc et al.,
2010).
2.3. Statistical analysis

Vegetation analytical data at all sites were compiled and calcu-
lated. When interpreting the data, a multivariate cluster analysis
was performed to determine the model of variation in the compo-
sition of spontaneous plant species found in restoration areas.
Obtained study results were processed using MANOVA multivari-
ate analysis of variance in Microsoft Excel and Statistica 10 soft-
ware package. The composition of spontaneous plant
recolonization was estimated by analyzing Shannon-Wiener fre-
quency, density, abundance, and diversity index (de Smith,
2018). Differences in the results obtained are significant at
P � 0.05 according to Student’s t-test.



Fig. 1. Plots on the territory of the Borodinsky coal mine researched during 2011–2021 (1–12-year site, 2–18-year site).

Fig. 2. The dominant complex of identified herbaceous plant communities on the
territory of the Borodinsky coal mine in the spring-summer period of 2011–2021.

Table 1
The dominant complex of identified shrub and tree-like plant communities on the
territory of the Borodinsky coal mine in the spring-summer period 2011–2021.

Plant communities Shrub vegetation Tree forms

Families of dominant plant
communities

Sunflower family
(Asteraceae)

Spurge family
(Euphorbiaceae)

Mallow family
(Malvaceae)

Willow family
(Salicaceae)

Melastomaceae Pine family
(Pinaceae)

Acanthus family
(Acanthaceae)

Beech family
(Fagaceae)

Potato family
(Solanaceae)

Pea family
(Leguminosae)

Barberry family
(Berberidaceae)

Mallow family
(Malvaceae)
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3. Results

3.1. Plant diversity characterization

Vegetation restoration in the area of influence of mining com-
panies was examined using the example of the Borodinsky coal
mine in the spring-summer period of 2011–2021, where coal is
still being extracted. For the study, 2 different land-reclamation
areas were selected (Fig. 1) – the older and the younger, differing
in topographic characteristics. Vegetation analysis of this area
showed that spontaneous plants were recolonized in the two
restoration plots at two levels, i.e., in the undergrowth and young
seedlings. In contrast, the layers of trees were fairly sparse. In addi-
tion, indications of spontaneous plant diversity in both restoration
areas were classified as moderate in both layers (H < 2.5). However,
these diversity indices were found to be lower than the secondary
forest near the sites prior to extraction. Undergrowth and seeding
diversity indices at prime sites were rated high, reaching 4.01–4.25
and 3.78–3.82, respectively.

However, the number of plant species present in each layer of
the former restoration plot was slightly more significant than that
of the younger plot. This may be due to some plant species in the
former reclamation site occurring in large populations, as indicated
by the higher seeding density. As a result, in the two improved
plots of this study, moderate spontaneous plant development
and succession development were observed.

3.2. Composition and structure of plant communities

Various spontaneous plants were identified in both restoration
areas. In the undergrowth layer of the 12-year-old plot, approxi-
mately 29 spontaneous plant species from 25 genera and 18 fam-
ilies were registered. The greatest number of species found were in
the Euphorbia family, followed by cereals and pulses. In contrast,
there was a slightly greater number and greater diversity of plant
species (38 species) on the 18-year-old plot. They belonged to 38
genera and 27 families, with the largest number of Euphorbiaceae

and Cereals species, followed by Asteraceae, Rubiaceae, and Legu-
minosae (Fig. 2).

According to plant habits categorization, the lower layer in both
plots consisted mainly of shrubs and small trees, followed by tree
seedlings, grasses, ferns, and herbaceous plants (Table 1).
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Some of the shrub species recorded include those from the fam-
ilies Asteraceae, Malvaceae, Melastomaceae, Acanthaceae, and
Solanaceae. Saplings of various tree species from the Euphor-
biaceae and Leguminosae family, such as Euphorbia cyparissias L.,
E. fischeriana Steud., Desmodium triflorum L., Indigofera gerardiana
(Wall.) Baker, Robinia viscosa Vent., known as common sponta-
neous pioneer plants on disturbed plots, grew well in both plots.
Cercis siliquastrum L. and Lespedeza thunbergii (DC.) Nakai was con-
sidered spontaneous seedlings of pioneer trees planted for initial
reclamation. Several other spontaneous tree species have also been
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found in small populations at the 18-year-old site, namely Pinus
sylvestris L., Salix alba L., Populus alba L., and P. tremula L.

Meanwhile, based on the species dominance on the 12-year-old
plot, grass species like common meliot (Melilotus officinalis (L.)
Desr.) prevailed. In contrast, shrub species of common barberry
(Berberis vulgaris L.) prevailed on the 18-year plot (Fig. 3).

In this study, spontaneous competition from plant species at
each site was reported. In general, grasses are less dominant in
the older plot due to the lower intensity of light penetrating the
shade of the undergrowth of the large pioneer trees compared to
the younger plot. Shrub species such as B. vulgaris and bird cherry
(Prunus padus L.) dominated in both plots. However, their species
value was considered higher in the younger plot. In contrast to
the younger site, some seedlings of small trees, including S. alba
and P. tremula, and terrestrial ferns such as common bracken
(Pteridium aquilinum (L.) Kuhn) and maidenhair fern (capillus-
veneris L.) prevailed in the older site.
4. Discussion

The selection and management of pioneers to clean up
degraded land is very important and becomes one of the keys to
successful sanitation (Yu et al., 2020). Legumes on the territory
of the Borodinsky coal mine (Fig. 2) were registred as pioneer
plants that can quickly grow and adapt to poor soil conditions with
a lack of nutrients. That effectively increases infiltration of the
upper soil layer, reduces runoff and a risk of landslides (Chalise
et al., 2019). They can also improve the soil and microclimate,
degraded leaves act as green manures, the canopy provides full
shade for the undergrowth and helps to retain air moisture around
the plants. (Gao et al., 2017). Legume roots can also form symbiotic
relationships between nitrogen and many strains of nitrogen-
fixing microbes, which provide mineral nitrogen in soils for adja-
cent plants (Mus et al., 2016). Pioneer species should also first have
high population growth rates and then decline when they are
replaced by late-successive species (Marcante et al., 2009). This
study found that pioneer legumes have low to medium longevity,
so they will disappear over time and replace native tree species.
A decrease in the number of large pioneer trees has already been
found in both sites. However, the number is even higher in the
old site than in the younger one.

Complex vertical stratification above and below the ground is
characteristic of most natural forest ecosystems with closed forest
cover. Restoration of this condition following resource extraction is
Fig. 3. Dominant plant species in the studi
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a fundamental task of rehabilitation and reforestation
(Pietrzykowski, 2019). The possible plant community developing
on reclaimed mine lands will depend on landform and topography,
local climatic and weather conditions, soil properties, vegetation
restoration techniques, subsequent disturbance, impacts on wild-
life, and land management methods (Fischer et al., 2014). The
restoration of an enclosed undergrowth of native tree species
may create a diverse community of native shrub plants (Bremer
and Farley, 2010).

Moreover, revegetation is essential to facilitate soil develop-
ment and promote the recolonization of native vertebrates and
invertebrate fauna, creating conditions for vegetation rooting
(Rey Benayas and Bullock, 2015). Strategically managed compo-
nents are linked by species dispersal processes. Thus, ecological
restoration at sites can support industrial practices and facilitate
the return of wildlife in circumstances where social and ecological
dynamics favour abandonment. When selecting species for recla-
mation, it is important to consider the site specifics, including
moisture content, soil structure and fertility, salinity and pH, and
availability of nutrients (Fischer et al., 2014). Moisture content in
the soil is significant for the development of vegetation. Soil on
the upper slopes often have very low soil moisture even in humid
climates, requiring drought-tolerant species (Sardans and
Peñuelas, 2013), such as Pinus sylvestris L., Salix alba L., Populus alba
L., and P. tremula L. Excess soil moisture can also occur in mine
rehabilitation zones. It often occurs in seeps on the lower half of
the slopes or on the surface of areas where the soil is highly com-
pacted, where water cannot enter the soil (Nguemezi et al., 2020).

The chemical properties of the soil will interfere with successful
vegetation restoration. Liming and fertilizing the soil can make
mine soils more suitable for vegetation in limited conditions
(Fischer et al., 2014), although fertilization can increase cover
and the number of exotic species (Talento et al., 2020). Mine soils
with a high content of heavy metals can be cultivated to reduce
their bioavailability, and metal-tolerant plant species can restore
vegetation in such areas. However, it is important to consider
whether these metals accumulate in the surface (Tangahu et al.,
2011). Similarly, salt or sodium may be treated, but it may also
require salt-tolerant species available from natural saline sites in
the mining region (Shrivastava and Kumar, 2015). Suppose the
pH of the reclamation area differs from that of the surrounding
area. In that case, it will be essential to actively create vegetation
in this area since there may not be suitable species available for
colonization, and natural succession will be slow (Hagen and
Evju, 2013).
ed areas of the Borodinsky coal mine.
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The nature of the cover material has a major influence on the
physical and chemical properties of the developing soil, which in
turn affects the successful restoration of vegetation. This is
particularly evident in the example of the recovery of coalfields
(González-Martínez et al., 2019). Such a material can be common
bracken and maidenhair fern, identified at a younger site of the
Borodinsky coal mine.

The processes for restoring plant communities in quarries with
different substrates have been sufficiently studied. Most studies
address different aspects of vegetation succession (Garófano-
Gómez et al., 2017; Hong et al., 2019). The soil formation processes
have been analyzed in sufficient detail (Egli et al., 2018). However,
few exhaustive observations of land and vegetation cover restoration
and the relationship between these components. Regarding the veg-
etation of the studied Borodino section, the presented data prove
that the increase in the number of mycorrhizal plants (in particular
legumes), regularly observed during natural successional processes,
is effectively repeated with a rather rapid primary succession in
unfavorable habitats of the technogenic dump (Krüger et al., 2017).
5. Conclusions

This document describes the findings of the study of vegetation
restoration processes in the area of influence of mining companies
on the example of two reclamation areas of the Borodinsky coal
mine in the spring-summer period of 2011–2021. Vegetation anal-
ysis of this area showed that spontaneous plants were recolonized
in both reclamation plots in two tiers, that is, in the undergrowth
and young seedlings; while the layers of trees were quite sparse.
Additionally, indices of spontaneous plant diversity in regeneration
plots No. 1 and No. 2 were classified as moderate in both layers
(H < 2.5). However, these diversity indices were found to be lower
than the secondary forest near the sites prior to extraction. Under-
growth and pre-mining site planting diversity indices were high,
reaching 4.01–4.25 and 3.78–3.82, respectively. The analysis of
the biological diversity of the flora in the undergrowth of the 12-
year-old plot showed approximately 29 spontaneous plant species
belonging to 25 genera and 18 families. The largest number of spe-
cies were found in the family Euphorbiaceae, Poaceae, and Legumi-
nosae. While there was a slightly greater number and greater
diversity of plant species (38 species) belonging to 38 genera and
27 families on the 18-year-old site. The largest number of species
were recorded in Euphorbiaceae and Poaceae, Asteraceae, Rubi-
aceae and Leguminosae. Saplings of various tree species from the
Euphorbia and Leguminous family, such as Euphorbia cyparissias
L., E. fischeriana Steud., Desmodium triflorum L., Indigofera gerardiana
(Wall.) Baker, Robinia viscosa Vent., known as common spontaneous
pioneer plants on disturbed plots, grewwell in both plots. Cercis sili-
quastrum L. and Lespedeza thunbergii (DC.) Nakai were considered
spontaneous seedlings of pioneer trees planted for initial reclama-
tion. Several other spontaneous tree species have also been found
in small populations at the 18-year-old site, namely Pinus sylvestris
L., Salix alba L., Populus alba L., and P. tremula L. It has been scientif-
ically proven that the reclamation part of the Borodino section
tends to successful self-restoration. It is also recommended to con-
serve the challenging terrain of the quarry, which will positively
affect the level of biodiversity. The data from this research show
that remedial measures are needed for areas with many ecological
restrictions, which is the practical value of the research conducted.
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