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Simple Summary: The objective of this study was to use a model to predict breeding values for sires
and cows at an early stage of the first lactation of cows and progeny groups in the Iranian Holstein
population to support the early selection of sires. Our results show that we can select sires according
to their daughters’ early lactation performance before they finish first lactation. Cross-validation
results show that early selection accuracy can be high, and such an early selection can decrease the
generation interval and lead to an increased genetic gain in the Iranian Holstein population.

Abstract: The objective of this study was to use a model to predict breeding values for sires and cows
at an early stage of the first lactation of cows and progeny groups in the Iranian Holstein population
to enable the early selection of sires. An additional objective was to estimate genetic and phenotypic
parameters associated with this model. The accuracy of predicted breeding values was investigated
using cross-validation based on sequential genetic evaluations emulating yearly evaluation runs.
The data consisted of 2,166,925 test-day records from 456,712 cows calving between 1990 and 2015.
(Co)-variance components and breeding values were estimated using a random regression test-day
model and the average information (AI) restricted maximum likelihood method (REML). Legendre
polynomial functions of order three were chosen to fit the additive genetic and permanent environ-
mental effects, and a homogeneous residual variance was assumed throughout lactation. The lowest
heritability of daily milk yield was estimated to be just under 0.14 in early lactation, and the highest
heritability of daily milk yield was estimated to be 0.18 in mid-lactation. Cross-validation showed a
highly positive correlation of predicted breeding values between consecutive yearly evaluations for
both cows and sires. Correlation between predicted breeding values based only on records of early
lactation (5–90 days) and records including late lactation (181–305 days) were 0.77–0.87 for cows and
0.81–0.94 for sires. These results show that we can select sires according to their daughters’ early
lactation information before they finish the first lactation. This can be used to decrease generation
interval and to increase genetic gain in the Iranian Holstein population.

Keywords: early sire selection; cross-validation; genetic evaluation; test-day model

1. Introduction

Genetic progress in dairy cattle strongly depends on the merit of bulls used as sires
for the next generation. Therefore, selecting sires is a vital decision that affects future
production, health, and profit in the following generations of dairy cows [1]. The merit
of selected sires is affected by factors such as the pedigree merit of parents, the number
of bulls sampled, the speed and accuracy of progeny testing, the intensity of selection
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following the test, and the maximum use of the best retained bulls [2]. The population
accuracy of predicted breeding values (EBV) of candidates is a critical point in selection
programs. Besides, a higher population accuracy of selection candidates connotes genetic
progress [3,4]. The traditional selection of dairy bulls is based on pedigree selection and
progeny testing. Efficient selection includes recognizing young bulls of high genetic merit
using pedigree information [5]. In progeny testing, the genetic evaluation of bulls is based
on the performance of offspring [6]. In more developed countries, the selection of dairy
bulls is based on genotyped information from dense SNP arrays to predict genomic EBV
using genomic prediction procedures. In addition, this information can be used for accurate
parentage assignment and pedigree reconstruction [7]. Therefore, genomic selection is
replacing the traditional selection based on pedigree [7–9].

Although the evaluation of sires can be more accurate when including later records
(e.g., second and third lactations) compared with early daughter records, selecting accord-
ing to later records may have some disadvantages. It can be biased by selection and low
production caused by abortion or health troubles [9]. In addition, recognizing superior
sires as soon as possible (according to their daughters’ early records of lactation) results in
selecting sires sooner than when waiting for their daughters to finish their first lactation.
This early selection leads to a decrease in generation interval, and thus speeds up genetic
changes in the population, which is profitable for the dairy industry [1].

In many previous studies, animal and sire models were used to estimate genetic
parameters of milk yield [10–13]. Milk yield is highly affected by the stage of lactation
expressed as different days in milk (DIM). Since genetic parameters change over the time,
an assumption of flexible genetic parameters across DIM is essential. Besides, variance
components change during time, mainly because of the genetic selection [8,14]. Random
regression (RR) models are often used for the genetic evaluation of traits that are measured
at different times during the lifetime or physiological cycle of an animal because it allows
studying the variation of a trait as a function of time (age; days in milk) [15,16].

Cross-validation of evaluation models is based on a series of statistics, including the
change of predictions from older to more recent evaluations that can be used to evaluate
the accuracy of an early prediction of breeding values [17]. The classical accuracy of EBV is
defined as the correlation between the true breeding value (TBV) and EBV for individuals
across repeated sampling and is a measure of potential change in EBV based on increasing
amounts of information [18]. Cross-validation methods can be used to evaluate population
accuracies of predicted breeding values and potential biases in predictions [19,20]. Cross-
validation is an efficient tool for validating RR models since it can include partial data on
lactations in progress [20].

The objectives of this study were: (1) use the RR model for genetic evaluation in the
Iranian Holstein population and to estimate genetic and phenotypic parameters associated
with this model, and (2) validate a model that can predict breeding values for sires and
cows at an early stage before all cows have finished their first lactation, to support the early
selection of sires.

2. Materials and Methods
2.1. Data

Data on milk production test-day records of first parity of Iranian Holstein cows
freshening from 1990 to 2015 were obtained from the Animal Breeding Center of Iran.
Data editing was completed with own R scripts [21]. Only cows with test-day milk yield
in the range 5–60 kg, were included in the analysis. Test-day records before day 5 and
after day 305 were removed. Only cows with three milkings per day were selected, as
this is the standard in large Iranian dairy herds. Cows were discarded if they had fewer
than two test-day records. Cows, that were out of the range of 20–50 months for first
calving were deleted. Herds and years, which had fewer than 500 and 1000 observations,
respectively, were discarded. In addition, pedigree was traced as far back as possible. On
average, five generations for animals with data traced back and the pedigree file contained
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737,738 animals. The original dataset consisted of 3,042,354 records. After editing data,
2,166,925 records from 456,712 cows out of 6542 sires and 328,659 dams remained.

2.2. Model

Genetic parameters were estimated using a random regression model as follows:

yijklmn = hyi + dimj + agek + htdl +
3

∑
t=0

∅t(DIMj) amt +
3

∑
t=0

∅t
(

DIMj
)

pemt + eijklmn (1)

where yijklmn is observation of test-day record n of cow m obtained at days in milk (DIM)
j in herd-test-day l in herd-year i of a cow calved at kth age class; hyi is the fixed effect of
herd-year (i = 1, . . . , 7653); dimj is the fixed effect of DIM (j = 5, . . . , 305); agek is the fixed
effect of age at calving (k = 20, . . . , 50 month); htdm is the herd-test-day random effect
(m = 1, . . . , 12,756); amt is the random additive genetic effect of mth animal; ∅t is the tth

coefficient of Legendre polynomials evaluated at DIM j which is standardized between
–1 and +1; pemt is the random permanent environmental effect; and eijklmno is the random
residual error effect.

The distributions of random effects were assumed to be normal:

a ∼ N(0, A⊗G0) (2)

pe ∼ N
(
0, Iq ⊗ P0

)
(3)

e ∼ N
(

0, Inσ2
e

)
(4)

htd ∼ N
(

0, Ipσ2
htd

)
(5)

where A is the relationship matrix of the order of number of animals; G0 and P0 are matrices
of the additive genetic and permanent environmental (co)-variances of random regression
coefficients of the order of number of Legendre polynomials; Iq is an identity matrix of the
order corresponding to permanent environmental effect which is computed for animals
with record; In is an identity matrix of the order of records; σ2

e is residual error variance;
Ip is an identity matrix of the order corresponding to htd effect; σ2

htd is the variance of htd
effect; and ⊗ is the Kronecker product.

All analyses were performed using RR models using the average information (AI)
restricted maximum likelihood (REML) module in the DMU software [22]. Legendre
polynomial functions were chosen to fit the lactation curves in the RR test-day model for
estimating (co)-variance components, and Legendre polynomials were generated by R
script using the Orthopolynom package [23]. Various orders of polynomials were tested,
and the optimum was selected based on likelihood ratio tests. The fixed parts of the
curve were modeled using a step function that could move freely at every DIM. This was
to ensure that the form of the general lactation curve was not limited by the number of
parameters in the Legendre polynomials.

2.3. Prediction of Breeding Values

The formulas below were used to estimate breeding value of animals on each day of
lactation curve.

EBVmj = zj
′ âm (6)

zj =


∅0j
∅1j
∅2j
∅3j

 âm =


âm0
âm1
âm2
âm3

 (7)
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where EBVmj is the estimated breeding value of animal m at DIM j, zj is a vector of Legendre
polynomial coefficients evaluated at DIM j, and âm is a vector of the estimates of additive
genetic random regression coefficient specific to the mth animal.

In addition, the total EBV of animal m was obtained by summing the EBVs from day 5
to 305:

EBVTm =
305

∑
j=5

EBVmj (8)

2.4. Estimation of Genetic Parameters

The following formulas were used for estimating additive genetic, permanent envi-
ronmental variances, heritability, and repeatability of milk yield:

σ2
aj = zj

′G0zj (9)

σ2
pej = zj

′P0zj (10)

h2
j = σ2

aj/σ2
Phj (11)

rj =
(

σ2
aj + σ2

pej

)
/σ2

Phj (12)

where σ2
aj and σ2

pej are additive genetic and permanent environmental variances at DIM j;
zj is a vector of the Legendre polynomial coefficients evaluated at DIM j; h2

j is heritability

of milk yield at DIM j; σ2
Phj is phenotypic variance obtained from sum of additive genetic

variance, permanent environmental variance, and residual variance at DIM j; and rj is
repeatability of milk yield at DIM j.

2.5. Cross-Validation

The forward cross-validation method was used in the current study. This requires
the definition of a cut-off date and construction of partial and whole data, which is based
on the use of “old” and “recent + old” phenotype data, respectively [17,20]. In our study,
the whole dataset was sliced after the first five years; it was the first partial data set that
compromised records from 1990 to 1995. The whole data set was then sliced after the first
six years and it was the second partial data set that contained records from 1990 to 1996. To
simulate yearly genetic evaluations, this process continued until last year. In total, there
were 21 consecutive evaluations with an interval of one year.

Since our objective was to select sires according to their daughters’ performance at an
early age of lactation, we defined periods of early (E) and late (L) lactation, which contained
cows with DIM in the range of 5–90 and 181–305, respectively, in each partial data set used
in the cross-validation. To compare genetic evaluations, every two consecutive partial data
sets were compared together as an old (i − 1) and new (i) partial data set. In each yearly
evaluation, EBVs in the early period in the i − 1 partial data set were compared with EBVs
in the late period in the i partial data set.

With the aim of comparing genetic evaluations, linear regression (LR) methods
from [17] were used separately for all consecutive comparisons from i – 1 = 1, i = 2
until the last two partial data sets (i − 1 = 20, i = 21).

Let ûi and ûi−1 be the EBV in the new (i) and old (i − 1) partial data sets.

bi,i−1 = cov(ûi, ûi−1)/var(ûi−1) (13)

where bi,i−1 is the regression of EBV obtained with the new partial data set (i) on EBV
estimated with the old partial data set (i − 1) and describes dispersion. The statistic bi,i−1
has an expected value of 1 if there is no over/under dispersion.

Þi,i−1 = cov(ûi, ûi−1)/
√

var(ûi), var(ûi−1) (14)
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where Þi,i−1 is the correlation of EBV based on the old (i − 1) and new (i) partial data sets
and shows population accuracy (correlation between TBV and EBV).

Mi,i−1 = ûi−1 − ûi (15)

where Mi,i−1 is deviation of average of EBV in the old (i − 1) and new (i) partial data
sets and describes bias. The statisticMi,i−1 has an expected value of 0 if the evaluation is
unbiased [17,18]. Figure 1 indicates cross-validation scenario.

Figure 1. Forward cross-validation scenario used for emulating a system of yearly genetic evaluations.
EBV: estimated breeding value, E: early period of lactation (5–90 days), L: late period of lactation
(181–305 days), and LR: linear regression.

In addition, the formulas below were used to estimate total phenotypic milk yields
and then compute correlation between estimated total milk yield based on early lactation
records and estimated total milk yield based on nearly completed lactations in the following
yearly evaluation. This correlation was calculated to evaluate early selection, and cows
in early lactation (5–90 days) in the i − 1 partial data set and that reached late lactation
(181–305 days) in the i partial data set were involved.

TMY = EBVT + TPe (16)

ÞTMY(i,i−1) = cov
(

T̂MYi, ̂TMYi−1

)
/
√

var
(

T̂MYi

)
, var

(
̂TMYi−1

)
(17)

where TMY is the estimated total milk yield; EBVT is the predicted total breeding value
(from day 5 to 305); TPe is the sum of value of permanent environmental effect from day
5 to 305; and ÞTMY(i,i−1) is the correlation of estimated total milk yield based on the old
(i − 1) and new (i) partial data sets.
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3. Results
3.1. Fixed Effects

The solutions of fixed effects are illustrated in Figure 2. Figure 2A indicates yearly
average solutions for herd-year effects from 1990 to 2015. The solutions for herds increased
substantially over the whole period. Figure 2B shows solutions for age at calving as a
contrast to age at calving at 50 months, which were set to zero. Milk yield increased from the
age of 20 months and peaked around 26–28 months, whereafter yield gradually decreased
as the cows become older at first calving. Figure 2C provides information about solutions
for DIM in contrast to 305 DIM, which were set to zero. Milk yield production increased
towards weeks 6–8 of the lactation period and then decreased. From day 275 onwards,
estimates of milk yield production increased again.

Figure 2. Solutions of fixed effects herd−year averaged over years (A), age of calving (B), and DIM
(C); with standard error indicated. DIM = days in milk.

3.2. Estimation of Genetic Parameters

Figure 3 provides information about genetic, permanent environmental, and pheno-
typic variances and their standard errors at different DIM. The permanent environmental
variance was higher at the beginning and the end of the lactation period, and it had the
highest value at 51 kg2 on the last day of the lactation period. The genetic variance was
higher at the beginning of lactation, then decreased until the middle of lactation, and
increased towards the end of lactation.
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Figure 3. Genetic (a), permanent environmental (pe), and phenotypic (P) variances and their standard
errors at different days in milk (DIM).

The heritability and repeatability of milk yield and their standard errors are indi-
cated in Figure 4. The lowest heritability was estimated at just under 0.14 (±0.021) in
early lactation, then increased dramatically towards the mid-lactation, and peaked at 0.18
(±0.024) on day 142 of lactation. The repeatability was high at the beginning of lactation,
decreased towards mid-lactation, and bottomed out at 0.67 (±0.048) on day 154. After that,
it increased again and was highest at 0.79 (±0.052) on day 305.

Figure 4. Heritability (A) and repeatability (B) of milk yield and their standard errors as a function
of days in milk (DIM).

Genetic and phenotypic correlations between milk yield at different DIM are shown
in Figure 5A,B, respectively. As can be seen in the graph, genetic correlations between
adjacent test-days were high and declined with increasing distance between test-days. The
genetic correlation between day 5 and days 6–13 was 0.99, between day 5 and days 58–83
was −0.82, and between day 5 and days 305–298 was −0.2.
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Figure 5. Genetic (A) and phenotypic (B) correlation between milk yields at different days in milk
(DIM) with error bars indicating standard error.

3.3. Cross-Validation

The correlation of predicted breeding values in different yearly evaluations for sires
and cows in E-L (early-late) periods is indicated in Figure 6. The E-L period includes cows
with DIM in the range of 5–90 in the i − 1 partial data set and increased to DIM 181–305
in the i partial data set. Correlation for cows and sires was in the range of 0.77–0.87 and
0.81–0.94, respectively.

Figure 6. Correlation of estimated breeding values of cows and sires in E-L period. Years 1–20 are
evaluated based on 1990–1995, followed by adding one year of data at a time.

The results ofMi,i−1 for cows and sires are indicated in Figure 7. In the E-L period,
the statisticMi,i−1 was in the range of −72.71 to 498.70 and −81.74 to 155.84 for cows and
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sires, respectively. The statisticMi,i−1 had the highest value between the two last partial
data sets (i − 1 = 20 and i = 21) for sires and cows. They were not significantly different
from zero (p < 0.05) for deviation of average of estimated breeding values in i – 1 and i
partial data set in all cow and sire groups.

Figure 7. The deviation of average of estimated breeding values and their standard errors based
on i and i − 1 partial data set in E-L period for cows and sires years 1–20 are evaluated based on
1990–1995, followed by adding one year of data at a time.

The results of bi,i−1 and their standard errors are indicated in Figure 8. For cows and
sires, the statistic bi,i−1 was in the range of 0.80–1.09 and 0.80–1.01, respectively. The statistic
bi,i−1 describes dispersion, and when it is equal to 1, it means no over/under dispersion of
predicted breeding values.

Figure 8. Regression of estimated breeding values of cows and sires and their standard errors in E-L
period years 1–20 are evaluated based on 1990–1995, followed by adding one year of data at a time.
Standard errors were in range of 0.004–0.022.

Figure 9 provides the results of ÞTMY(i,i−1). As shown in the graph, the correlation
between estimated total milk yield in early and late lactation was in the range of 0.62–0.73
in different comparisons.
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Figure 9. Correlation of estimated total milk yield in early and late lactation. Years 1–20 are evaluated
based on 1990–1995, followed by adding one year of data at a time. Standard errors were in range of
0.006–0.023.

4. Discussion
4.1. Model

RR models are used for the genetic evaluation of milk yield trait because it allows
studying the variation of trait as a function of time or stage of lactation. Therefore, finding
the optimum order of fit in RR models is crucial. Several studies have indicated that the
third order of fit is adequate for estimating variances because third-order polynomials fol-
low the shape of genetic and permanent environmental variances over DIM with sufficient
accuracy [24,25]. In the current study, various orders of polynomials were tested, and the
optimum was selected based on likelihood ratio tests. In addition, the genetic correlation
structure can be fitted with sufficient accuracy by a third-order polynomial [24–26]. Further-
more, a homogeneous residual variance was assumed through the lactation. The pattern
of residual variance depends more upon the order of regression fitted to the permanent
environmental effect than the regression fitted to the additive genetic effect. Thus, residual
variance is not largely affected by the estimate of the additive genetic variance [27].

With the aim of avoiding assumptions on the form of the lactation curve that can be
implied in polynomial regression, DIM and age at calving were modeled as class variables,
as in several previous studies [15,24,26,28]. The solutions for the herd-year fixed effect
increased by time, most likely due to improved management, including better diet and
sanitation services. The solutions of age at calving peaked at 28 months and then reduced
gradually towards a calving age of 49 months. In the fiftieth month, the effect of age at
calving increased, and this peak is probably due to second-parity cows, where second
calving is not recoded in our data. In first parity, cattle have higher milk production at the
age of calving at 24–28 months, when they reach maturation age and gain proper weight
for calving [28–30]. Solutions of DIM increased towards weeks 6–8 of the lactation period
and then decreased toward the late lactation. This trend is expected for the early lactation
period and is in agreement with other investigations [31,32]. The solution of DIM was
raised again at the end of lactation, which can be due to missing calving dates in the data.

4.2. Genetic Parameters

The permanent environmental variance was higher in the beginning and toward the
end of lactation, and that led to an increase in phenotypic variance and a decrease in
heritability at the start and end of lactation. The first test-day is influenced by several
environmental factors, such as feeding before calving, which results in larger variances at
the beginning of lactation [13]. In addition, we had indications that the calving date was
not always accurate in our data, which may increase variances in early lactation. Moreover,
genetic variance can be changed over a generation because of selection [14]. However, we
traced the pedigree to a base population to minimize the effect of previous selections. The
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heritability estimated in the present study was lower than the estimated values in other
surveys that used RR models for Danish Holsteins, RR models for Iranian Holsteins, and
multiple-trait linear models for Japanese Holsteins where the heritability of milk yield in
their studies was estimated to be 0.36, 0.31, and 0.41, respectively [15,33,34]. In addition, the
heritability of milk yield of Holstein-Friesian crossbred cattle and Tunisian dairy cattle using
the Bayesian method was estimated to be 0.31 and 0.25, respectively [35,36]. Moreover, in
other investigations where sire models were used for American Holsteins and bivariate
repeatability animal models were applied for Italian Holsteins, the heritability of milk yield
was estimated to be 0.12 and 0.11, respectively, in which the value of estimated heritability
was lower than found in the present study [10,11]. The different estimates of heritability
in various studies can be due to the number of animals, stage of lactation, feeding plan,
and statistical methods [13]. In general, the highest heritability was observed in the middle
of lactation, and lower heritability was observed in the beginning and end of lactation.
This result is in agreement with several investigations where researchers used Bayesian
analysis, RR models, and animal models [13,15,37]. The repeatability of milk yield had
a higher value in the beginning and toward the end of lactation. Since repeatability is
influenced by additive genetic and permanent environmental variances, it has a trend like
the variances. The results of repeatability in the current study were in accordance with
another study on Iranian Holsteins using RR models [38]. In another investigation on
Holstein-Friesian dairy cattle using an animal model, repeatability was estimated in the
range of 0.12–0.83 in different stages of lactation [12]. The estimated repeatability in our
study was higher than in other surveys [39,40]. Moreover, the repeatability of milk yield
on Tunisian dairy cattle using the Bayesian method was estimated to be 0.4, which was
lower than our estimation [36]. Furthermore, the repeatability of milk yield estimated of
Holstein-Friesian cattle using RR models was in the range of 0.80–0.91 in different stages
of lactation, which was higher than estimated values in the current study [41]. Genetic
correlations between adjacent test-days were high and declined with increasing distance
between test-days. These results were in agreement with previous investigations completed
using RR models [13,15,37,42–44].

4.3. Cross Validation

The correlation between predicted breeding values in i − 1 and i and averaged over
all comparison partial data sets was high. In the E-L period that contained cows whose
average DIM was in range of 5–90 in the i − 1 partial data set and reached to DIM 181–305
in the i partial data set, correlation for cows and sires was high. The EBVs of daughters
in early lactation were highly correlated with the EBVs of daughters in late lactation,
indicating that there is no need to wait until the end of the first lactation of the daughters
to recognize superior sires. The statisticMi,i−1 had the highest value between the two last
partial data sets for sires and cows, which can be because of fewer observations in the last
year in our data. Nonetheless, in the E-L period the statisticMi,i−1 was not significantly
different from 0 (p < 0.05) which means no detectable bias, and the statistic bi,i−1 was near
1, which indicates low over/under dispersion. On the other hand, early predicted breeding
values in progeny groups was highly correlated to the final predicted breeding values.
Moreover, the early prediction of total milk yield was positively correlated with the late
prediction of total milk yield in i − 1 and i partial data sets which shows the reliability
of early selection. Our results prove that we can select sires according to their daughters’
early lactation before finishing the first lactation and this early selection can be reliable.
Early selection brings many benefits, such as decrease generation interval and increase
genetic gain in the Iranian Holstein population.

5. Conclusions

The highest heritability of milk yield was observed in the middle of lactation and lower
heritability in the beginning and end of lactation. Besides, genetic correlations between
adjacent test-days were high and declined with increasing distance between test-days.
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Cross-validation showed a high positive correlation of predicted breeding values
between consecutive yearly evaluations for both cows and sires. Moreover, early predic-
tion of total milk yield was highly correlated with the late prediction of total milk yield.
Consequently, sire selection can be completed based on their daughters’ early lactation per-
formance. Early selection of sires results in a decreasing generation interval and speeding
up of genetic gain, which is profitable for the dairy industry. Therefore, this early selection
is suggested to breeders who do not have genomic information and want to recognize
superior sires as soon as possible.
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