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Traumatic brain injury (TBI) is the most common cause of morbidity among trauma
patients; however, an effective pharmacological treatment has not yet been approved.
Individuals with TBI are at greater risk of developing neurological illnesses such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD). The approval process for
treatments can be accelerated by repurposing known drugs to treat the growing number
of patients with TBI. This review focuses on the repurposing of N-acetyl cysteine
(NAC), a drug currently approved to treat hepatotoxic overdose of acetaminophen.
NAC also has antioxidant and anti-inflammatory properties that may be suitable for
use in therapeutic treatments for TBI. Minocycline (MINO), a tetracycline antibiotic, has
been shown to be effective in combination with NAC in preventing oligodendrocyte
damage. (—)-phenserine (PHEN), an anti-acetylcholinesterase agent with additional non-
cholinergic neuroprotective/neurotrophic properties initially developed to treat AD, has
demonstrated efficacy in treating TBI. Recent literature indicates that NAC, MINO, and
PHEN may serve as worthwhile repositioned therapeutics in treating TBI.
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BACKGROUND

Traumatic brain injury (TBI) is a major public health issue with 69 million cases globally each
year and plays a role in approximately one-third of all injury-related deaths in the United States
(Faul et al., 2010; Dewan et al., 2018). North America has the highest reported incidence of TBI in
the world with 1299 cases per 100,000 individuals at an estimated cost of $3.84 billion (Faul et al.,
2007, 2010; Dewan et al., 2018). TBI cases are commonly classified as: mild (awake and oriented);
moderate (significantly confused but able to follow commands); and severe (prolonged impaired
consciousness and inability to follow commands) based on parameters of the Glasgow Coma Scale
(Jennett et al., 1981). Most cases are mild in severity, allowing for the opportunity to recover
from initial symptoms. However, despite initial recovery, patients remain at risk of developing late
secondary neurodegenerative disorders such as Alzheimer’s disease (AD) (e.g., memory loss) and
Parkinson’s disease (PD) (e.g., tremor and shuffling gait) (Goldman et al., 2006; Tagliaferri et al.,
2006; Chauhan, 2014; Djordjevic et al., 2016; Mendez, 2017). Drugs utilized in treating TBI may
work to protect brain areas that are at increased risk in the acute and delayed setting (Du et al.,
2016). The mechanisms of injury following cortical impact involve neuroinflammatory pathways,
apoptotic cell death, and glutamic toxicity (Ray et al., 2002). The multifaceted and undefined nature

Frontiers in Neuroscience | www.frontiersin.org 1

March 2021 | Volume 15 | Article 635483


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.635483
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.635483
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.635483&domain=pdf&date_stamp=2021-03-23
https://www.frontiersin.org/articles/10.3389/fnins.2021.635483/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Ghiam et al.

Drug for TBI

of TBI makes it difficult, time consuming, and expensive to
develop novel treatment strategies. Drug repurposing can provide
a fast-tracked route toward developing effective therapies for
TBI. Several drugs under investigation include N-acetyl cysteine
(NAC), minocycline (MINO), (—)-phenserine, progesterone,
propranolol, and valproic acid (Eakin et al., 2014; Xiong et al.,
2015; Hoffer et al., 2017). NAC and MINO have been approved
by Federal and Drug Administration for the treatment of
acetaminophen induced hepatotoxicity and bacterial infections,
respectively (Adminstration, 1971; Prescott et al., 1979).

PATHOPHYSIOLOGY OF TRAUMATIC
BRAIN INJURY

Primary TBI occurs as a result of physical trauma to the
head, causing neuronal damage, and neuroinflammatory events.
The manipulation of neuronal membranes dysregulates ion
flow. Neuroinflammation is induced by increased microglial
activity and depletion of mitochondrial glutathione (GSH), a
key antioxidant compound. GSH reduction combined with
increased intracellular calcium ion induces mitochondrial
dysfunction leading to caspase activation and eventual apoptosis
(Xiong et al, 1999; Pearn et al., 2017). Secondary, or
delayed, injury following TBI is believed to occur due to
multiple physiologic processes including free radical injury,
inflammation, and glutamatergic excitotoxicity (Lenzlinger et al.,
2001; Morganti-Kossmann et al,, 2002; Yi and Hazell, 2006;
O’Connell and Littleton-Kearney, 2013).

CURRENT THERAPIES UNDER
INVESTIGATION

N-Acetyl Cysteine

N-acetyl cysteine has been shown to have significant
neuroprotective effects in various animal models, particularly
in ameliorating the effects of secondary neuronal injury as a
result of TBI. Experimental rat models have confirmed the
beneficial antioxidant properties of NAC when used to treat
brain injury. NAC acts by upregulating the level of GSH, a
combination of L-glutamic acid, L-cysteine, and glycine, within
the brain. Administration of NAC maintains high GSH levels
in the brain which acts as a free radical scavenger and as an
antioxidant itself (Ellis et al., 1991; Xiong et al., 1999; Chen et al.,
2008). The underlying pathophysiologic processes resulting
from TBI lead to increased risk of neurodegenerative illnesses
such as AD and PD (Ikonomovic et al., 2004; Acosta et al.,
2013; Franzblau et al., 2013; Chauhan, 2014; Pearn et al., 2017;
Gardner et al., 2018). NAC provides a source of cysteine, a
precursor to GSH, which can be used to alleviate reactive oxygen
species (ROS)-mediated complex I damage in mitochondria
of the substantia nigra in PD (Jha et al, 2000; Martinez
Banaclocha, 2000; Banaclocha, 2001). NAC also reduces tau
and beta-amyloid deposition and acts as an anti-inflammatory
agent in treating AD via the upregulation of GSH, displaying
its efficacy in not only treating TBI itself but also subsequent

neurodegenerative conditions that are associated with TBI in
rat and mice models (Tucker et al., 2005; Acosta et al., 2013;
Franzblau et al., 2013; Joy et al, 2018; Tardiolo et al., 2018).
A double-blind placebo-controlled human trial was used to
evaluate efficacy of NAC in patients with blast-induced mild
TBI (Hoffer et al, 2013). The treatment group received 2 g of
NAC twice daily for the first 4 days followed by 1.5 g of NAC
twice daily for 3 days. All patients were evaluated for dizziness,
headache, hearing loss, memory loss, sleep disturbances, and
neurocognitive dysfunction following 7 days of treatment.
Significant improvement (p < 0.01) with regards to these
symptoms were seen 7 days post-treatment in those receiving
NAC within 24 h of injury. Additionally, the treatment group
had 86% chance of recovery. Outcomes from this study warrant
further investigation on long-term outcomes of NAC treatment
in TBI (Table 1).

The antioxidant properties of NAC make it particularly
useful in treating dysfunction resulting from TBI by mitigating
the damaged mitochondrial production of ROS. However, low
bioavailability in the brain has created interest in N-acetyl
cysteine amide (NACA) a form of NAC with higher cellular
permeability. Recent animal studies have shown NACA to be
significantly better than NAC in reducing oxidative stress when
treating TBI (Pandya et al., 2014).

Treatment with NACA in rats has also been shown to protect
the blood-brain barrier (BBB) and maintain brain homeostasis by
alleviating oxidative stress caused by blast overpressure induced
TBI (Kawoos et al., 2019). NACA promoted an antioxidant effect
via activation of the nuclear factor erythroid 2-related factor 2
(Nrf2) - antioxidant response element (ARE) pathway. NACA
also displayed antiapoptotic properties following TBI. Both
antioxidant and antiapoptotic effects are induced by modulation
of the ubiquitin protease system via activation of the Nrf2-
ARE pathway (Ding et al, 2017; Zhou et al, 2018). It is
important to note that these studies utilized blast overpressure
techniques. Additional studies investigating NACA using “true”
blast models as described by Rubovitch et al. (2011) rather than
a “blast tube” may provide further insight into the protective
effects of NACA.

Minocycline

Minocycline (MINO), a tetracycline antibiotic, has been shown to
offer neuroprotective properties on its own and in combination
with NAC and NACA. Rat models have supported the efficacy
of MINO in treating neurological impairment arising from TBI
(Haber et al., 2018; Zhang et al., 2020). In a mild controlled
cortical impact model, MINO + NAC improved memory and
cognition in rats and repaired white matter damage by protecting
oligodendrocytes (Haber et al., 2018). In a controlled head injury
(CHI) model of TBI, loss of oligodendrocytes was also observed.
MINO + NAC provided protection against oligodendrocyte
apoptosis during days 2-14 when dosed at 12 h post-TBIL
MINO alone did not protect against initial oligodendrocyte
damage when dosed 12 h post-TBIL; however, full recovery was
seen on day 14, suggesting that MINO alone operates via a
different mechanism than MINO + NAC (Sangobowale et al.,
2018). MINO alone acts by temporarily inhibiting microglial
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activation and reducing TBI-induced locomotor activity leading
to improved long-term outcomes post-TBI (Homsi et al., 2010).
Despite MINO proving to be safe in treating TBI in phase 1
trials, a human study on 15 patients greater than 6 months
post moderate/severe TBI, receiving 100 mg MINO two times
daily, indicated inhibition of chronic microglial activation
which may have reparative effects but ultimately resulted in
increased neurodegeneration indicated by increased levels of
plasma neurofilament light chain (Scott et al., 2018; Meythaler
et al., 2019). Though MINO alone may not be efficacious in
treating TBI, human trials involving MINO and NAC together
may be warranted.

(—)-Phenserine

Phenserine is an anti-acetylcholinesterase agent with additional
non-cholinergic properties that was originally developed to treat
AD (Greig et al., 1995). However, PHEN has the potential to
be repurposed for treating TBI. PHEN anti-acetylcholinesterase
activity has been shown to reduce neuroinflammation, alleviate
amyloid deposition, and prevent apoptosis as well as mitigate
multiple different mechanisms of secondary injury (Kadir et al.,
2008; Poole and Agrawal, 2008; Hsueh et al., 2019; Lecca et al,,

2019).

A study by Lecca et al. (2019) investigated the effects of
PHEN (5 mg/kg) in mitigating apoptosis and neuroinflammation

TABLE 1 | Summary of human trials for repurposed drugs in TBI.

Reference (study N (% Mean age Control Dose Outcome measures Findings
design) male) (range)
N-acety! Hoffer et al., 2013 81 (99%) 22 years Placebo 2 g BID for 1. Controlled oral world 1. Improved cognitive
cysteine (phase Ill) (18-43) 4days1.59g association test, animal  function 2. Amelioration
BID for 3 days naming test, trail of mild TBI symptoms
making test 2. Clinical
assessment for hearing
loss, headache,
balance
Amen et al., 2011 30 (100%) NR Self-matched NR 1. SPECT image 1. Increased cerebral
(Prospective) analysis 2. MicroCog blood flow 2. Improved
Assessment of cognitive function
Cognitive Functioning
Minocycline  Meythaler et al., 2019 15 (80%) 43 years Self-matched Tier 1: 200 mg 1. Disability rating scale 1. Trend toward
(phase lla) (21-71) BID for 7 days 2. Neurocognitive improved DRS for
Tier 2: 400 mg outcome measures 3. higher dose 2. Safe for
BID for 7 days Serum biomarkers, use in TBl at 2x dose
laboratory analysis recommended for
infection
Koulaeinejad et al., 34 (88%) 42.5 years Placebo 100 mg BID for 1.S100B 2. NSE 3. 1. Significant reduction
2019 (phase ) (18-73) 7 days GCS S100B and NSE
Scott et al., 2018 15 (87%) 42.3 years Control (no treatment) 100 mg BID for 1. PET 2. MRI 3. 1. Reduced chronic
(cross sectional) (23-61) 12 weeks Plasma axonal protein microglial activation 2.

NFL

Increased plasma NFL
3. Microglial activation
has reparative effects in
late stage TBI

TBI, traumatic brain injury; BID, twice daily; NR, not recorded; SPECT, single photon emission computed tomography, DRS, disability rating scale; NSE, neuron specific
enolase; GCS, Glasgow Coma Scale; PET, positron emission tomography; MRI, magnetic resonance imaging; NFL, neurofilament light.

TABLE 2 | Ongoing human clinical trials.

Clinical trial identifier ~ Status Title Study design Drug Intervention arms Primary outcome
measure
NCT03241732 Recruiting PET-MRI and the effect Non- NAC 1. Dietary arm 2. IV/PO  FDG-PET to measure
of N-acetyl cysteine randomized, arm 3. Control arm inflammation and
and anti-inflammatory crossover oxidative damage in the
diet in TBI brain
NCT04291066 Active, not recruiting  Prospective analysis of Randomized, NAC and oral 1. Experimental 2. Determine
the use of N-acetyl prospective multivitamins Non-treatment (routine improvement in

cysteine and vitamins in
the treatment of TBI in
geriatric patients

care)

somatic, cognitive, and
emotional
post-concussion
symptoms

NAC, N-acetyl cysteine; TBI, traumatic brain injury; IV, intravenous; PO, per os; FDG-PET, fluorodeoxyglucose-positron emission tomography.
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in both wild-type (WT) and amyloid-precursor protein
(APP)/presenilin 1 (PSEN1) expressing AD mice (APP/PS1 mice)
when exposed to mild TBI (mTBI). PHEN was found to be
well tolerated in exposed mice. Exposure to mTBI resulted in
increased size of microglial cell bodies and increased production
of IB1A1 and TNF-a. PHEN reduced inflammation by decreasing
the production of IB1A1 and TNF-a in microglial cells in a dose-
dependent manner after exposure to mIBI in both WT and
APP/PS1 mice. This anti-inflammatory action was observed in
both hippocampal and cortical areas in WT and APP/PS1 mice.
An increase in glial fibrillary acidic protein IR (GFAP IR), an
astrocyte marker, was also noted in hippocampal in cortical areas.
PHEN was shown to fully reverse the increase in GFAP IR in both
WT and APP/PS1 mouse models (Lecca et al., 2019). PHEN has
demonstrated both anti-apoptotic effects through upregulation of
Bcl-2 and BDNF expression while also decreasing pro-apoptotic
factors such as caspase-3, APP, and GFAP (Chang et al., 2017).
Similar data was also seen following controlled cortical impact
injury in moderate TBI. In addition to treating cell death, PHEN
has also had positive effects on reducing intracranial pressure,
measured with lateral ventricle size, and contusion volume.
Treatment of 2.5 mg/kg twice daily for 5 days post controlled
cortical impact injury in mice reduced both contusion volume
and intracranial pressure (Hsueh et al., 2019).

Phenserine administration post mTBI not only alleviates
primary cellular damage but also shows efficacy in treating
secondary TBI syndromes such as AD (Ikonomovic et al., 2004;
Acosta et al.,, 2013; Franzblau et al., 2013; Chauhan, 2014).
Treatment with PHEN in WT mice exposed to mTBI displayed
significant dose-dependent recovery of both visual and spatial
memory (Lecca et al., 2019). Levels of APP and alpha-synuclein,
which are present in AD and PD, respectively, were decreased by
treatment of PHEN (Marutle et al., 2007; Mikkilineni et al., 2012;
Chang et al., 2017).

While many studies have demonstrated the protective effects
of PHEN due to its anti-cholinergic activity, recent studies have
also shown that many of the protective effects of PHEN maybe
mediated by multiple non-cholinergic mechanism. A study by
Tweedie et al. (2016) evaluated the non-cholinergic actions
of PHEN on mTBI mice following a 2 days wash out when
cholinergic actions were no longer present. PHEN dosed at 2.5
and 5.0 mg/kg twice daily for 5 days mitigated oxidative stress as
measured by activity and protein levels of superoxide dismutase
and glutathione peroxidase. Furthermore, PHEN was shown
to reverse hippocampal gene expression associated with lipid
peroxidation and development of AD in mTBI mice (Tweedie
et al,, 2016). Thus therapeutic benefits of PHEN in mitigating
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