
ajor depressive disorder (MDD) is a common
disorder with a prevalence of 4.7% (4.4% to 5.0%)
worldwide,1 and a 7% prevalence in the United States.2

It is a disorder that affects a patient’s ability to work and
function in society; it leads to increased morbidity and
consequently increased use of health resources. In a
World Health Organization study from 2004, it ranked
third in worldwide contribution to disease burden and
first in high-income countries for individuals under 60
years of age.3 From 1990 to 2010, MDD has advanced
worldwide from 15th to 11th place in contributing to
years lost due to disability, indicating a 37% increase
during these 20 years.4

The most common current treatments available for
MDD are antidepressant medications and evidence-
based psychotherapy. Although many patients respond
to these treatments, only a third enter complete and sus-
tained remission.5 Patients with treatment-resistant
depression (TRD) have increased disability and a higher
risk of relapse. Electroconvulsive therapy (ECT) can be
efficacious in patients with TRD,6-8 but has several draw-
backs. First, it must be done in a center that can provide
anesthesia and associated monitoring, thus limiting
access. Second, ECT is associated with cognitive side
effects that can be significant in a minority of patients.9-12

Third, 10% to 50% of TRD patients do not achieve
and/or maintain remission with ECT.13,14 Ablative neuro-
surgical procedures have been used to treat the most
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Major depressive disorder is a worldwide disease with
debilitating effects on a patient’s life. Common treat-
ments include pharmacotherapy, psychotherapy, and
electroconvulsive therapy. Many patients do not respond
to these treatments; this has led to the investigation of
alternative therapeutic modalities. Deep brain stimula-
tion (DBS) is one of these modalities. It was first used
with success for treating movement disorders and has
since been extended to the treatment of psychiatric dis-
orders. Although DBS is still an emerging treatment,
promising efficacy and safety have been demonstrated
in preliminary trials in patients with treatment-resistant
depression (TRD). Further, neuroimaging has played a
pivotal role in identifying some DBS targets and remains
an important tool for evaluating the mechanism of
action of this novel intervention. Preclinical animal stud-
ies have broadened knowledge about the possible mech-
anisms of action of DBS for TRD. Given that DBS involves
neurosurgery in patients with severe psychiatric impair-
ment, ethical questions concerning capacity to consent
arise; these issues must continue to be carefully consid-
ered.     
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severely ill TRD patients for whom all other treatment
approaches have failed.15 These irreversible surgical inter-
ventions have shown efficacy in some patients, but have
also been associated with infection, permanent cognitive
side effects, and seizures.15-17

Over the past two decades, novel treatment approaches
for TRD have emerged. Two devices for performing repet-
itive transcranial magnetic stimulation are now Food and
Drug Administration (FDA)-approved for the treatment
of MDD with a modest degree of treatment resistance.18,19

However, repetitive transcranial magnetic stimulation is
likely not as efficacious as ECT20 and requires daily treat-
ments over several weeks—this may present a significant
logistical barrier to some patients. Another minimally inva-
sive treatment being investigated for treating modestly
resistant depression is transcranial direct current stimu-
lation (tDCS). Although preliminary studies have shown
some evidence of antidepressant efficacy, these data are
mixed, and results from larger, placebo-controlled trials
are lacking.21-24 A vagus nerve stimulation (VNS) device
has been approved by the FDA for TRD. VNS is more
invasive than ECT, TMS, and tDCS, requiring minor
surgery to implant the stimulation electrode and the bat-
tery pack/controller.25 Efficacy of VNS is somewhat con-
troversial.26,27 The only randomized and sham-controlled
trial of VNS for TRD showed no difference between
active and sham stimulation after 10 weeks.28 The remain-
ing efficacy data are limited to open-label long-term results
in comparison with a nonrandomized treatment-as-usual
control group. These data suggest some benefit for long-
term VNS in TRD, though absolute response and remis-
sion rates are relatively low.29

Deep brain stimulation (DBS) involves a neurosur-
gical procedure to stereotactically implant electrodes
into a specific brain region; these electrodes are con-
nected to a subcutaneous implantable pulse generator
that controls stimulation and provides the power source
for the DBS system. Typically, continuous electrical stim-
ulation is provided. DBS is a relatively well-tolerated
therapy, the most common adverse events being associ-

ated with the neurosurgical procedure: infection, hem-
orrhage, perioperative headache, seizure, and lead frac-
ture.30,31 Specific side effects can be associated with acute
and chronic stimulation. 

The target for DBS electrode placement can vary sig-
nificantly based on the disorder being treated and the neu-
roanatomical models of the disorder. DBS devices have
been approved by the FDA for the treatment of move-
ment disorders and have shown good efficacy in treatment
of Parkinson’s disease, essential tremor, and dystonia.32

Additionally, DBS has been explored in several neu-
ropsychiatric disorders. The first neuropsychiatric applica-
tion of DBS was for obsessive-compulsive disorder
(OCD),33 with electrodes placed in the anterior limb of the
internal capsule—a previous ablative target for treating
severe, treatment-refractory OCD. Subsequent studies
have suggested a modest, but clinically significant benefit
for DBS in patients with severe, treatment-refractory
OCD.34 A DBS system has received a Humanitarian
Device Exemption from the FDA for the treatment of
OCD. The first cases of using DBS for Gilles de la Tourette
syndrome occurred around the same time as for OCD,35

and in larger studies efficacy has been demonstrated for
various targets.36 DBS has also been proposed for the
treatment of severe, treatment-resistant addiction, where
a small dataset supported efficacy in treating this disor-
der.37 The unexpected observation of cognitive improve-
ment in dementia in a study of DBS for obesity38 has led
to its evaluation as a treatment for Alzheimer’s disease and
Parkinson’s dementia.39

Significant interest has been generated by the poten-
tial for DBS to treat severe TRD. In this review, the clin-
ical data on safety and efficacy of DBS in TRD will be
presented. The role of neuroimaging in the development
and optimization of DBS will be discussed, as well as its
role in studying mechanisms of action. Further, preclini-
cal animal data on potential mechanisms of DBS for
TRD will be reviewed. Finally, critical ethical issues
related to decision-making capacity and informed con-
sent for TRD patients considering DBS will be examined. 

Clinical data on deep brain stimulation for
treatment-resistant depression

Subcallosal cingulate 

The first target investigated for DBS for TRD was the
subcallosal cingulate (SCC) white matter, occasionally
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referred to as Cg25 or Brodmann area 25.40 This target
was chosen based on a neuroimaging database which
suggested that this region was critical for depression and
the antidepressant response—especially in TRD.41 In an
initial proof-of-concept study, four of six patients with
extreme TRD were in or near remission following 6
months of open-label chronic SCC DBS. An expanded
study of 20 patients showed a 60% response rate at 
1 year and a remission rate around 50%—results that
were generally maintained over several years.31,40,42 Of
note, most symptoms of depression improved, with
insomnia, decreased energy, interest and psychomotor
speed, disturbed social contact, apathy, anhedonia, poor
concentration, and planning all showing improvement
after 3, 6, and 12 months of follow-up. 

Subsequent open-label studies of SCC DBS in TRD
have demonstrated remission rates ranging from 33% to
58% with chronic stimulation (12 to 36 months).43-47 A
case report showed efficacy for SCC DBS in a patient
who previously had a dorsal anterior cingulotomy
(which was initially beneficial, but followed by a depres-
sive relapse).48 In one study, blinded discontinuation was
associated with a significant increase in depression that
improved when stimulation was reinstated.44 Across
these various studies, no adverse effects were seen with
acute or chronic SCC DBS. No cognitive impairments
were found with long-term stimulation, and improve-
ments were noted49 (Moreines et al, unpublished data).
In one study including seven patients with bipolar II dis-
order, none showed hypomania or mania with acute or
chronic stimulation.44

Ventral capsule/ventral striatum and nucleus 
accumbens

The ventral internal capsule/ventral striatum (VC/VS)
was the first target for the treatment of OCD, based on
previous lesional therapies. Interestingly, depression also
improved in OCD patients treated with DBS in this
region.34,50 This observation led to an open-label pilot
study of VC/VS DBS in TRD, which demonstrated a
53% response rate and 40% remission rate at last fol-
low-up (between 6 and 51 months of stimulation).51

These encouraging preliminary data led to a pivotal,
double-blind, randomized, sham-controlled trial of
VC/VS DBS in 30 patients with TRD. Unfortunately, no
statistically significant efficacy was seen for active vs
sham (off) DBS after 4 months of chronic treatment.

Response rates were 20% and 14.3% in the active and
sham groups, respectively.52 In studies of VC/VS DBS for
OCD and depression, a number of mood, anxiety, and
other changes have been associated with acute stimula-
tion (eg, panic attacks, euphoria, facial muscle activity).
However, these changes could be eliminated with adjust-
ment of stimulation parameters and did not appear to
relate to long-term efficacy. 

The nucleus accumbens (NAc) comprises the major-
ity of the ventral striatal aspect of the VC/VS DBS tar-
get. More focal DBS of the NAc for TRD was hypothe-
sized to have potential efficacy based on its importance
in reward-seeking behavior (recognizing the prominent
role of anhedonia in the syndrome of depression).53,54

Indeed, in initial testing, anhedonia was one of the first
symptoms to improve during NAc stimulation in
TRD.54,55 In 11 patients with TRD, 12 months of chronic,
open-label NAc DBS resulted in a 45% response rate
and 9% remission rate.54-56 Acute return of depressive
symptoms was seen with discontinuation of stimulation
in three patients; reinitiation of stimulation resulted in
the return of the antidepressant effects.54 This study of
NAc DBS reported similar acute effects of stimulation
as with VC/VS DBS; as with VC/VS DBS, these effects
could be ameliorated with stimulation parameter adjust-
ment. No negative neuropsychological effects were iden-
tified with either acute or chronic VC/VS or NAc DBS. 

Medial forebrain bundle

A more recent DBS target for TRD is the medial fore-
brain bundle (MFB), which includes ascending and
descending white matter fibers connecting the ventral
tegmental area with the nucleus accumbens. As with the
NAc, a role for the MFB in TRD was hypothesized
based on its role in reward processing.57,58 In an open-
label, proof-of-concept study, rapid antidepressant
effects were seen in six of seven TRD patients with MFB
DBS, with benefits maintained for at least 12 to 33
weeks.58 Vision/eye movement changes were seen in all
patients, related to specific stimulation parameters. No
cognitive impairments were noted following months of
stimulation. 

Other targets

Other targets considered for DBS for TRD include: (i)
the inferior thalamic peduncle59—this target may also
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have benefits for OCD60,61; (ii) the lateral habenular com-
plex62; and (iii) the rostral cingulate gyrus.63

Summary

Preliminary studies of DBS in the treatment of TRD
have suggested safety and efficacy for several targets.
The most experience to date is with the SCC target.
Unique among these studies are data on the MFB target
which suggest more rapid antidepressant efficacy than
with the other targets. However, in interpreting these
data, caution is warranted. The majority of the studies
are small and open-label. The one sham-controlled study
of a DBS target (VC/VS) showed no separation between
active and sham stimulation for antidepressant efficacy.
This highlights the importance of sham-controlled trials
before embracing treatment modalities with encourag-
ing preliminary data.

Application of neuroimaging to 
studies of deep brain stimulation for 

treatment-resistant depression

As above, functional neuroimaging played a pivotal role
in the development of the SCC DBS target for TRD,41

and also helped validate the lateral habenula as a poten-
tial DBS target for TRD treatment.64 Intraoperative
magnetic resonance imaging (MRI) may help improve
accuracy of lead placement for DBS and assist in evalu-
ating acute changes associated with neurosurgery, such
as hemorrhage, intracranial air, or brain shift.65 Diffusion
tensor imaging (DTI) an MRI technique especially use-
ful for imaging white matter and providing a white mat-
ter tractography, was used to locate the MFB target in a
patient-specific manner.58 DTI may eventually be help-
ful in optimizing electrode placement for other DBS tar-
gets for TRD.66-70 Much of this work suggests that using
patient-specific tractography activation models would
improve targeting: these models calculate the volume of
stimulation/activation from the electrode and perform
patient-specific tractography from these volumes.67,68,71,72

Additionally, neuroimaging has been used to assess
the mechanism of action of DBS. One DTI study
showed high interconnectivity between multiple targets
used in DBS for patients with TRD,73 and other identi-
fied key areas of overlap in projections from these tar-
gets suggesting common downstream regions that may
need to be impacted for antidepressant efficacy.70

Similarly, functional neuroimaging (primarily using
positron emission tomography) has shown changes in
brain activity associated with successful DBS for TRD
with the SCC,40 and the NAc targets.54,55 A resting-state
electroencephalography study assessed brain activity
before and after SCC DBS for TRD and found that
baseline prefrontal/anterior cingulate theta activity pre-
dicted which patients would have a greater antidepres-
sant effect with chronic stimulation.74 Additionally, this
theta activity showed differential changes over time in
responders vs nonresponders.74 This is consistent with
prior studies showing that prefrontal/anterior cingulate
theta activity is related to symptoms of depression, such
as attention, emotional regulation, and memory,75 as well
as studies associating prefrontal theta activity with anti-
depressant response to medication.76,77 Functional MRI
studies have been utilized less in the postoperative study
of DBS, due to concerns about patient safety. Generally,
the brain regions implicated by the diffusion tensor
imaging and functional neuroimaging studies overlap,
helping to confirm that the structural and functional con-
nectivity of these regions with the DBS target are criti-
cal to the success of the intervention. 

Preclinical studies of deep brain stimulation
for treatment-resistant depression

In contrast to the typical way of evaluating new treat-
ment modalities for depression, DBS in TRD was first
investigated in patients rather than animal models. This
was largely based on the safety/efficacy of DBS in
patients with movement disorders, a history of relatively
safe/efficacious ablative surgery in humans with severe
psychiatric illness, strength of neuroimaging data delin-
eating the presumed neural circuitry of depression, and
the absence of adequate animal models for TRD.
However, once preliminary safety and efficacy of DBS
for TRD was demonstrated in humans, many investiga-
tors have turned to animal studies to help investigate
potential mechanisms of action for this intervention. 
In rats, high-frequency stimulation of the ventromedial
prefrontal cortex (vmPFC, a homologue of the SCC) has
been associated with antidepressant-like effects using
the forced swim test.78,79 Both vmPFC and NAc stimula-
tion have been shown to reverse anhedonic-like states
in rats exposed to chronic stress.80,81 In a mouse model of
enhanced depression- and anxiety-like behavior, NAc
DBS induced antidepressant and anxiolytic responses in

C l i n i c a l  r e s e a r c h

86

14_CH_8004_BA_INTERIEUR.qxd:DCNS#55  3/03/14  18:04  Page 86



affected animals, but no behavioral changes in normal
depression/anxiety animals.82

Animal studies have additionally helped clarify effec-
tive parameter sets. For the vmPFC/SCC target, a series
of studies showed that: (i) high-frequency stimulation
(130 Hz) was more effective than low-frequency stimu-
lation (20 Hz); (ii) prelimbic (PL) cortical stimulation
was more effective than infralimbic (IL) stimulation78;
(iii) a current intensity between 100 to 300 microA was
more effective than 400 microA; and (iv) unilateral left-
sided stimulation was as effective as bilateral stimula-
tion.78 Simple ablation of the PL/IL region was not asso-
ciated with significant antidepressant-like effects,79

though other studies have shown antidepressant-like
effects with ablation or inactivation of the IL target.83,84

Interestingly, lesions of the local gray matter, while pre-
serving white matter fibers of passage, was associated
with antidepressant-like effects.79 This suggests the mech-
anism of DBS for TRD may not be simply due to local
inhibitory effects, but may involve stimulation of white
matter tracts—similar to findings seen in Parkinson’s
disease.85

For the NAc target, it has been shown that continu-
ous stimulation was more effective than intermittent
stimulation.86 Consistent with imaging studies in humans,
DBS of the NAc has been associated with remote brain
activity changes in the prefrontal cortex, insula, cingu-
late, and parahippocampus in a pig model.87

Depletion of serotonin blocks the antidepressant-
like effects of medial frontal stimulation in rats, while
depletion of norepinephrine does not79; this suggests a
critical role for serotonin (among other monoamines)
in the mechanism of action of DBS for TRD.
Stimulation of the NAc has been associated with
increased monoamine levels in rats corresponding to
improvement in depressive- and/or anxiety-like behav-
iors,86,88,89 though another study showed that internal cap-
sule stimulation resulted in greater anxiolytic effects.90

Beyond the monoamines, stimulation of the vmPFC,
NAc, or ventral tegmental area has been associated with
increased brain-derived neurotrophic factor (BDNF)
levels in rats using a chronic mild stress paradigm80,81,90;
prior to stimulation the rats prone to depressive-like
behavior showed lower BDNF levels than control rats.91

Therefore, as with other antidepressant treatments
(including medication and ECT), the mechanism of
DBS for TRD may involve upregulation of neu-
rotrophic systems.92,93

Ethical concerns associated with 
deep brain stimulation for 

treatment-resistant depression

Ethical considerations in medicine include beneficence,
non-malfeasance, and autonomy.94,95 Consequently, reg-
ulations and supervision need to be implemented for
clinical trials, especially considering the potential impair-
ment in decision-making inherent to neuropsychiatric
illnesses and the invasiveness of DBS.96,97 In depression,
one must consider the goal of treatment: happiness ver-
sus euthymia. If a treatment induces “joy” or “feeling
good,” then how much is too much? Rather than simply
treating depression, the effects of treatment might be
seen as an end itself, similar to studies of intracranial
self-stimulation in animals.98 This is a potential concern
with some DBS targets for neurologic and neuropsychi-
atric disorders where euphoria, and even frank mania,
can be induced with stimulation.34,51,55,99-101 However, in
these studies, primary efficacy could be obtained with-
out these side effects via careful selection of stimulation
parameters for chronic stimulation. For depression stud-
ies, the goal should be euthymia and normal mood reg-
ulation, not heightened hedonic response above a
patient’s nondepressed baseline. 

Another important ethical concern is decision-making
capacity. Can patients with severe TRD (often with some
degree of suicidal ideation) truly give free, informed con-
sent to participate in a study with potentially serious/life-
threatening risks? Additionally, patients may have unre-
alistic expectations related to the intervention.102,103

Recognizing these concerns, groups are beginning to
assess this in conjunction with clinical trials. Some groups
have advocated for extensive external review boards to
monitor and approve patients for study inclusion; this is
largely based on a concern that DBS not be viewed in the
same vein as prefrontal leucotomy104,105 and protect
patients whose decision-making capacity and judgment
might be impaired by their severe psychiatric illness.105

Therefore, these recommendations were largely theoret-
ical and not evidence-based, encouraging investigators in
this field to “be on the safe side.” However, based on a
careful review of the literature, Dunn et al have argued
that no additional specific safeguards are needed in
obtaining informed consent from patients with severe
TRD compared with other patients with severe, life-
threatening, disabling medical conditions—depression, in
and of itself, does not uniquely impair decision-making
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capacity or judgment.106 However, decision-making capac-
ity, as well as understanding of the study must be carefully
assessed. To this end, a study-specific MacArthur
Competence Assessment Tool for Clinical Research
(MacCAT-CR) was used in a trial of SCC DBS for TRD
patients and found that patients with TRD showed no sig-
nificant deficits in study understanding, though there was
a trend for patients with more severe depression to have
greater “therapeutic misconception”: ie, on average, sub-
jects gave answers that appeared to show that they mis-
understood the purpose of the study, likelihood of per-
sonal benefit, or individualization of treatment (eg,
overestimating likelihood of benefit, underestimating
risk).107 However, a more detailed analysis of these data
and patient’s specific comments validated that patients
demonstrated intact decision-making capacity and
informed consent procedures were appropriate.108

As the indications for DBS expand, concerns related
to specific populations will arise: eg, how should the
informed consent process be conducted in “vulnerable”
populations such as children, patients with dementia, and
patients with severe cognitive disorders?97 On the one
hand, these patients should not be denied enrollment in
trials of a potentially efficacious treatment simply
because of limited decision-making capacity.109 On the
other, very careful attention must be paid to voluntari-
ness, consent/assent, and appropriateness for inclusion.
To this end, eligibility criteria should be carefully con-
sidered (to insure scientific validity for studies likely to

have a small sample size), and the informed consent
process should include mechanisms to evaluate decision-
making capacity as well as patients’ understanding and
appreciation of the risks/potential benefits of the study.
Ideally, a comprehensive registry of efficacy and safety
should be created. In developing guidelines for such stud-
ies, input from all stakeholders should be considered.97

Conclusion

DBS is emerging as a potential intervention for patients
with severe depression for whom no reasonable treat-
ment options are available. Data remain quite prelimi-
nary for the various targets that have been investigated.
Beyond simple demonstration of safety and efficacy, a
growing number of human and animal studies are begin-
ning to delineate potential mechanisms of action for
DBS for TRD. As the field expands (to larger studies
and new indications), a number of ethical concerns
should be considered, especially related to voluntariness,
informed consent, and the possibility of therapeutic mis-
conception. With careful and considered study, the hope
is that DBS might become an important treatment
option for some of the most severely affected patients
with neuropsychiatric diseases, as it has in the field of
neurology. ❏
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La estimulación cerebral profunda en el 
tratamiento de la depresión

El trastorno depresivo mayor es una enfermedad a
nivel mundial que deteriora la vida del paciente.
Los tratamientos habituales incluyen farmacotera-
pia, psicoterapia y terapia electroconvulsiva. Ya que
muchos pacientes no responden a estos tratamien-
tos se ha generado la investigación de otras alter-
nativas de intervención terapéutica.  La estimula-
ción cerebral profunda (ECP) es una de estas
modalidades. Esta terapia se empleó inicialmente
con éxito para el tratamiento de trastornos moto-
res y luego se ha extendido al tratamiento de tras-
tornos psiquiátricos.  Aunque la ECP todavía es un
tratamiento naciente, en los ensayos preliminares
en pacientes con depresión resistente al trata-
miento (DRT) se ha demostrado su prometedora efi-
cacia y seguridad. Además, las neuroimágenes han
jugado un papel central en la identificación de
algunos blancos para la ECP y se mantienen como
una importante herramienta para la evaluación del
mecanismo de acción de esta nueva intervención.
Los estudios animales preclínicos han ampliado el
conocimiento sobre los posibles mecanismos de
acción de la ECP para las DRT. Dado que la ECP invo-
lucra neurocirugía en pacientes con deterioro psi-
quiátrico grave, surgen aspectos éticos respecto a
la capacidad de consentir y estos temas deben ser
tomados en cuenta con mucho cuidado.  

Stimulation cérébrale profonde dans le 
traitement de la dépression

L’épisode dépressif caractérisé est une pathologie
mondiale aux effets débilitants sur la vie des
patients. La pharmacothérapie, la psychothérapie
et l’électroconvulsivothérapie sont des traitements
courants. De nombreux patients ne répondent pas
à ces traitements, ce qui a conduit à la recherche de
traitements alternatifs. La stimulation cérébrale
profonde (SCP) en est un. Elle a d’abord été utilisée
avec succès pour le traitement des dyskinésies et a
depuis été élargie au traitement des troubles psy-
chiatriques. Bien que la SCP soit encore un traite-
ment récent, des études préliminaires chez des
patients déprimés résistants au traitement (DRT)
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