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Abstract

The development of modern and affordable sequencing technologies has allowed the study of viral populations to an
unprecedented depth. This is of particular interest for the study of within-host RNA viral populations, where variation due to
error-prone polymerases can lead to immune escape, antiviral resistance and adaptation to new host species. Methods to
sequence RNA virus genomes include reverse transcription (RT) and polymerase chain reaction (PCR). RT-PCR is a molecular
biology technique widely used to amplify DNA from an RNA template. The method itself relies on the in vitro synthesis of
copy DNA from RNA followed by multiple cycles of DNA amplification. However, this method introduces artefactual errors
that can act as confounding factors when the sequence data are analysed. Although there are a growing number of
published studies exploring the intra- and inter-host evolutionary dynamics of RNA viruses, the complexity of the methods
used to generate sequences makes it difficult to produce probabilistic statements about the likely sources of observed
sequence variants. This complexity is further compounded as both the depth of sequencing and the length of the genome
segment of interest increase. Here we develop a Bayesian method to characterise and differentiate between likely structures
for the background viral population. This approach can then be used to identify nucleotide sites that show evidence of
change in the within-host viral population structure, either over time or relative to a reference sequence (e.g. an inoculum
or another source of infection), or both, without having to build complex evolutionary models. Identification of these sites
can help to inform the design of more focussed experiments using molecular biology tools, such as site-directed
mutagenesis, to assess the function of specific amino acids. We illustrate the method by applying to datasets from
experimental transmission of equine influenza, and a pre-clinical vaccine trial for HIV-1.
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Introduction

Reverse transcription-polymerase chain reaction (RT-PCR) is a

common tool to generate copy DNA (cDNA) from RNA. All publicly

available sequences of RNA viruses have been generated using this

technique. The method consists of two steps: the first is an in vitro

synthesis of cDNA from an RNA template in a reverse-transcription

reaction (RT); and the second (PCR) consists of multiple cycles of

DNA amplification using the cDNA generated in the RT step as a

template. As in any other polymerisation reaction, misincorporations

that result in artefactual mutations are generated during both steps,

although at different rates (reverse-transcriptases lack proofreading

activity and thus the RT step is more error-prone, while DNA

polymerases exhibit various degrees of proofreading activity).

The current genomics revolution has generated thousands of

sequences of complete RNA viral genomes. Sequences derived

from the influenza viruses resource (http://www.ncbi.nlm.nih.

gov/genomes/FLU/FLU.html) alone account for more than

175,000 as of October 2010. Indeed, the advent of novel and

more affordable sequencing technologies allows the study of viral

populations in an unprecedented depth, up to the level of

characterising within-host viral populations in a qualitative and

quantitative fashion. In particular, such studies are critical to

understand the mechanisms that govern the evolution of virulence

or antiviral resistance, as well as the underpinning mechanisms of

cross-species jumps and immune evasion. In addition, in-depth

studies of genetic variation are increasingly used to elucidate the

viral population dynamics and evolution (phylodynamics) both

within and between hosts [1].

Different laboratories have explored the within-host variation

and evolution of a variety of RNA viruses, ranging from those that

cause acute infections such as influenza and dengue [2–6], to those

that persistently infect their host, like human and simian

immunodeficiency viruses [7–10]. Despite differences in experi-

mental design due to inherent biological features of the virus under

study (i.e. specific host, inoculation route, replication strategy) and

the biological questions being addressed (i.e. size of transmission

bottlenecks, time of appearance of antiviral resistance or immune
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escape variants), most of these experiments rely on the analysis of

sequences derived from viral samples taken at different times post-

infection. The underlying assumption is that if multiple samples

are taken from a single host over time, it is possible to map the

frequency of a particular observed sequence and its variants in a

temporal fashion. However, since there are various sources of

error, both in the viral replication cycle and in the experimental

process, it is difficult to elicit (probabilistically) whether observed

variants are consistent with the possibility of viral evolution, or

simply a result of random misincorporations occurring either

within the host or during the RT-PCR/sequencing process. We

propose a Bayesian method to try to make such distinctions, and to

illustrate these techniques we use data from an experimental

transmission study of equine influenza virus (EIV) in its natural

host [6], and data from a prime-boost pre-clinical vaccine trial in a

non-human primate model for HIV-1 (M. Varela and J. L.

Heeney, in preparation).

An important biological distinction between these two patho-

gens is the duration of the infection; while influenza infections are

typically acute, lasting for only a few days, HIV infections can last

for a lifetime. In addition, the experimental procedures established

for the study of within-host evolution for those two infections are

different (Figure 1). For HIV, single genome amplification (SGA)

followed by direct sequencing is currently the technique of choice

[7,8,11–15]. In SGA, viral RNA is extracted from a clinical

sample (typically a blood sample) and copied into cDNA, which in

turn is subjected to a limiting dilution step such that only one

molecule is then used as a template for a PCR reaction. Thus the

obtained PCR products are the result of the amplification of one

single molecule of cDNA. These PCR products are then

sequenced directly without cloning. An alternative experimental

approach is clonal sequencing, which has been used to study intra-

host viral populations of influenza and dengue [2,3,5,6]. With this

method, RT-PCR is performed from a clinical sample, followed by

subcloning of the resulting PCR products into sequencing vectors,

which in turn are introduced into bacteria in order to produce the

necessary quantities of DNA required for sequencing. In clonal

sequencing, DNA from individual colonies (i.e. single molecules of

PCR product) are extracted and sequenced.

The statistical framework we present here is quite general, and we

show how it can be used for screening data from longitudinal within-

host experiments, and/or between-host transmission studies. The

mechanism by which we identify ‘‘sites-of-interest’’ is to monitor the

frequency of bases present at a particular nucleotide site in the

background population of viruses. It should be noted that the

approach we propose here is not meant to replace methods to study

selection analysis, for which there are already many excellent

algorithms and software packages available (e.g. [16]). Instead the

method is designed to flag up single sites that exhibit changes in the

structure of the distributions of bases either over time, or relative to

a reference sequence (such as that obtained from an inoculum

sample). Furthermore it aims to provide a weight-of-evidence in

favour of population structures that suggest higher frequencies of

mutations than would be expected if all mutations arose randomly

without further propagation (i.e. de novo). There are various

biological mechanisms that could cause these observed changes,

for example competition or selection within the host, and we discuss

various options in more detail in the Materials and Methods and

Discussion sections. The method can also be used to inform

subsequent experiments that aim to target the role of individual

nucleotide variants in defined phenotypes. In both studies described

here, viral sequences have been generated using capillary

sequencing technologies (i.e. Sanger sequencing). Although newer

sequencing technologies that produce thousands of reads are

available, they are not yet established for the kind of studies

analysed here. This is due to the variable length of reads they

produce (50 to 250 base pairs), which makes it difficult to link distant

mutations, as well as for the intrinsic error rates they display.

Materials and Methods

Statistical methodology
The genetic units of interest here are individual nucleotide sites,

and the output from the sequencing process is a distribution of

Figure 1. Schematic comparison of clonal vs. SGA sequencing.
doi:10.1371/journal.pcbi.1002027.g001

Author Summary

Characterising genetic variation in viral populations can
have important implications in terms of understanding
how viruses evolve within infected hosts. Modern
sequencing technologies allow genetic information to be
obtained faster, more affordably, and in much greater
quantities than before. This allows new experimental
procedures to be designed to explore aspects of
pathogenesis that were previously unattainable, particu-
larly with regard to mutations that occur at particular
nucleotide sites that may confer a fitness advantage to the
pathogen. This information can be used to study
important issues such as the development of antiviral
resistance, virulence, and/or changes in host-range spec-
ificity. Nonetheless, the experimental procedures used to
generate the data can incorporate artefactual errors, and in
order to optimise the information obtained from these
studies techniques are required to characterise which sites
exhibit mutations that may alter viral fitness. As both the
depth of sequencing increases and the length of the
region sequenced increases (e.g. moves to whole genomes
rather than smaller segments), large numbers of sites will
exhibit some form of variation, and hence development of
a probabilistic method to define and extract these sites-of-
interest becomes more important. We tackle this problem
here using a Bayesian framework.

Bayesian Analysis of Genetic Variation

PLoS Computational Biology | www.ploscompbiol.org 2 March 2011 | Volume 7 | Issue 3 | e1002027



bases present across a finite set of observed sequences. For

consistency we define an observed ‘mutation’ to be a deviation

away from the consensus base at a particular nucleotide site [14].

At a given nucleotide site the consensus is defined as the base

present at the highest frequency in the set of observed sequences

from the inoculum (for the HIV study) or the initial challenge

animal (for the EIV study). In the event that there is no clear

consensus base at a particular site (e.g. a 50:50 split), then

numerically the methods described subsequently are invariant to

the choice of ‘consensus’ and ‘mutation’, though care must be

taken with the biological interpretation of the results.

In the first instance we will consider an individual dataset

containing S sequences of N nucleotides each, derived from a

single clinical sample (in this case a blood sample or a nasal swab).

At any single nucleotide site there are three possible deviations

away from the consensus base. The distributions of observed bases

at a single nucleotide site can then be considered as a random

draw from the background population, and can be described by a

multinomial distribution (described below).

More formally, if we denote the number of bases of type B at site

j as ZjB, then the probability of observing z1 sequences with base

B1, z2 with base B2, z3 with base B3 and z4 with the consensus

base C at position j is:

P ZjB1
~z1,ZjB2

~z2,ZjB3
~z3,ZjB4

~z4

� �

~
S!

z1!z2!z3!z4!
p

z1
jB1

p
z2
jB2

p
z3
jB3

p
z4
jC ,

where
P4
i~1

zi~S and
P4
i~1

pi~1. Here the parameters pj~

pjB1
,pjB2

,pjB3
,pjC

� �
correspond to the proportion of each base

present in the background population. For brevity we drop the

complex subscript, such that ZjB1
,ZjB2

,ZjB3
,ZjC

� �
? Z1,Z2,ð

Z3,Z4Þ and pjB1
,pjB2

,pjB3
,pjC

� �
~ p1,p2,p3,p4ð Þ; making only the

concession that the consensus base is always indexed 4.

The goal of this work is to develop a screening mechanism to

inform the development of future studies. The proposed method

aims to identify nucleotide sites whose frequency of mutations

differ from their expected values, which in turn are based on a

given viral population and some simple assumptions about the

mechanisms of random mutation events. We aim to approach this

problem by using two main sources of information: the overall

proportion of mutations present in the observed sequences

(denoted p�), and multiple viral samples obtained over time

(and/or within different animals). Given a starting population of

viruses, consider initially the case that all observed mutations occur

randomly without further replication. In this scenario the

distribution of observed bases at a nucleotide site j will be

expected to follow a multinomial distribution such that
P3
i~1

pji~p�,
regardless of the background structure of the pjis.

On the other hand, if a site j exhibits a frequency of mutations

such that
P3
i~1

pjiwp�, then it is much more likely that some form of

amplification of one or more mutations has occurred, and these

are defined as our ‘‘sites-of-interest’’. Of course in reality p� will

contain both ‘‘unamplified’’ and ‘‘amplified’’ mutations, as it

averages over all positions. Hence using the constraint
P3
i~1

pjiwp�

to characterise sites-of-interest will be conservative, in the sense

that we are less likely to identify some truly amplified mutations

due to the potential overestimate of p�. However, we are not

modelling the biological mechanisms that cause the population

structure p1,p2,p3,p4ð Þ to change, and therefore it is necessary to

consider the interpretation of sites identified using this criterion.

We note that any mutation must have occurred either by a

biological mechanism (‘‘real’’), or as an artefact of the RT-PCR

process (‘‘artefactual’’), and the aim of this work is to distinguish

between these mechanisms in a viable manner. As in all practical

discrimination algorithms there is the potential for classification

error to happen, and in this case a false positive occurs when an

artefact mutation is classified as a mutation-of-interest, and a false

negative occurs when a real mutation is missed. In fact the distinction

is more subtle than this, since real mutations that are either neutral

or deleterious to the fitness of the virus are not usually of interest

from a biological perspective, and if these occur then they are likely

to be present at very low levels at any given time point and so will not

be isolated via our screening criterion. Of course we also run the risk

of missing real mutations that do confer a fitness advantage but have

only just begun to replicate (i.e. they are present at low levels in the

population). Our method cannot make the distinction between these

‘‘real’’ low frequency mutations and low frequency mutations

occurring as a result of RT-PCR error (without a more complex

mutation model). Instead we argue below that we if we can isolate

high frequency mutations in a careful way, then these are more likely

to constitute evidence of providing an increased fitness advantage to

the virus, and hence are of particular biological importance.

Of course, it is possible that single-site mutations that do show

evidence of replication could have arisen during the RT-PCR

process. Although this is theoretically possible, we expect that this

happens at such a negligible level that it is highly unlikely that

mutations isolated during our screening mechanism would have

arisen in this way. For example, in clonal sequencing we amplify a

large population of viruses, and expect that the amplified population

will show a similar structure to the original population. If anything we

might expect to miss variants that are present at low levels, since

there is some concern that clonal sequencing might bias towards

picking up those variants present at high levels in the population [14],

and hence we would be less likely to isolate mutations of this type

using our screening criterion if this were true. In SGA the original

populations are diluted down after reverse transcription in an

attempt to amplify single viral molecules. In this case only mutations

occurring in the RT step would count as artefacts. If an isolated

mutation occurs in the early steps of the PCR and becomes amplified

in the following cycles, such that it theoretically makes up a large

enough proportion of the amplified population to be detected, then

these sequences are removed from the analysis after visual inspection

of the chromatograms. Thus errors at the PCR step are minimised.

Furthermore, if we sequence multiple clinical samples then the

RT-PCR processes that generate the data will be independent for

each of these samples. Therefore if we saw the same mutation

occurring in multiple clinical samples it is even more unlikely that this

has occurred as an artefact of the RT-PCR. In either case we

acknowledge the possibility that an isolated mutation could be a false

positive, but consider the probability to be negligible. We reiterate

that the methods described here aim to screen the data for sites-of-

interest, and there may well be a small degree of false positive

mutations that creep in; however, an important point is that this false

positive rate will be further mediated if we observe the same mutation

in multiple clinical samples, either from the same or different hosts.

There is an additional subtlety however, and that is that the

background population of viruses in the inoculum may not be

homogeneous, and thus the variation in bases in a set of observed

sequences may simply be a result of sampling from this

Bayesian Analysis of Genetic Variation
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heterogeneous background population. Therefore it is also of

interest to compare the distributions of bases at a particular site to

the distribution in the inoculum, or other earlier viral sample (e.g.

animal source of infection in the EIV study). To this end we

highlight the necessity to model both frequencies and distributions

of mutations. If we were interested purely in the former, then we

could produce the corresponding marginal binomial distribution

modelling the number of mutations observed in a set of sequences.

However, if viral evolution is or has occurred, it is possible that two

viral populations will carry the same frequency of mutations, but of

different types. Therefore we argue here that using a method

based on the full multinomial model allows comparison of the

distributions and frequency of observed mutations, rather than

simply the latter.

To summarise, we have argued so far that we need to:

a) screen for sites that show a higher frequency of mutations

than expected if no propagation of these mutations had

occurred, and in addition

b) screen for sites that show changes in the distribution of bases

compared to earlier viral samples.

These criteria then define a set of ‘‘sites-of-interest’’ that have a

reasonable biological basis for exploration in future studies.

Bayesian model choice
The question then arises as to how to derive a sensible method

to elicit these sites. In a classical statistical framework we would

generate a null hypothesis in each case and then ask the question:

under this null hypothesis how likely are we to see an observation

at least as or more extreme than the observed value? However, it is also

only possible to build evidence against a single null hypothesis, and

yet there are various random substitution models that may be

appropriate [17–19], that would ascribe different structures to the

background population of bases. For example, under the Jukes-

Cantor substitution model [17] the frequencies of the four

nucleotides at equilibrium would be 25%. In reality, a given

nucleotide is much more likely to be miscopied as a transition than a

transversion [19], and although this could be incorporated by setting

different values for the proportions pji i~1, . . . ,3ð Þ in our null

model, these would have to be known beforehand or estimated

from the data. Here we wish to compare between multiple

competing models, and in addition we also want to compare

between multiple distributions. The Bayesian method we propose

presents a flexible alternative to both of these problems.

Also, often we do not know the specific site of interest in

advance, and in a classical framework it would also be necessary to

account for the number of nucleotide sites being studied. One way

to do this would be to use a multiple correction procedure, such as

the Bonferroni or Holm-Bonferroni corrections (that correct for

the familywise error rate; see e.g. [20]), or the Benjamini-

Hochberg correction (that controls for the false discovery rate;

[21]). The choice of correction procedure depends on the context

of the problem posed; the former are more stringent in protecting

against false positives, whereas the latter allows a proportion of

false positives to be obtained in order to increase the probability of

detecting all true positives. In all cases the degree-of-correction

depends on the number of independent tests (e.g. sites) evaluated.

The approach we propose here uses Bayesian models based on

Bayes’ Factors (BFs; [22–24]). In contrast to the classical statistical

framework where the parameters of the system are assumed fixed,

in a Bayesian framework all parameters are considered to be

random variables with each following a probability distribution. As

such it is possible to analyse competing models in an analogous

way to that of a classical hypothesis test, but with various

advantages, namely:

1. In a classical setting, hypothesis test are set-up to look for

evidence against the null hypothesis; however, they do not

provide weights-of-evidence in favour of the null hypothesis, nor

in relation to competing alternative hypotheses. Both of these

things can be done in a Bayesian framework.

2. If particular nucleotide sites are known in advance to be

associated with the occurrence of non-deleterious or advanta-

geous mutations, then it is possible to incorporate this

information in the form of an increased prior probability of

association.

3. This prior information can be used in an analogous way to

multiple correction procedures, but is invariant to the number

of tests performed, making it suitable for analysing very long

sequences.

4. Useful probability measures, such as the posterior probability of

association (PPA) can be produced to explore different

associations, which are straightforward to interpret and can be

combined to explore composite hypotheses. The PPA in this

context represents the posterior probability that a nucleotide site

exhibits the phenomena of interest (for example, high frequen-

cies of mutations and differences between the distributions of

bases obtained from the inoculum and a specific viral sample).

Other, more general advantages of BFs are described in Kass

and Raftery [23], and an excellent introduction to the use of BFs

in general, but specifically in genetic association studies can be

found in Stephens and Balding [24].

Formally, the BF is defined as the posterior odds in favour of

one model against another, when the prior probability of either

model is equally favourable, and is defined as:

BF~
P DjMið Þ
P DjMj

� � ,

where Mi and Mj are competing models, and D is the observed

data. We can view the competing models as competing

hypotheses.

The Bayesian framework can be used to generate the PPA for a

given model, and this can be generalised to multiple competing

models. Let k~0,:::,K{1 denote the competing models, and let

P Mkð Þ be the prior probability that model Mk is correct, such thatPK{1

i~0

P Mið Þ~1. Then by Bayes’ Theorem:

P MkjDð Þ~ P DjMkð ÞP Mkð ÞPK{1

i~0

P DjMið ÞP Mið Þ
,

where

P DjMkð Þ~
ð
Hk

P Djhk,Mkð ÞP hkjMkð Þdhk,

with hk the (unknown) parameters on parameter space Hk. This

approach therefore integrates, or averages (rather than maximises)

over the parameter space.

If we are looking at multiple nucleotide sites, and P Mkð Þ is equal

across all sites, then P Mkð Þ represents the prior proportion of sites that

Bayesian Analysis of Genetic Variation
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exhibit the phenomena of interest believed to exist in the

population. This is similar to classical multiple testing procedures

that account for the false discovery rate, but has the advantage that

it does not depend on the number of tests performed, only the

proportion of true associations believed to exist in the population [24].

Generating comparative model structures
To attempt to identify sites-of-interest, we will specify a set of

competing models that cover a range of feasible background

population structures. Therefore the set of observed sequences

corresponds to a random draw from one of these population

structures. In many cases we have to resort to numerical methods to

calculate the likelihood, P Djhk,Mkð Þ, but for the models discussed

here it is possible to derive these analytically (for mathematical

details see Protocol S1). For brevity the subsequent discussion

assumes that we are dealing with a single nucleotide site, and we

drop the site subscript. The observed data at a site are denoted

D~ S,z1,z2,z3,z4f g, where S is the number of observed sequences.

For a set of sequences obtained from a single dataset (i.e. an

individual clinical sample) we can define ten competing structures

for the background population of bases at a given site. The first

five models cover a range of population structures subject to the

overall mutation rate being equal to p�, where p� is the per-

nucleotide mutation probability, i.e. the probability that a

nucleotide in a randomly chosen sequence at a randomly chosen

site differs from the consensus. We estimate p� by computing the

overall proportion of mutations present in the data.

M0 : p1~p2~p3~
p�

3
and p4~1{p�:

M1 : p1~p�pa, p2~p3~
p�pb

2
with pa~1{pb and p4~1{p�:

M2 : p2~p�pa, p1~p3~
p�pb

2
with pa~1{pb and p4~1{p�:

M3 : p3~p�pa, p1~p2~
p�pb

2
with pa~1{pb and p4~1{p�:

M4 : p1~p�pa, p2~p�pb, p3~p�pc with pazpbzpc~1

and p4~1{p�:

Furthermore, we can also specify an analogous range of models

in which the overall mutation rate p is allowed to vary between 0

and 1.

M5 : p1~p2~p3~
p

3
and p4~1{p:

M6 : p1~ppa, p2~p3~
ppb

2
with pa~1{pb and p4~1{p:

M7 : p2~ppa, p1~p3~
ppb

2
with pa~1{pb and p4~1{p:

M8 : p3~ppa, p1~p2~
ppb

2
with pa~1{pb and p4~1{p:

M9 : p1~ppa, p2~ppb, p3~ppc with pazpbzpc~1

and p4~1{p:

The derivation of P DjMkð Þ for each of these models is discussed in

Protocol S1 and mathematical forms given in Table S1, along with R

[25] functions to evaluate these probabilities.

Extension to multiple viral samples
If multiple viral samples are available (i.e. clinical samples

obtained at different times post-infection), D1,:::,DV , then it is

necessary to introduce some additional notation to capture the fact

that different samples could have arisen as a result of sampling

from different background populations. For example, consider that

data from two viral samples from the same animal are available,

denoted D1~ S1,z11,z12,z13,z14f g and D2~ S2,z21,z22,z23,z24f g.
There are two possible scenarios: either D1 and D2 are random

samples from the same population, or they are random samples

from different populations. We make the assumption that at any

time the population of bases at a given nucleotide site will be

consistent with one of the models M0,:::,M9, and we denote the

combination of models that could explain the data by using

multiple subscripts corresponding to the viral sample i.e. Mi,j ,

where i~0, . . . ,9 corresponds to the population structure for the

first viral sample (D1) and j~0, . . . ,9 to the structure for the

second viral sample (D2).

Thus it is necessary to calculate P D1,D2jMi,j

� �
for any i and j. If

i=j, then by definition the background populations from which

D1 and D2 are sampled are different, and so P D1,D2jMi,j

� �
~

P D1jMið ÞP D2jMj

� �
—see Protocol S1. When i~j~0 then there

are no free parameters over which to integrate, and so

P D1,D2jM0,0ð Þ~P D1jM0ð ÞP D2jM0ð Þ. If i~j=0 then there is

an additional subtlety, in that D1 and D2 are either sampled from

the same population, or from two different populations but with the

same structure. To try to clarify this point, consider Figure 2. This

shows the case when i~j~5. In Figure 2A we see that D1 and D2

are random samples from the same population described by the

model
p

3
,
p

3
,
p

3
,1{p

� �
. In Figure 2B we can see that D1 and D2

are random samples from two different populations, but with the

same population structure, described by
pa

3
,
pa

3
,
pa

3
,1{pa

� �
and

pb

3
,
pb

3
,
pb

3
,1{pb

� �
respectively.

To differentiate between these possibilities we introduce an

additional character subscript such that cases similar to Figure 2A

are denoted Mia,ia and cases similar to Figure 2B as Mia,ib. The

main difference in the calculations of P D1,D2jMia,iað Þ and

P D1,D2jMia,ibð Þ relate to the parameter space over which it is

necessary to integrate. These results follow from the fact that

although the background populations are not independent, the

Figure 2. Schematic diagram of sampling from the same or
different populations exhibiting the same population structure
(here based on M5).
doi:10.1371/journal.pcbi.1002027.g002
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sampling mechanism is. Mathematical detail is given in Protocol

S1.

Summarising for the two-sample case, we have P D1,D2jMi,j

� �
given by:

P D1,D2jMi,j

� �

~

P
4

j~1

z1jzz2j

z1j

 !

S1zS2

S1

 ! P D1zD2jMið Þ for i~ia, j~ia,i=0,

P D1jMið ÞP D2jMj

� �
otherwise,

8>>>>>>>><
>>>>>>>>:

where D1zD2~ S1zS2,z11zz21,z12zz22,z13zz23,z14zz24ð Þ.
Hence there are 109 possible competing models that could explain

the joint distribution of D1 and D2, since there are 10|10~100
possible ways of producing random samples from two different

background populations based on structures M0,:::,M9, and a

further 9 ways corresponding to when D1 and D2 are samples from

the same background population (based on M1,:::,M9). It is

possible to generalise these calculations to more than two viral

samples as required, and hence it is possible to produce a PPA for

all possible combinations of potential background structures.

Screening for sites-of-interest
Given sequence data from multiple viral samples, we have

described a method that produces weights-of-evidence in favour of

the data being drawn from a particular configuration of

background populations. In effect these population structures

can be used to define various criteria-of-interest, which can then

be assigned an overall PPA by summing across the relevant

models. This can then be used to provide useful information about

potential changes in the background population of viruses (if any),

and whether or not the frequency of mutations is higher than we

would expect if there had been no propagation of mutations (so all

mutations are first generation). In this case we can combine the

two types of sites we are seeking into a single question that can be

tested using this framework:

‘‘What is the probability that at least one clinical sample

exhibits a higher frequency of mutations than expected if no

propagation of these mutations has occurred, and also shows

a different background structure to the inoculum?’’

To calculate this we can append the inoculum to the observed

data and treat it as an additional sample. We can then sum over

the corresponding model structures that are consistent with the

question of interest. In the two sample case, we have data

DI ,D1,D2ð Þ, where DI is the data for the inoculum (or initial

challenge animal) and we denote the PPA for this definition of site-

of-interest as PPASI , which can be calculated as:

PPASI~
X

i

X
j

X
k

dijkP Mi,j,kjDI ,D1,D2

� �
,

where

dijk~
1 if i=j\j§5ð Þ| i=k\k§5ð Þ,
0 otherwise:

�

It is worth noting here that a range of questions could be asked of

the data, for example we may be more stringent and ask for the

probability that all viral samples obtained from an animal show a

different background structure to the inoculum and exhibit a

higher frequency of mutations than expected if no propagation has

occurred. In which case,

dijk~
1 if i=j\j§5ð Þ\ i=k\k§5ð Þ,
0 otherwise:

�

At the current time we use a brute-force computational approach

to calculate the PPAs for all models, however it would be possible

to develop an approximation based on a variation of the Occam’s

Window approach of [26] in order to make the calculations less

computationally intensive for particularly large-scale problems.

Data and study designs
1. A model of natural transmission of EIV in horses. A

transmission chain was established by experimentally infecting two

horses and housing one of them with two naı̈ve horses in the same

stable until the ‘‘recipients’’ showed clinical signs of infection. At

that point, the recipient horses were separated and each was

housed together with another pair of horses (Figure 3A). Nasal

swabs were taken from infected animals on a daily basis and viral

RNA was extracted for RT-PCR amplification, subcloning and

further sequencing of individual clones to determine the

mutational spectra of within-host viral populations (for a detailed

account see [6]).

Multiple sequences from each daily sample were generated by

capillary sequencing and compared to the sequence of the seeder

horse. A key aim was to identify single-site mutations arising in

viral samples that were unlikely to simply be artefacts of the

experimental process. It was of particular interest to detect variants

that persisted for multiple days within a host, or were transmitted

between horses.

2. Non-human primate pre-clinical vaccine model for

HIV-1. The aim of this study was to identify specific changes

occurring in the HIV-1 envelope glycoprotein within a host under

selective immune pressure elicited by neutralizing antibodies. To

this end, a prime-boost pre-clinical vaccine trial was performed in

rhesus macaques. Six animals were subjected to a prime-boost

vaccine regime comprising a combination of recombinant gp140

envelopes from clades A, B and C and envelope peptides while

four animals were used as controls (M. Varela and J. L. Heeney,

unpublished results; see Figure 3B). Plasma samples were collected

two and four weeks after challenge with HIV-1SF162 P4 virus stock.

Viral RNA was extracted and envelope genes were PCR amplified

using single genome amplification (SGA) followed by direct

sequencing as previously described [14].

Results

For consistency in this section, we report all the results to two

significant figures (s.f.). Sequences containing insertions were

removed from the data sets, and deletions at particular sites

discounted the number of bases entered into the analysis for that

site.

EIV study
The data in [6] consist of 2366 sequences of length 903

nucleotides, derived from 30 samples taken from 11 horses over a

15-day experiment. The number of sequences derived per sample

ranged from between 44 and 154 sequences, and the breakdown

by individual sample is shown in Table 1.
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The aim of this study was to determine the levels of genetic

variation along the course of infection in single horses and how

transmission can impact on the process of within-host evolution.

As such we can screen the sequence data to identify nucleotide

sites that have specific properties of interest as defined earlier. The

methods described here could help to locate sites and mutations

that confer some fitness advantage, or perhaps neutral selection

through drift founder effects which can also give some insight into

the viral population dynamics.

To calculate the required PPAs it is necessary to specify a prior

probability of association for each of the competing models. We

suggest using a range of priors to assess the strength of any

observed associations. Here we choose values of 0.001, 0.01 and

0.05 in favour of the phenomena of interest (as defined in the

Materials and Methods), split uniformly across all model structures

consistent with being sites-of-interest. The remainder is split

uniformly across all model structures inconsistent with our

definition. Table 3 provides the PPAs that at least one sample

exhibits differences in the background population structure

compared to the initial challenge horse, that also shows a higher

frequency of mutations than we would expect if no replication

occurs (PPASI ). It can be seen that even with a very low prior

probabilities (0.001; so less than one site a priori) there are three

sites that show very strong evidence of an association

(PPASI .0.97), and three that show some evidence

(PPASI .0.07).

What this method allows us to do is to observe how the

distributions are changing between samples, which provides useful

Figure 3. Experimental designs for A: EIV, and B: HIV-1 studies. Animal clipart reproduced from www.openclipart.org under the CC0 1.0
Universal Public Domain Dedication license.
doi:10.1371/journal.pcbi.1002027.g003
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information on which sites/mutations may be changing over the

course of the experiment. It is therefore possible to explore specific

sites in particular horses in more detail. As an illustrative example

consider site 478 in horse 5447. This had 4 samples taken on days

8–11 (after initiation of the transmission chain), generating 69, 44,

50 and 51 sequences respectively (Table 1). It can be seen that the

only time point at which mutations are observed is on day 11

(Table 4). To model this it is necessary to treat the samples from

the challenge horse as an additional sample (also shown in

Table 1), which results in 210 979 possible sets of models that

could explain the output from the five viral samples. Table 5 shows

the first five models returned after sorting the output by decreasing

PPAs. Notice that the PPAs in favour of each of these models is

equal, and this is because in the situation where there are no

observed mutants in a set of sequences, then there is not enough

information in the data set to distinguish between M0{M4 (see

Table S1). What is driving this pattern is the fact that on day 11

the technique is selecting M7 to be the most likely background

population to have given rise to the data. Hence model M0,0,0,0,7

returns the same PPA as model M1,2,3,4,7, or any other model that

uses structures M0{M4 for the samples from the challenge horse

and days 8–10. It is the sum over all models that have structure 7

on day 11 that is potentially of more interest here, which results in

a marginal probability of 0.54.

We can repeat this for all possible models for day 11, with M9

having a marginal probability of 0.37 and M6 of 0.05. We have

already discussed the likely biological mechanisms behind these

mutations in the Materials and Methods, and these results provide

strong evidence that the mutations observed in position 478 are

likely to indicate real variation and replication within this host

between days 10–11, when mutations of both type G478A and

G478T occur. Interestingly, both G478A and G478T constitute

non-synonymous mutations in a putative antigenic site.

HIV study
The data in the HIV-1 study (M. Varela and J. L. Heeney

unpublished) consist of 439 envelope sequences of length 2544

nucleotides, derived from 10 individuals (plus the inoculum) at two

time points over a four week period (Table 2). The purpose of the

study was to identify specific changes in the HIV-1 envelope

glycoprotein within a host under selective immune pressure

elicited by a prime-boost vaccine. The same questions as for the

EIV study can be asked, though in this case the background

population of viruses in the inoculum is much more heterogeneous

(data not shown) than that from the initial challenge horse in the

EIV study. Table 6 shows the results from those sites with

PPASIw0:05 (with a 0.001 prior). Interestingly, and importantly,

some of these sites are identified in more than one animal, even

though this was not a transmission study. It is also possible to split

the results by vaccination status. Qualitatively at least, the results

in Table 6 suggest that more sites show deviations from the

Table 1. Number of sequences obtained by animal and date
from EIV study [6].

Horse Day nseq

7D36* 3 152

5 82

7248 5 154

6 65

7 154

8 62

6005 5 67

6 52

7 72

8 81

5447 8 69

9 44

10 50

11 51

7C1C 7 83

8 75

9 52

11 54

5257 7 112

8 127

2F50 11 49

12 54

13 80

15 46

7A45 11 107

780C 11 71

5D1A 12 54

13 81

14 79

*indicates the first naturally challenged animal.
doi:10.1371/journal.pcbi.1002027.t001

Table 2. Number of sequences obtained by animal and date
from HIV-1 study (M. Varela and J. L. Heeney, in preparation).

Animal Week nseq

Stock* 22

8758 2 40

4 17

BB204 2 22

4 8

R00040 2 27

4 6

R00056 2 29

4 19

R00057 2 42

4 10

R01093 2 24

4 35

R99004 2 19

4 41

R99008 2 9

4 10

Ri102 2 15

4 17

Ri112 2 12

4 20

*indicates inoculum sequence.
doi:10.1371/journal.pcbi.1002027.t002
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inoculum in the vaccinated group than the unvaccinated group,

which is suggestive perhaps of increased diversification due to

selection pressure in response to the vaccine.

It is possible as before to delve further into the nature of the

mutations observed, and how the distributions have changed. For

example, consider site 994; this site is identified in three animals

(R01093, BB204 and R99004), two vaccinated and one unvacci-

nated (though the PPA is weaker for the unvaccinated animal). A

summary of bases for each animal at each time point are shown in

Table 7. It is clear to see that there has been a change of consensus

over the time course of infection in each of these animals,

switching from G in the inoculum sample to A in each of the

subsequent samples. This is backed up further by the PPAs for

different model structures (Table 8), in which model M6b,6a,6a was

selected as the most likely model structure in two cases (PPAs of

0.78 and 0.73 respectively) and as the second most likely model

structure in the third (PPA = 0.12). In the latter case the most likely

model was M6a,6a,6a (PPA = 0.82), which suggests that structure

M6 was the most likely for each sample, but that given the sample

size it was not able to fully disregard the possibility of random

sampling from the inoculum (note that in the HIV-1 study there

were less sequences produced per sample, and hence an increase

in variability in the accuracy of the estimated distributions –

nevertheless more sites-of-interest were identified overall). Of key

importance is the fact that this site was picked up in multiple

animals, and so for reasons discussed previously these differences

are highly unlikely to have arisen as a result of independent RT-

PCR error.

In the EIV study we did not observe any sites that showed

mutations occurring at a high frequency in more than one

sample, however in the HIV-1 study there are various

occurrences of this nature (such as at site 994). It is possible to

screen specifically for these mutations specifically by placing more

stringent criteria on the data; namely that we wish to identify

mutations in which the data show evidence of deviating from the

inoculum in both samples, as well as showing a high frequency of

mutations from the consensus. These are shown in Table 9.

Although the absolute probabilities are different (due to the

resulting change in prior caused by the change in the number of

models-of-interest), the sites observed in Table 9 are all a subset

of those identified in Table 6 (with the exception of site 261 in

animal 8758, which has a low PPA in any case). This illustrates a

practical way in which these methods can be adapted to deal with

specific questions.

Discussion

Obtaining viral genetic information at multiple times post-

infection either along the course of infection or along a chain of

transmission, whether experimental or observational, can help us

to understand the underpinning mechanisms that shape viral

evolution. Nonetheless, it is difficult to obtain probabilistic

information about whether these observed mutations are consis-

tent or inconsistent with having occurred due to random mutation

error. This information can provide insight into the potential

fitness of single-site mutations, both in terms of survival within a

host and transmission between hosts. To this end we have

discussed various ways in which probabilistic measures can be

derived in order to address specific questions regarding the pattern

of observed single-site mutations in the data, and have applied

these measures to two datasets derived from experimental studies

on HIV and influenza. It should be noted that the approach we

propose here is not meant to replace methods to study selection

analysis but to complement them. Indeed, in [6] (for the EIV

study) we estimated the mean numbers of non-synonymous

substitutions per site and synonymous substitutions per site using

the SLAC algorithm available in Datamonkey [16]. Interestingly,

the mutations that we have picked in this manuscript as sites-of-

interest were not identified by the aforementioned selection

analysis. As a result of these more detailed analyses, we are now

more confident than before in the findings of [6], that 4 of the 11

mutations present in individual horses on multiple days were real

(sites 49, 61, 231 and 884; the other 7 identified in [6] were present

in multiple samples but at low frequencies). In addition we picked

up a further two mutations using our screening criteria, at sites 134

and 478. The latter was picked up at one time point in multiple

horses in [6], and the former occurred at one time point in one

horse, and so wasn’t explicitly reported in [6]. However, it

occurred with a high enough frequency of mutations to be

detected here.

Table 3. Posterior probability of association, PPASI , for
different sites from the EIV study.

Horse Position PPASI (0.001) PPASI (0.01) PPASI (0.05)

5447 478 1.0 1.0 1.0

6005 49 1.0 1.0 1.0

6005 884 0.98 1.0 1.0

2F50 231 0.18 0.69 0.92

7248 134 0.09 0.50 0.84

6005 61 0.08 0.47 0.82

Parentheses show the prior probability of association across all models of
interest at a site. Sites shown are those in which the PPASI for the smallest
prior (0.001) is .0.05.
doi:10.1371/journal.pcbi.1002027.t003

Table 4. Frequency of bases for site 478 in horse 5447 in the
EIV study.

Base Challenge horse Day 8 Day 9 Day 10 Day 11

G* 152 69 44 50 37

A 0 0 0 0 8

C 0 0 0 0 0

T 0 0 0 0 6

*Consensus base.
doi:10.1371/journal.pcbi.1002027.t004

Table 5. Summary of models and PPAs for site 478 in horse
5447 from the EIV study.

Model PPA

M0,0,0,7 3:8|10{4

M1,0,0,7 3:8|10{4

M2,0,0,7 3:8|10{4

M3,0,0,7 3:8|10{4

M4,0,0,7 3:8|10{4

..

. ..
.

doi:10.1371/journal.pcbi.1002027.t005
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The intention of this work is twofold: first, to screen large data

sets for mutations of interest, and second, to focus in more detail

on highlighted mutations to elicit information about the change in

background population structure across multiple samples. Whilst it

is possible to generate classical hypothesis tests to tackle certain

questions, we provide a method based on Bayesian model

selection, for various reasons. The first is that it is possible to

generate evidence in favour of a particular hypothesis, rather than

simply weights of evidence against the null hypothesis. Also, it is

possible to compare multiple competing hypotheses in a straight-

forward manner. The Bayesian framework also allows the

inclusion of prior information regarding the probability of specific

individual nucleotide sites to be linked to the occurrence of non-

deleterious or advantageous mutations. When these prior

probabilities take the same values for all sites, then they represent

the prior proportion of sites thought to be associated in some way,

which is similar in principal to the false discovery rate used in

classical multiple correction procedures but is invariant to the

number of sites being examined. This makes it particularly suitable

for analysing long sequences (i.e. those ones generated by capillary

sequencing). In many situations this prior information may not be

available, and so it is necessary to conduct some form of sensitivity

analysis to examine the strength of the posterior association for a

range of prior values. This step helps to shed additional light on

the robustness of the conclusions in the absence of detailed prior

information. Moreover, in this Bayesian approach we integrate

over the range of the unknown parameters, which means that the

structure of the background population has to be specified, but the

proportions do not have to be directly estimated (as would be

necessary in a maximum likelihood framework). This allows for

alternative hypotheses to be generated that assume that multiple

samples can come from either the same, or different background

populations or population structures.

The Bayesian method produces a posterior probability that a

particular hypothesis is true, and can be extended to deal with

Table 6. Posterior probability of association, PPASI , for
different sites from the HIV-1 study.

Unvaccinated Vaccinated

Position (0.001) (0.01) (0.05) (0.001) (0.01) (0.05)

1518 1.0 1.0 1.0

1518 0.27 0.79 0.95

1449 1.0 1.0 1.0

491 1.0 1.0 1.0

2387 1.0 1.0 1.0

994 1.0 1.0 1.0

994 0.99 1.0 1.0

994 0.15 0.64 0.90

1006 1.0 1.0 1.0

1006 0.99 1.0 1.0

1006 0.15 0.64 0.90

1285 1.0 1.0 1.0

1744 1.0 1.0 1.0

1752 1.0 1.0 1.0

1752 1.0 1.0 1.0

1752 1.0 1.0 1.0

2470 1.0 1.0 1.0

2470 1.0 1.0 1.0

449 1.0 1.0 1.0

836 1.0 1.0 1.0

2219 1.0 1.0 1.0

393 1.0 1.0 1.0

393 0.37 0.86 0.97

756 1.0 1.0 1.0

756 0.06 0.39 0.77

433 0.99 1.0 1.0

433 0.14 0.62 0.90

771 0.99 1.0 1.0

771 0.07 0.44 0.80

942 0.99 1.0 1.0

273 0.99 1.0 1.0

2290 0.97 1.0 1.0

2446 0.97 1.0 1.0

750 0.94 0.99 1.0

138 0.89 0.99 1.0

138 0.05 0.35 0.74

1644 0.79 0.97 1.0

418 0.77 0.97 0.99

7 0.74 0.97 0.99

406 0.70 0.96 0.99

406 0.15 0.65 0.90

1305 0.60 0.94 0.99

1305 0.56 0.93 0.99

504 0.39 0.86 0.97

1512 0.39 0.86 0.97

1792 0.31 0.82 0.96

1525 0.31 0.82 0.96

2492 0.26 0.78 0.95

Unvaccinated Vaccinated

Position (0.001) (0.01) (0.05) (0.001) (0.01) (0.05)

680 0.25 0.77 0.95

1347 0.25 0.77 0.95

1479 0.15 0.64 0.90

2007 0.13 0.61 0.89

777 0.11 0.56 0.87

270 0.11 0.54 0.86

386 0.09 0.51 0.85

1668 0.09 0.51 0.85

1134 0.09 0.50 0.84

475 0.09 0.50 0.84

2340 0.09 0.50 0.84

426 0.08 0.48 0.83

445 0.08 0.48 0.83

46 0.06 0.39 0.77

Each line corresponds to a different animal. Values in parentheses show the
prior probability of association across all models of interest at a site and
reported sites are those for which the PPASI with the smallest prior (0.001) is
.0.05.
doi:10.1371/journal.pcbi.1002027.t006

Table 6. Cont.
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sequences derived from multiple samples. This means that once a

suitable range of competing model structures has been developed,

different probabilistic questions can be asked of the data. For

example, when analysing the EIV data we originally screened for

sites that showed evidence of the phenomena-of-interest in at least

one of the samples obtained from one animal. In contrast, in the

case of the HIV-1 data, it was possible to apply more stringent

criteria, which screened for sites that showed evidence of the

phenomena-of-interest in all the samples. An important point is

that the question asked will depend highly on the biological

context of the problem, but the methodology is flexible enough to

allow many probabilistic questions to be posed. It is worth adding

at this point that the same framework could be used to screen for

other types of change. For example, in the HIV-1 study the

population of viruses in the inoculum was highly heterogeneous,

and it would be perfectly possible to screen for initially

heterogeneous sites that revert to a homogeneous population over

time. The only difference would be a change in the definition of

‘‘sites-of-interest’’. In addition it is worth noting that although the

data analysed here have been obtained through experimental

studies, this is not necessary for the methodology to be applied,

though it may alter the interpretation of the results. It would be

perfectly possible to apply the same techniques to observational

data as might be obtained in a real-life disease outbreak.

What this method does not model explicitly are the underlying

mechanisms behind observed systematic mutations. If the

amplification and sequencing steps are faultless and therefore

introduce no errors, then the identified mutations must exist or

occur as part of the replication process in the background viral

population. The techniques described here cannot make the

distinction between low frequency mutations that may have

occurred through viral replication or artefactual error, however

they can help to distinguish between likely deleterious mutations or

non-advantageous mutations and those that show signs of

persistence. It also allows us to compare the distributions of bases

at a given site with other populations, such as the inoculum.

Furthermore, mutations that occur in more than one animal can

happen either de novo within each animal or due to transmission,

Table 7. Frequency of bases for site 994 in animals R01093,
BB204 and R99004 in the HIV-1 study.

Inoculum R01093 BB204 R99004

Wk 2 Wk 4 Wk 2 Wk 4 Wk 2 Wk 4

G* 15 0 0 0 0 1 8

A 7 24 33 20 8 13 31

C 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0

*Consensus base.
doi:10.1371/journal.pcbi.1002027.t007

Table 8. Summary of models and PPAs for site 994 in animals
R01093, BB204 and R99004 in the HIV-1 study.

R01093 BB204 R99004

Model PPA Model PPA PPA PPA

M6b,6a,6a 0.78 M6b,6a,6a 0.73 M6a,6a,6a 0.82

M9,6a,6a 0.17 M9,6a,6a 0.16 M6b,6a,6a 0.12

M6,9a,9a 0.03 M6,9a,9a 0.05 M9a,9a,9a 0.03

M7,6a,6a 0.01 M6a,6b,6c 0.02 M9,6a,6a 0.02

M8,6a,6a 0.01 M9b,9a,9a 0.02 M6a,6b,6c 0.01

..

. ..
. ..

. ..
. ..

. ..
.

doi:10.1371/journal.pcbi.1002027.t008

Table 9. Posterior probability of association, PPASI , for
different sites using a more stringent criterion from the HIV-1
study.

Unvaccinated Vaccinated

Position (0.001) (0.01) (0.05) (0.001) (0.01) (0.05)

1449 1.0 1.0 1.0

1518 1.0 1.0 1.0

1518 0.66 0.95 0.99

491 1.0 1.0 1.0

994 1.0 1.0 1.0

994 0.82 0.98 1.0

994 0.43 0.89 0.98

1006 1.0 1.0 1.0

1006 0.82 0.98 1.0

1006 0.43 0.89 0.98

1752 1.0 1.0 1.0

1752 0.97 1.0 1.0

1752 0.90 0.99 1.0

2470 1.0 1.0 1.0

2470 1.0 1.0 1.0

1285 1.0 1.0 1.0

836 1.0 1.0 1.0

756 1.0 1.0 1.0

756 0.23 0.75 0.94

393 0.99 1.0 1.0

393 0.61 0.94 0.99

2290 0.98 1.0 1.0

2446 0.98 1.0 1.0

449 0.94 0.99 1.0

138 0.85 0.98 1.0

1305 0.79 0.97 1.0

1305 0.36 0.85 0.97

2219 0.75 0.97 0.99

504 0.46 0.89 0.98

1512 0.46 0.89 0.98

771 0.39 0.87 0.97

1134 0.32 0.82 0.96

406 0.28 0.80 0.95

750 0.27 0.79 0.95

750 0.09 0.51 0.84

1479 0.15 0.65 0.90

261 0.10 0.54 0.86

Each line corresponds to a different animal. Values in parentheses shown prior
probabilities of association and reported sites are those for which the PPASI

with the smallest prior (0.001) is .0.05.
doi:10.1371/journal.pcbi.1002027.t009
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and one area of future development would be in extending these

methods to include information regarding mutations observed in

multiple animals explicitly into the PPA calculations.

As previously mentioned, different techniques (i.e. clonal

sequencing and SGA) are commonly used for the study of HIV

and influenza within-host evolution. Although it is beyond the

scope of this study to argue the relative merits of the two

techniques, it has been argued that SGA provides a more realistic

representation of the viral populations under study as it avoids the

generation of recombinant sequences due to template-switching

and facilitates the detection of Taq polymerase errors [14].

However, this seems to be more important for studies of HIV

than influenza, and since it is time consuming and expensive other

methodologies are normally used to study intra-host evolution of

other viruses. Nonetheless, as highlighted in the introduction, the

experimental process to generate viral sequences is not fully

efficient and so there is a non-zero probability of introducing

artefactual errors. Figure 1 provides a simple schematic diagram

comparing SGA to clonal sequencing, and highlights areas where

errors could be introduced.

Recently there have been some methodological developments in

estimating true mutation rates that account for bias and selection

[27], and it would be possible to change the value of the overall

mutation probability p� to accommodate this. It is worth noting that

in terms of screening for true changes in the distribution of bases at

particular sites as defined here, the values of PPASI obtained for the

within-sample problem will be conservative (i.e. will have a higher false

negative rate), since the observed per-nucleotide mutation proba-

bility will include both artefact and real mutations.

It is also possible to conduct various control experiments to

quantify the amount of error that occurs during various steps of

the process. The experimental procedure used to generate the

sequences in [6] included four sequential steps of DNA synthesis

(generation of cDNA, PCR, DNA replication in bacteria and

capillary sequencing). The main issue is determining the level of

artefact mutations introduced during the reverse transcription, as

this is likely to be the principal source of such errors. An issue is

that these errors cannot be easily directly estimated experimentally

as this will require the synthesis of a template RNA population

made of identical RNA molecules, and there is no in vitro

transcription system available that uses enzymes with proofreading

activity. Moreover, the level of RT errors may vary with different

template sequences, intracellular environment, and species origin

of the RT enzyme. As a result it is difficult to draw firm

conclusions as to the levels and sources of non-systematic error

within sequences derived from a single sample without being able

to directly quantify this error. Hence mutants that appear multiple

times may either arise due to mutation events de novo in each

sample, result from transmission from another animal, or be due to

systematic errors in the RT-PCR steps (e.g. if particular sites/

mutations are amplified in a highly non-uniform manner).

However, as we discuss in detail in the Materials and Methods,

there are various reasons that we do not think that we are likely to

pick up changes in the distributions that are purely artefacts of

RT-PCR errors using the screening criteria we introduce here.

The probability of a result being a false positive is further

diminished if a more stringent criteria is used (requiring evidence

across multiple samples), or if similar changes are observed in

multiple animals.

There is also the issue of sampling bias, however there is no

reason to assume that systematic bias should creep into either the

swab sampling or in the RNA extraction. Since, by producing a set

of sequences, we are effectively taking a small sample from a large

population, then the effect of sampling bias (if any) is most likely to

be that rare mutations will constitute a very low probability of

detection and a high probability of being missed during sampling.

Therefore if we do identify sites-of-interest using the criteria

defined here, then it is even more likely that these mutations would

have to be present in reasonably high levels in the background

population to be detected in this manner. This is reflected also in

the increase in variability observed when smaller numbers of

sequences are analysed.

Flexible probabilistic methods such as proposed here can help to

elicit patterns from these complex and large-scale data sets based

on asking intuitive questions about the data. We have described a

method that allows improved inference from studies of viral

transmission and evolution, in particular regarding the probabil-

ities of observing particular mutations in viral sequence data.

These types of study are becoming more common with the advent

of deep and affordable sequencing technologies. Although the

techniques presented here are based on data generated from

capillary sequencing, they form a strong basis for developing

algorithms specifically aimed at data generated by next generation

sequencing technology. For example, sequences obtained using the

Illumina platform can display substantial heterogeneity with

regard to the depth of coverage across the genome segments after

alignment. This means that more information (e.g. samples) will be

available at some sites than others. This heterogeneity in

information is intrinsically incorporated into the PPAs for

individual sites through the Bayesian model specification.

However, it will also be necessary to incorporate additional

sources of error intrinsic to the specific platform being used, and

this is the focus of ongoing work.
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with associated R code for calculating ln P DjMkð Þ½ �.
(PDF)

Protocol S1 Derivations of marginal distributions of the data
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(PDF)
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